地基静载荷试验(设备、方法及原理分析)
- 格式:docx
- 大小:129.66 KB
- 文档页数:10
桩基工程静载荷试验桩基工程静载荷试验是指在桩基工程施工过程中,为了验证桩的承载能力和安全性,对桩进行的静载荷测试的工作。
桩基工程是地基工程中的重要组成部分,其质量直接关系到工程的安全和稳定,因此桩基工程静载荷试验显得尤为重要。
下面将详细介绍桩基工程静载荷试验的相关内容。
一、试验对象及试验原理桩基工程静载荷试验的对象主要是各类桩基,包括钻孔灌注桩、钢筋混凝土桩、预应力桩等。
试验原理是在桩的设计承载能力的基础上,通过施加不同的荷载,观测桩的沉降变形情况,从而验证桩的实际承载性能是否符合设计要求。
二、试验方法1. 静载荷施加方法:静载荷施加可以采用液压顶千和重锤两种方式,根据桩基工程的具体情况选择合适的方法。
2. 荷载控制和保持:在施加荷载过程中,需要对荷载进行精确控制,并保持一定时间,以观测桩的沉降情况。
3. 沉降观测:通过沉降仪、位移传感器等设备对桩的沉降情况进行监测和记录,以获取准确的试验数据。
三、试验过程1. 设置试验区域:在桩基工程现场选取合适的试验桩,设置试验仪器和设备,确保试验过程的顺利进行。
2. 施加荷载:根据设计要求,采用适当的荷载施加方式对桩进行荷载试验。
3. 监测沉降:在荷载施加的过程中,及时监测桩的沉降情况,并记录相关数据。
4. 结果分析:根据试验结果,进行数据分析和验算,验证桩基工程的承载能力是否符合设计要求。
四、试验结果分析桩基工程静载荷试验的结果是评定桩的承载能力和安全性的重要依据,通过试验结果的分析,可以评估桩基工程的设计质量,并提出改进建议。
五、结论桩基工程静载荷试验是确保桩基工程质量和安全的重要手段,通过科学合理的试验方法和过程,可以有效评估桩的承载性能,保障工程的稳定可靠。
在桩基工程中,静载荷试验是不可或缺的环节,应严格按照相关规范和要求进行操作,以确保试验结果的准确性和可靠性。
土(岩)地基载荷试验一、试验目的土(岩)地基载荷试验是检测地基承载力的重要方法之一,其主要目的是确定地基在静载荷作用下的力学性能和承载能力。
通过试验,可以获得地基的变形特性、沉降量、承载力等关键参数,为地基设计、施工和安全使用提供重要依据。
二、试验设备与材料1.试验设备:主要包括载荷试验机、百分表、数据采集系统等。
2.试验材料:一般采用方形或圆形承载板,以及反力框架、千斤顶等。
三、试验步骤1.准备工作:选择合适的试验场地,清理地表杂物,确保场地平整。
根据试验方案,准备好试验设备与材料。
2.安装承载板:将承载板放置在试验点上,确保与地面接触良好,无明显缝隙。
3.安装反力框架:将反力框架放置在承载板上,确保其稳定不动。
4.加载与观测:逐步增加载荷,一般分为若干级,每级加载后稳定一定时间,然后记录下百分表的读数以及沉降量。
5.卸载与观测:卸载时,应逐步减少载荷,并记录下百分表的读数以及回弹量。
6.重复试验:为了获得更为准确的试验数据,可以对同一试验点进行多次重复试验。
四、试验结果分析1.数据整理:整理好各级载荷下的沉降量、回弹量以及百分表读数等数据。
2.结果分析:根据试验数据,分析地基的变形特性、承载力等关键参数。
一般来说,地基的承载力可根据最大加载值和相应的沉降量进行估算。
五、地基承载力评价根据试验结果分析,可以对地基的承载力进行评价。
一般来说,地基的承载力应满足工程设计和施工的要求。
当承载力不足时,需要对地基进行加固处理或者采取其他措施以提高其承载能力。
同时,在施工过程中,也应当注意控制施工载荷不超过地基的承载能力,以避免对地基造成损害。
建筑基桩检测方案委托单位:黑龙江宝润房地产开发有限公司工程名称:宝润 香林里A区1#楼检测单位:黑龙江兴达工程质量检测有限公司二O一五年五月四日一、工程概况1.工程名称:宝润 香林里A区1#楼2.工程地址:虎林市3. 施工单位:4. 监理单位:3.设计单位:大连天工建筑设计有限公司4.建设单位:黑龙江宝润房地产开发有限公司5.检测单位:黑龙江兴达工程质量检测有限公司二、设计要求桩型:超流态灌注桩桩径:400mm单桩竖向承载力特征值: 500kN总桩数量:370根设计桩长:17m桩砼强度:C30三、试桩数量要求:1、静载试验:根据《建筑基桩检测技术规范》JGJ106-2014要求,检测数量在同一条件下不应少于3根,且不宜少于总数的1%;当工程桩总数在50根以内时,不应少于2根,本工程共检测4组。
2、动测试验:根据《建筑基桩检测技术规范》JGJ106-2014要求,低应变动力检测,抽检数量不应少于总桩数20%且不得少于10根;柱下三桩或三桩以下的承台抽检数不得少于1根(每个柱承台下不得少于1根),本工程共检测74根。
四、方案编制依据:1、《建筑基桩检测技术规范》JGJ106-2014五、试验目的:1、判定单桩竖向抗压承载力特征值是否满足设计要求。
2、检测桩身缺陷及其位置,判定桩身完整性类别。
六、静载试验方法及主要技术要求:(一)抗压静载采用锚桩横梁反力法1、试验加载装置:试验加载装置采用四锚一横梁反力装置,液压千斤顶配置高压油泵加载,在试桩的直径方向对称安装4只百分表、位移传感器,沉降测定平面在桩顶200mm以下位置,测定牢固地固定桩身。
通过百分表观测位移沉降量,压力表、静载仪压力传感器观测油压,测定加荷荷载。
2、加荷方法:本次试验是对工程桩的承载力进行抽检检验和评价,故采用快速维持荷载法,严格执行《建筑基桩检测技术规范》JGJ106-2014.加载量为设计要求特征值的2.0倍。
(1)加载分级,共分10级,每级加载为极限承载力的1/10,第一级可按2倍分级荷载加载。
桩基静载荷试验的几种方法和应用摘要:在测量桩基承载力大小的时候,桩基静载荷试验这个方法是应用的最为普遍的,测量之后的结果也是比较可靠的。
与传统的静载荷试验相比,现代新发展出来的静载荷试验的方法和应用有了很大的改进,不仅在一定程度上节省了很大一笔费用、人力和物力,更重要的是整个桩基静载荷试验采用新方法之后检测出来的结果更加准确可靠,因而在现如今的建筑市场得到了广泛的应用。
对桩基实行静载荷试验最终的目的是为了检测出整个桩基工程的承载力大小,便于在后续的工程中做好相应的准备措施,同时也是为了保障整个桩基工程的质量。
关键词:桩基;静载荷试验;方法1静载荷试验的概念界定桩基静载测试技术,是随着桩基础在建筑设计中的使用越来越广泛而发展起来的。
新中国成立以后,桩基静载测试技术就逐步发展起来。
传统静载荷试验采用手动加压、人工操作、人工记录的方式进行。
到了20世纪80年代以后,随着改革开放的脚步,基本建设规模的逐年加大,特别是灌注桩在工程上的广泛应用,我国的桩基静载测试技术也进入了一个全新的发展时期。
至今,桩基静载试验作为一项方法成立,理论上无可争议的桩基检测技术。
静载荷试验(PLT):是指按桩的使用功能,分别在桩顶逐级施加轴向压力、轴向上拔力或在桩基承台底面标高一致处施加水平力,观测桩的相应检测点随时间产生的沉降、上拔位移或水平位移,根据荷载与位移的关系(即Q~S曲线)判定相应的单桩竖向抗压承载力、单桩竖向抗拔承载力或单桩水平承载力的试验方法。
它是目前检验桩基(含复合地基、天然地基)承载力的各种方法中应用最广的一种,且被公认为试验结果最准确、最可靠,被列入各国桩基工程规范或规定中。
该试验手段利用各种方法人工加荷,模拟地基或基础的实际工作状态,测试其加载后承载性能及变形特征。
其显著的优点是受力条件比较接近实际,简单易用,试验结果直观而易于为人们理解和接受;但是试验规模及费用相对较大。
静载荷试验类型:根据试验对象可分为地基土浅层平板载荷试验、深层平板载荷试验、复合地基载荷试验、岩基载荷试验、桩(墩)基载荷试验、锚杆(桩)试验;根据加载方式可分为:竖向抗压试验、竖向抗拔试验、水平载荷试验。
复合地基静载荷试验检测要点分析摘要:复合地基承载力特征值最直接、最准确的确定方法就是复合地基静载荷试验,静载试验的测试结果对复合地基施工质量复核、拟建建筑层数、基础类型、结构类型、使用安全、工程投资等方面影响很大,因此要求复合地基静载荷试验结果必须准确、可靠。
本文对复合地基静载荷试验检测的要点进行分析。
关键词:复合地基;静载荷试验;要点一、复合地基静载荷试验准备阶段的控制1.资料的收集(1)搜集详细的岩土工程勘察资料、上部结构及基础设计资料等;对复合地基受力较大部位、转角部位或受力复杂等部位重点控制;(2)收集施工资料,详细掌握施工过程中的异常情况、软弱地层(淤泥或杂填土等)、扰动土或流砂液化地层等资料;以便确定对异常部位的重点控制;(3)设计图纸和设计文件,准确计算试验参数;(4)复核设计持力层与岩土勘察报告是否相符、桩间土地基岩性、桩间土承载力能否达到设计要求。
2.面积置换率面积置换率是由增强体或桩的截面面积与该增强体承担处理的地基面积比;在一个工程中,可能采用一种或两种以上的桩型或布桩间距,这就要求我们按设计图纸认真计算面积置换率。
采用多种地基处理方法综合使用的地基处理工程验收检验时,应采用大尺寸承载压板进行载荷试验,也就是取较小置换率进行承载板及加载量的计算。
3.试验参数、设备的确定(1)最大加载力(单位:kN)计算方法:最大加载力(kN)=复合地基承载力特征值(单位:kPa)×2(安全系数)×承压板面积(单位:m2)1吨≈10kN,运算过程中单位应保持一致。
(2)压重平台配重量:压重平台配重量(kN/T)=最大加载力(kN/T)×1.2。
(3)分级加载。
单桩复合地基静载荷试验采用慢速维持荷载法,《建筑地基处理技术规范》(JGJ79-2012)(以下简称规范)规定:加载等级可分为(8-12)级。
从理论上讲,分级越多,试验结果越准确,但试验时间越长,对工期来讲不允许。
桩基静载试验自平衡法__发电厂桩基静载试验(自平衡法)测试报告1、概述1.1工程概况据现场勘察成果反映,该场地上部黄土具有湿陷性,属三级自重湿陷性黄土。
根据《湿陷性黄土地区建筑规范》(GBJ25-90)中要求,对Ⅲ级自重湿陷性场地,甲类建筑物应消除地基湿陷性或穿透全部湿陷性土层。
采用常规的桩基形式,由于湿陷性造成的负摩阻力,要满足设计要求,势必要增加一定的桩长,给施工带来困难。
经论证,认为在满足设计要求的前提下取得最佳效果和经济效益,首先应消除该场区的湿陷性。
所以在地基处理试验中,采用天然与人工挖孔扩底灌注桩和先进行孔内深层强夯素土桩后再进行人工挖孔扩底灌注桩的组合桩型进行对比试验。
根据国家规范和有关规定,受__发电有限责任公司的委托,由东南大学对其中4根试桩采用自平衡法,结合桩身内力测试进行基桩静载荷试验。
试桩的尺寸、编号及平面位置由勘测设计院和东南大学共同确定。
单桩试验预估加载值为单桩设计承载力的两倍,工程试桩有关参数见表1-1。
表1-1试桩参数一览表试桩编号桩身直径(mm)扩底直径(mm)设计桩长(m)持力层预估加载值(kN)荷载箱距桩端距离(m)试验方法S7 1000 1400 20m 细砂层__2 1.8 自平衡法、内力测试S8 1000 1800 20m 细砂层3000×2,2022年×2 0,1.8 自平衡法、内力测试S12 1200 无扩底20m 细砂层5000×2 0 自平衡法S13 1200 无扩底20m 细砂层5000×2 0 自平衡法、内力测试1.2地质条件1.2.1地形地貌厂址位于风陵渡以西1.0Km,地处三门峡盆地西北端,中条山为中高山区,相对高差一千余米,最高峰为雪花山,海拔1993.6m,最低处为黄河海拔302m。
焦芦厂址地貌上属黄河II级阶地。
区内河流除黄河外,均为季节性河沟。
从中条山发育的数条沟涧,由东向西呈树枝排列。
根据气象站资料,厂址土壤最大冻结深度为0.31m。
地基承载力(静载试验法)试验检测作业指导书目的使测试人员在进行地基平板载荷试验时有章可循,并使其操作合乎规范。
适用范围本细则适应于港口工程地基载荷试验的准备、现场实施和分析计算。
修造船和通航建筑物可参照执行。
引用文件《港口岩土工程勘察规范》JTS133-1-2010;《港口工程地基规范》JTJ147-1-2010;《建筑地基处理技术规范》JGJ79-2002。
试验全过程应明确所依据的技术标准,并严格按标准执行。
2、拟测点周围场地平整情况、道路是否通畅等;3、根据地质资料,持力层的岩土力学性质与设计、监理确定承压板面积、形状。
4、了解委托方对工期的要求、检测数量、堆载所用堆重物准备情况等。
当试验所需工期与委托方要求工期不一致时,应向其解释,争取委托方的谅解.5、试坑开挖:地基载荷试验的试坑宽度不小于承压板宽度或直径的3倍。
拟测点的承压板底面高程应与基底设计高程相同,如该高程上覆土层厚度超过50cm,应要求委托方在测试前1天挖除,但须保留20cm保护层待试验安装时再挖去,如测点为低洼处且拟测高程上履保护土层小于20cm,应要求做好防雨水浸泡措施(如挖排水沟等)。
工作程序4.1最大加载量的确定最大加载量应根据检测性质(验收检测、为设计提供依据)、承压板面积和预估极限承载力计算确定,地基极限承载力的预估值由委托方提供,如委托方未提供,则可根据场地的地质资料确定。
4.2现场准备测试前由项目负责人或现场检测工程师前往现场踏勘,了解下述现场及试验基本情况:1、进入工地检测前,应收集场地的工程地质资料,及有关基础的设计资料,确定检测点位、数量,取得委托方对各拟测点的最大加载值的要求(应为书面材料,由委托方、监理、设计三者之一出具或签字认可)。
填写《检测项目概况表》。
试验装置、设备、材料、工具的准备1)、反力装置主、副梁的工字钢型号和长度应根据结构计算确定,并应满足规范要求。
一般情况下,主副梁可采用以下型号:主梁:用I36工字钢,每根可受40吨。
桩基静载试验方法
桩基静载试验是土木工程中常用的一种试验方法,用于评估桩基的承载能力和
变形特性。
在进行桩基静载试验时,需要按照一定的步骤和方法进行操作,以确保试验结果的准确性和可靠性。
下面将介绍桩基静载试验的方法及相关注意事项。
首先,进行试验前的准备工作十分重要。
在选择试验桩基时,需要考虑其类型、直径、长度等因素,并进行必要的清理和修整工作。
同时,需要选择合适的试验仪器和设备,如静载试验机、变形仪等,并进行必要的校准和检查,以确保其正常工作。
其次,进行试验过程中需要注意以下几点。
首先是试验荷载的施加,需要根据
设计要求和试验标准确定施加荷载的方式和大小,并进行逐步增加,记录桩基的承载性能和变形情况。
同时,需要对桩基周围的土体进行必要的监测和记录,以评估桩基对土体的影响。
在试验过程中,需要密切关注桩基的变形情况。
通过变形仪等设备对桩基的变
形进行实时监测和记录,以评估桩基的变形特性和变形规律。
同时,需要进行必要的数据处理和分析,得出桩基的承载能力和变形特性等相关参数。
最后,进行试验后的数据处理和分析。
根据试验结果,对桩基的承载能力和变
形特性进行评估和分析,得出相应的结论和建议。
同时,需要将试验过程中的数据和记录整理归档,以备日后参考和应用。
总之,桩基静载试验是评估桩基承载能力和变形特性的重要方法,需要严格按
照规定的方法和步骤进行操作,以确保试验结果的准确性和可靠性。
希望本文介绍的方法及相关注意事项能对进行桩基静载试验的工程师们有所帮助。
地基静载荷试验试验目的,确定地基的承载力和变性特性,螺旋板载荷试验尚可估算地基土的固结系数。
地基静载荷试验包括平板载荷试验和螺旋板载荷试验。
载荷试验相当于在工程原位进行的缩尺原型试验,即模拟建筑物地基土的受荷条件,比较直观地反映地基土的变形特性。
该法具有直观和可靠性高的特点,在原位测试中占有重要地位,往往成为其他方法的检验标准。
载荷试验的局限性在于费用较高,周期较长和压板的尺寸效应。
试验设备和方法试验设备平板载荷试验因试验土层软硬程度、压板大小和试验面深度等不同,采用的测试设备也很多。
除早期常用的压重加荷台试验装置外,目前国内采用的试验装置,大体可归纳为由承压板、加荷系统、反力系统、观测系统四部分组成,其各部分机能是:加荷系统控制并稳定加荷的大小,通过反力系统反作用于承压板,承压板将荷载均匀传递给地基土,地基土的变形由观测系统测定。
(一)承压板类型和尺寸承压板材质要求承压板可用混凝土、钢筋混凝土、钢板、铸铁板等制成,多以肋板加固的钢板为主。
要求压板具有足够的刚度,不破损、不挠曲,压板底部光平,尺寸和传力重心准确,搬运和安置方便。
承压板形状可加工成正方形或圆形,其中圆形压板受力条件较好,使用最多。
(二)承压板面积我国勘察规范规寇一般宜采用0.25~0.50m2,对均质密实的土,可采用0.1m2,对软土和人工填土,不应小于0.5m2。
但各国和国内各部门采用的承压板面积不尽相同,如日本常用方形900cm2,苏联常用0.5m2,我国铁道部第一设计院则根据自己的经验,按如下原则选取:(1)碎石类土:压板直径宜大于碎、卵石最大粒径的10倍;(2)岩石地基:压板面积1000cm2;(3)细颗粒土:压板面积1000~5000cm2,(4)视试验的均质士层厚度和加荷系统的能力、反力系统的抗力等确定之,以确保载荷试验能得出极限荷载。
(三)加荷系统加荷系统是指通过承压板对地基施加荷载的装置,大体有:(1)压重加荷装置一般将规则方正或条形的钢绽、钢轨、混凝土件等重物,依次对称置放在加荷台上,逐级加荷,此类装置费时费力且控制困难,已很少采用。
(2)千斤顶加荷装置根据试验要求,采用不同规格的手动液压千斤顶加荷,并配备不同量程的压力表或测力计控制加荷值。
(四)反力系统一般反力系统由主梁、平台、堆载体(锚桩)等构成。
(五)量测系统量测系统包括基准梁,位移计,磁性表座,油压表(测力环)。
机械类位移计可采用百分表,其最小刻度0.01mm,量程一般为5~30mm,为常用仪表。
电子类位移计一般具有量程大、无人为读数误差等特点,可以实现自动记录和绘图。
油压表一般为机械式,人工测读。
测试用的仪表均需定期标定,一般一年标定一次或维修后标定,标定工作原则上送具有相应资质的计量局或专业厂进行。
设备的现场布置当场地尚未开挖基坑时,需在研究的土层上挖试坑,坑底标高与基底设计标高相同。
如在基底压缩层范围内有若干不同性质的土层,则对每一土层均应挖一试坑,坑底达到土层顶面,在坑底置放刚性压板。
试坑宽度不小于压板宽度的三倍。
设备的具体布置方式有如下两种:1.堆载平台方式:堆载2.锚桩反力梁方式。
………设备安装时应确保荷载板与地基表面接触良好且反力系统和加荷系统的共同作用力与承压板中心在一条垂线上。
当对试验的要求较高时,可在加荷系统与反力系统之间,安设一套传力支座装置,它是借助球面、滚珠等,调节反力系统与加荷系统之间的力系平衡,使荷载始终保持竖直传力状态。
测试方法与数据采集平板载荷试验适用于浅层地基,螺旋板载荷试验适用于深层地基或地下水位以下的地基。
压板形状和尺寸的选择:一般用圆形刚性压板;一般地基0.25~0.5m2,岩石地基根据节理裂隙的密度,圆形,直径300mm(《建筑地基基础设计规范》GB 50007-2002,以下简称《地基规范》),复合地基根据加固体的布置。
试验用的加载设备,最常见的是液压千斤顶加载设备。
位移测试可采用机械式百分表或电测式位移计,测试时将位移计用磁性表座固定在基准梁上。
液压加载设备和位移量测设备要定期标定,以最大可能地消除其系统误差。
试验的加载方式可采用分级维持荷载沉降相对稳定法(慢速法)、沉降非稳定法(快速法)和等沉降速率法,以慢速法为主。
载荷试验较费时费力,在勘测设计阶段,一般是根据工程设计要求,在一条线路或一个工程地质分区内,选择具有代表性的均质地层(厚度大于2倍压板直径)进行试验。
而在施工检验阶段,以下列出《地基规范》对于慢速法加载过程的规定:荷载分级:不少于8级,总加载量不应少于荷载设计值的两倍;稳定标准:当连续两小时内,每小时内沉降增量小于0.1mm时,则认为沉降已趋稳定,可施加下一级荷载。
数据测读:每级加载后,按间隔10、10、10、15、15min,以后每半小时读一次沉降,直至沉降稳定。
加载终止标准:1.承压板周围的土明显的侧向挤出;2.沉降急骤增大,荷载-沉降曲线出现陡降段;3.在某一级荷载的作用下,24h内沉降速率不能达到稳定标准;4.s/b≥0.06(b:承压板宽度或直径)。
卸载:该规范没有对卸载过程做出规定,但完整的试验应包含卸载过程。
注意各规范的规定有一些差别。
试验操作过程:(1)正式加荷前,将试验面打扫干净以观测地面变形,将百分表的指针调至接近于最大读数位置;(2)按规定逐级加荷和记录百分表读数,达到沉降稳定标准后再施加下一级荷载,一般在加荷五级或已能定出比例界限点后,注意观测地基土产生塑性变形使压板周围地面出现裂纹和土体侧向挤出的情况,记录并描绘地面裂纹形状(放射状或环状、长短粗细)及出现时间。
(3)试验过程的各级荷载要始终确保稳压,百分表行程接近零值时应在加下一级荷载前调整,并随时注意平台上翘、锚桩拔起、撑板上爬、撑杆倾斜、坑壁变形等不安全因素,及时采取处置措施,必要时可终止试验。
快速法加载:特点是加荷速率快、试验周期短,一般情况下试验过程仅数小时至十多个小时,但其测试成果和适用条件与常规方法略有差异。
快速载荷试验仍是逐级加荷,但前后两级加荷的间隔时间是固定的,一般为10~30min,有规定为60min的。
根据研究结果,在比例界限点以内的弹性变形阶段,快速载荷试验的沉降量s一般偏小,当荷载超过p l后地基土已处于塑性变形阶段,快速载荷试验的沉降量s 一般增幅较快,当荷载接近或超过地基土的极限荷载时,快速与常规两种试验p-s曲线逐渐接近,所定极限荷载值相同或差一个荷载级。
因此,两种试验方法确定的p l、p z和基本承载力⎛0值基本相近,其极差(最大与最小值间)不会超过平均值的30%,符合规范要求。
快速载荷试验主要适用于沉降速率快的地层,如岩石、碎石类土、砂类土等,对毋须作沉降检算的建筑物,结合施工时限也可对粘性土地层采用快速试验。
基本测试原理平板载荷试验(Plate Loading Test ,简称PLT )是一种最古老的、并被广泛应用的土工原位测试方法。
平板载荷试验是指在板底平整的刚性承压板上加荷,荷载通过承压板传递给地基,以测定天然埋藏条件下地基土的变形特性,评定地基土的承载力、计算地基土的变形模量并预估实体基础的沉降量。
平板载荷试验的理论依据,一般是假定地基为弹性半无限体(具有变形模量E 0和泊松比v ),按弹性力学的方法导出表面局部荷载作用下地基土的沉降量s 计算公式。
半无限空间表面作用局部荷载时的弹性理论解假定地基为各向同性半无限体,在地表荷载作用下,地基中所引起的应力,可用弹性理论求解。
1.竖直集中荷载作用时当竖直集中荷载P 作用在地表面上,在地基中任一点N 所引起的应力已于1885年为布辛纳斯克(Boussinesq )所解出。
设坐标原点选在着力点上,如采用圆柱坐标,如图1-2所示,则z 轴向下为正,土中任一点N (r ,θ,z )离原点o 的距离为R ,R 矢径与z 的夹角为β。
可以看出,这是一个轴对称问题,只要z 和r 不变,在任何θ位置上之一点的应力状态都应是相等的。
布辛纳斯克的解答为:k zP R P z ⋅==232cos 23βπσ (1-1) k 为地基应力系数,无量纲,可直接计算或查表。
类似的可以写出其它应力分量。
通过物理方程转换后可得到应变表达式,对整个地基积分后得到地基表面的变形分布。
当地基表面作用有局部分布荷载时,可对上式改写后进行积分求解。
2.刚性压板下的地基反力分布考虑圆形刚性压板,在中心荷载的作用下,压板的沉降将是均匀的,压板下的地基反力的分布必然对称于竖直中心轴。
这是一个轴对称问题。
因为地基中的位移分布复杂且未知,难于用函数表达,可用拟合法求解,也就是假设一个地基反力分布,该应力分布的合力的大小与作用的荷载相同,运用上述过程求解压板的沉降,然后根据计算结果对地基反力分布进行修正,再进行新一轮试算,直到计算的压板沉降接近于均匀时为止。
计算所得的压板下的应力分布形式如下图所示。
图1-2 竖直集中荷载作用下的计算图式 图1-3 压板沉降与压板下的应力分布xy压板的沉降可以图示为图1-3。
理论表达式为:222)/(122)(R x p x R R Px -=-=ππσ (1-2)式中,各符号的含义如上图。
方形刚性压板下的应力分布还要复杂一些,但其形状与此类似。
3.刚性压板的平均沉降与荷载的关系上述计算过程除了能获得压板下的应力分布以外,还可以得到压板下的平均沉降。
从总体来看,该问题可以归结为一个非线性数学规划问题。
在土力学教材中已经列出了刚性压板的沉降与压板下平均应力之间的关系式。
圆形刚性压板(D 为直径): pD E s 0214νπ-=方形刚性压板(B 为边长): pB E s 0212νπ-= 上述式中的ν为泊松比,E 0为地基土的变形模量。
上列公式说明,当地基的特性确定时,压板的沉降与荷载集度及板的宽度成正比。
根据上列公式,可以根据载荷试验确定地基土的变形模量,式中的泊松比根据经验或手册的建议值确定。
上述结果所依据的是弹性理论,而实际上土体并不是理想弹性体,所以实际的地基反力分布并不完全如此。
荷载板的刚度效应压板的刚度会对地基反力的分布产生显著的影响。
当压板的刚度有限时,在中心荷载的作用下,基底压力视压板刚度而又不同的分布特征。
但实际上,根据圣文南原理,当一个力系作用于弹性介质上,如其总量保持不变而仅只分布形式发生变化,那么受影响的部位仅局限于力系作用点的附近。
所以,压板刚度对地基变形的影响是有限的,但压板刚度对位移测试结果的影响是显而易见的。
故荷载板必须有足够的刚度。
影响深度鉴于加荷能力和刚性压板的假设,压板的尺寸一般较小,其影响深度也是有限的。
一般认为,平板载荷试验只能反映2倍压板宽度的深度以内的土性。
所以,压板试验的压板尺寸也不宜过小。
特别是当场地内含有软弱下卧层时。
荷载板的尺寸效应由于载荷试验具有缩尺模型和反映土的变形特性的直观特点,国内外多将平板载荷试验作为确定地基承载力的基本方法,《地基规范》规定:对破坏后果很严重的如高层建筑等一级建筑物,应结合当地经验采用载荷试验、理论公式计算及其它原位试验等方法综合确定;以静力触探、旁压仪及其它原位试验确定地基承载力时,应与载荷试验进行对比后确定。