最新13高阶导数与高阶偏导数汇总
- 格式:ppt
- 大小:922.00 KB
- 文档页数:7
偏导数公式大全24个偏导数是多元函数微分学中的重要概念,用于描述函数在特定方向上的变化率。
在实际问题中,偏导数常常被用于求解最优化、梯度下降等问题。
下面是24个常用的偏导数公式,每个公式都有它们的特定应用场景。
1. 常数偏导数公式:对于常数函数f(x)=c,其偏导数为0,即f/x = 0。
2. 幂函数偏导数公式:对于幂函数f(x)=x^n,其中n为常数,其偏导数为f/x = n*x^(n-1)。
3. 指数函数偏导数公式:对于指数函数f(x)=a^x,其中a为常数,其偏导数为f/x = a^x * ln(a)。
4. 对数函数偏导数公式:对于对数函数f(x)=log_a(x),其中a为常数且a>0,其偏导数为f/x = 1/(x * ln(a))。
5. 三角函数偏导数公式:对于三角函数f(x)=sin(x),其偏导数为f/x = cos(x)。
类似地,对于cos(x)和tan(x)函数,其偏导数分别为-sin(x)和sec^2(x)。
6. 反三角函数偏导数公式:对于反三角函数f(x)=asin(x),其中a为常数,其偏导数为f/x = a/sqrt(1-x^2)。
类似地,对于acos(x)和atan(x)函数,其偏导数分别为-a/sqrt(1-x^2),-1/sqrt(1+x^2)。
7. 求和公式:对于多个函数的和f(x) = g(x) + h(x),其偏导数为f/x = g/x + h/x。
8. 积函数公式:对于两个函数的积f(x) = g(x) * h(x),其偏导数为f/x = g(x) * h/x + h(x) * g/x。
9. 商函数公式:对于两个函数的商f(x) = g(x) / h(x),其偏导数为f/x = (h(x) * g/x - g(x) * h/x) / h(x)^2。
10. 复合函数公式:对于复合函数f(g(x)),其中f和g是两个函数,其偏导数为f/x = f/g * g/x。
多元函数高阶导数作为微积分中的重要概念,导数可以理解为某一函数在某一点处的切线斜率。
在单变量函数中,我们常常利用极限的方法求导。
但在多元函数中,情况就会变得更为复杂。
本文将介绍多元函数的高阶导数,为读者打开一扇理解多元函数导数若干复杂问题的新门径。
1. 多元函数定义多元函数是指将多个变量作为自变量的函数,可以表示为$ f:\mathbb{R}^n \rightarrow \mathbb{R} $。
在一元函数中,自变量只有一个,如$f(x) = x^2$。
而在多元函数中,自变量可以是两个或多个,如$f(x,y) = x^2 + y^2$。
2. 偏导数多元函数中,存在若干个自变量,求导时需要指定对某一个自变量求导。
这就是偏导数的概念。
偏导数是指在其他自变量不变的情况下,对某一自变量求导得到的导数。
以二元函数为例,假设有$f(x,y) = x^2 + y^2$,求其在点$(1,1)$处对$x$的偏导数。
我们可以先将函数$ f(x,y) $带入偏导数的定义式:$$\frac{\partial f}{\partial x} = \lim_{\Delta x \rightarrow 0}\frac{f(x + \Delta x,y) - f(x,y)}{\Delta x}$$由于我们要在$(1,1)$处求偏导数,因此将$x$代入$1$,得到:$$\frac{\partial f}{\partial x}|_{(1,1)} = \lim_{\Delta x \rightarrow 0} \frac{f(1 + \Delta x,1) - f(1,1)}{\Delta x}$$化简后得到:$$\frac{\partial f}{\partial x}|_{(1,1)} = \lim_{\Delta x \rightarrow 0} \frac{(1+\Delta x)^2 + 1^2 - (1^2 + 1^2)}{\Delta x} = 2$$同样的,我们可以求出在$(1,1)$处对$y$的偏导数:$$\frac{\partial f}{\partial y}|_{(1,1)} = \lim_{\Delta y \rightarrow 0} \frac{f(1,1 + \Delta y) - f(1,1)}{\Delta y} = 2$$3. 高阶偏导数如果某一函数的偏导数存在,我们就可以考虑对它进行求导。
以下是常见的偏导数公式大全:
1. 一阶偏导数:
-对于函数f(x, y):
-∂f/∂x:对x 求偏导数
-∂f/∂y:对y 求偏导数
2. 高阶偏导数:
-对于函数f(x, y):
-二阶偏导数:
-∂²f/∂x²:对x 求二阶偏导数
-∂²f/∂y²:对y 求二阶偏导数
-∂²f/∂x∂y:先对x 求偏导数,再对y 求偏导数
-∂²f/∂y∂x:先对y 求偏导数,再对x 求偏导数
-更高阶的偏导数类似地进行推导
3. 链式法则:
-对于复合函数z = f(g(x, y)):
-∂z/∂x = (∂f/∂g) * (∂g/∂x)
-∂z/∂y = (∂f/∂g) * (∂g/∂y)
4. 常见函数的偏导数:
-对于指数函数e^x:
-∂(e^x)/∂x = e^x
-对于对数函数ln(x):
-∂(ln(x))/∂x = 1/x
-对于三角函数sin(x) 和cos(x):
-∂(sin(x))/∂x = cos(x)
-∂(cos(x))/∂x = -sin(x)
以上是一些常见的偏导数公式,但并不是完整的列表。
在实际应用中,还会涉及更复杂的函数和多元变量的情况,需要根据具体问题进行推导和计算。