高阶偏导详细讲解
- 格式:ppt
- 大小:119.50 KB
- 文档页数:7
第二节偏导数 教学目的: 使学生了解偏导数的概念;熟练掌握阶及二阶偏导数的计算方法;了解偏导数存在与函数连续的关系。
教学重点: 一阶及二阶偏导数的计算教学过程:一、偏导数的定义及其计算法对于二元函数z 二f(xy)如果只有自变量x 变化 而自变量y 固定 这时它就是x 的一元函 数这函数对x 的导数 就称为二元函数z 二f(xy)对于x 的偏导数定义设函数z=f(xy)在点(x o y o )的某一邻域内有定义 当y 固定在y o 而x 在X o 处有增量 x 时相应地函数有增量f(x o x y o) —f(x o y o ).如果极限f (X o X, y o ) - f (X o , y o )A x存在则称此极限为函数z=f(xy)在点(x o y o )处对x 的偏导数 记作例如f (X o :x, y o ) - f(x o , y o )A x 类似地函数z 斗(xy)在点(x o y o )处对y 的偏导数定义为Hm f(x °,y o :y)-f (x °,y o ) .y —.o y偏导函数如果函数zh(xy)在区域D 内每一点(xy)处对x 的偏导数都存在 那么这个偏 导数就是x 、y 的函数它就称为函数z=f(xy)对自变量x 的偏导函数 记作——zx 或 f x (x, y) ■ X x偏导函数的定义式:fx(x,y 円m f(x 2)7("cf — y —y o C X=X o -z x y=y o :z .x x=x ° 或 f x (x o , y o ) y mof x (x o ,yo ^.'r.o 记作各X’ * 0 x=X o ■z yy=y ° y To 或 f y (x o y o ). X =<o y =y °类似地可定义函数z=f(xy)对y的偏导函数记为Z/或f y(x,y) ‘-■y :y偏导函数的定义式:f y(x,y) = limf(x,y:y)-f(x,y)求兰时只要把y暂时看作常量而对x求导数求埜时只要把x暂时看作常量而对y ;x ;y 求导数,讨论下列求偏导数的方法是否正确?f x(><0,y o) = f x(x,y)x^ f y(x o,y o) = f y(X,y) xs .y=y°d df x(X o,y o) =【dxf (x,y o)〕xK fygy o)珂石fd o’y)]© ■偏导数的概念还可推广到二元以上的函数.例如三元函数u=f(xyz)在点(xyz)处对x的偏导数定义为f (x :x,y,z) —f(x,y,z)Ax其中(xyz)是函数u=f(xyz)的定义域的内点它们的求法也仍旧是一元函数的微分法问题,例1求z=x2+3xy+y2在点(1 . 2)处的偏导数,解—=2x 3y z =3x 2y . z & cyXT =21 3 2=8 ]z例2求z=x2sin 2y的偏导数解—=2xsin2y — -2x2cos2y . & cy例 3 设z=x y(x Qx^)求证――1—■ =2zy ex In x 內证—=yx y A— =x y I nx,x :y——1 -yx y^ —x y I nx 二x y x y=2z .y :x In x : y y In x例4求x^y^z2的偏导数解』- ______X 仝 [.一__________ y ____ & +'x2+ y2+z2r by Jx2+y2+z2=_yx”31 22 = 7 .例5已知理想气体的状态方程为pV=RT(R为常数)•求证空乂 .兀_1证因为p = R L P 一马. "vw V 2V=RL 卫卫p ::T pT pV 汀 VT = R 亍 R 所以8汎汀=_RT RV-RT-I討贡④ V 2 p R pV ^例5说明的问题 偏导数的记号是一个整体记号 不能看作分子分母之商 二元函数z=f(xy)在点(x o y o )的偏导数的几何意义:f x (x o y o )=[f(x y o )]x 是截线z=f(x y o )在点M o 处切线T x 对x 轴的斜率 f y (x o y o ) =[f(x o y)]y 是截线z=f(x o y)在点M o 处切线T y 对y 轴的斜率偏导数与连续性对于多元函数来说即使各偏导数在某点都存在也不能保证函数在 该点连续例如 xyf(x,y) = x 2 y 2I 0 在点(0 0)有f x (0. 0)=0 f y (o. 0)=0但函数在点(0 0)并不连续“提示:f(x,O) =0 f (0, y^of x (O,O)=f [f(x,0)]=0 f y (0, 0^-d [f(0, y)H0 . dx dy当点P(x y)沿x 轴趋于点(0 0)时有lim f(x, y)=lim f (x, 0) = lim 0 =0 (x,y) >(0,0) X r 0 x >0当点P(x y)沿直线y=kx 趋于点(0 0)时有因此.lim f (x,y)不存在 故函数f(xy)在(0 0)处不连续(x,y)T(0,0) 类似地可定义函数z=f(xy)对y 的偏导函数 记为 冷 f zy 或 f y (x,y) • x 2 y 2" x 2 y 2 =0 lim 2 ' 2(x,y)—?(o,o )x 2 y 2y=kx=lim 2 x >0 x 2 kx 2_ k 2x 2 k 2偏导函数的定义式恥心肩“™高阶偏导数 设函数Z 二f(xy)在区域D 内具有偏导数^ = f x (x, y)迸二 f y (x,y).那么在D 内f x (xy)、f y (xy)都是xy 的函数如果这两个函数的偏导数也存在 贝U 称它们 是函数x 二f(xy)的二偏导数 按照对变量求导次序的为同有下列四个二阶偏导数 如果函数z 二f(xy)在区域D 内的偏导数f x (xy)、f y (xy)也具有偏导数 则它们的偏导数称为函数z=f(xy)的二阶偏导数按照对变量求导次序的 不同有下列四个二阶偏导数2手(孑•手(勺=2 2 其中ry (:xU x y (x ,y) 称为混合偏导数;:(;:Z )_ ;:2Z 1 ( ::Z) _ r 2Z ( ::Z) _ ::2z ;:( ;:z )_ ;:2z :x ;:x ;:x 2 : y . x .x :y ;x ; y y ; x ;:y ;y ;:y 2同样可得三阶、四阶、以及n 阶偏导数二阶及二阶以上的偏导数统称为高阶偏导数‘ 例 6 设 z=x 3y 2-3xy 3-xy V 求 f 、-f 、 - x 和 L x 2 :x 3 :yx : xy解/ =3x 2y 2 -3y 3 -y Z =2x f y-9xy 2 -x :x :y C 2Z 62 ^z 6 2, 2 =6x y 3=6 .x:x -2-2 6^丫-9丫2-1x 6x 2y-9y 2 -1 x x .y y x -2 “2由例6观察到的问题 x xoycx cxcy 定理如果函数z=f(xy)的两个二阶混合偏导数 昙及三在区域D 内连续•那么在该 tycx cxcy区域内这两个二阶混合偏导数必相等.x : x ; x 2 :y x :x y:Z = f xy (x, y).2 补評話mx’y)弓許■2Z”yy (x " -3 :2类似地可定义二元以上函数的高阶偏导数例7验证函数z = ln . x2—y2满足方程寻•岂=0 . ex cy 证因为z=ln ... x2- y2=2"n" ' y2)所以:z x :z y___________.:x _________ x2y2;:y x2 y2匕(x2y2)-x2x y2-x2戸一(x2y2)2—(x2y2)2悬(x2y2)-y 2y x2-y2旷 (x2y2)2 _(x2y2)2'-2-2 2 2 2 2因此驚+吟=x —y 2+ y 2 -o ■ $2 cy2(x2+y2)2(x2+y2)2例8•证明函数u二1满足方程总•总•岂=0 .r ex2內2ezr其中r = J x2y2z2.证:u _ _丄工—_丄x _ __x_ dx r2ex r2r r3E2u _ 1 +3x 宜=1 +3x2_x2r3r4;x r3r5-2 / -2因此T U Uex2cy2cz2r3-x ' (r3)r6r3-x3r21LExr6同理专::2u _ —丄.3^:z2r3r5_ _ 3 3(x2y2- z2)r53 3r2—3-0r3 r5r r(。
偏导数概念及其计算高阶偏导数偏导数第八章偏导数的定义及其计算法偏导数是微积分中的重要概念,它描述了函数在其中一点上沿着特定方向的变化率。
在多元函数中,一个函数可以依赖于多个自变量,而偏导数就是用来描述其中一个自变量对函数的变化的影响。
在定义上,对于一个函数$f(x, y)$,偏导数$\frac{\partialf}{\partial x}$表示函数在点$(x, y)$处沿着$x$轴方向的变化率。
类似地,偏导数$\frac{\partial f}{\partial y}$表示函数在点$(x, y)$处沿着$y$轴方向的变化率。
偏导数是通过将函数对应的自变量看作常数来计算的。
计算偏导数的方法与计算普通导数的方法类似,只需将未涉及到的变量视为常数进行求导即可。
例如,对于函数$f(x, y) = x^2 + 2xy +y^2$,我们可以先计算偏导数$\frac{\partial f}{\partial x}$,即将$y$视为常数,对$x$求导。
这样得到的结果是$2x + 2y$。
同理,计算偏导数$\frac{\partial f}{\partial y}$,即将$x$视为常数,对$y$求导,得到结果为$2x + 2y$。
因此,在该例中,$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$都等于$2x + 2y$。
高阶偏导数是指对一个函数进行多次求导得到的偏导数。
高阶偏导数的计算方法与一阶偏导数的计算方法类似,只需多次对相应的自变量求导即可。
例如,对于函数$f(x, y) = x^3 + 3x^2y + 3xy^2 + y^3$,我们可以首先计算一阶偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,分别得到$3x^2 + 6xy + 3y^2$和$3x^2 + 6xy + 3y^2$。
高阶偏导数求导顺序高阶偏导数是微积分学中一个非常重要的概念,它涉及到多元函数的导数计算。
在计算高阶偏导数的过程中,有一定的求导顺序,下面将会详细介绍。
一、一阶偏导数在多元函数中,如果只有一个自变量在变化,而其他自变量都保持不变,此时的导数称为一阶偏导数。
一般记作:$$\frac{\partial f(x,y)}{\partial x}或 f_{x}$$二、二阶偏导数如果对一阶偏导数进行求导,得到的导数称为二阶偏导数。
一般记作:$$\frac{\partial^{2} f(x,y)}{\partial x^{2}}或 f_{xx}$$三、高阶偏导数的计算顺序在求高阶偏导数时,需要按照指定的顺序进行计算。
一般情况下,求导的顺序与自变量的排列顺序有关。
下面是计算高阶偏导数的常用顺序:1.先求一阶偏导数:$$\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}$$2.求二阶偏导数$$\frac{\partial^{2} f(x,y)}{\partial x^{2}},\frac{\partial^{2}f(x,y)}{\partial y^{2}},\frac{\partial^{2} f(x,y)}{\partial x \partialy},\frac{\partial^{2} f(x,y)}{\partial y \partial x}$$3.求三阶偏导数$$\frac{\partial^{3} f(x,y)}{\partial x^{3}},\frac{\partial^{3}f(x,y)}{\partial y^{3}},\frac{\partial^{3} f(x,y)}{\partial x^{2} \partial y},\frac{\partial^{3} f(x,y)}{\partial y^{2} \partial x},\frac{\partial^{3}f(x,y)}{\partial x \partial y^{2}},\frac{\partial^{3} f(x,y)}{\partial y \partial x^{2}}$$4.求更高阶偏导数,需要按照类似上述的方法进行计算。