平行四边形的判别教案
- 格式:doc
- 大小:87.50 KB
- 文档页数:7
平行四边形的判别教学设计.docx平行四边形的判定(一)教学设计一、教学目标知识与技能1、经历探索平行四边形的判定定理1,2的过程2、证明平行四边形的判定定理1、2,并能运用它们解决有关问题3、进一步培养学生的合情推理与演绎推理能力过程与方法1、经历平行四边形判别条件的探索过程,使学生逐步掌握说理的基本方法;并在与他人交流的过程中,能合理清晰地表达自己的思维过程。
2、探索并掌握平行四边形判定的条件。
3、在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。
情感、态度与价值观让学生主动参与探索的活动,在做“数学实验”的过程中,发展学生的合情推理意识、主动探究的习惯,激发学生学习数学的热情和兴趣。
教学重点:平行四边形判定方法的探究、运用教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用二、学情分析学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。
在第一节也学习了平行四边形的性质,可以考虑采用类比的方式进行教学设计。
三教学过程第一环节复习引入:问题1(1)平行四边形的定义是什么?它有什么作用?(2)、平行四边形还有哪些性质?设计意图:本节课由于是首次探索四边形是平行四边形的条件,其说理依据只能是平行四边形的概念,对于下面几条的探索就可以利用第一个条件“温故知新”是传统的教学手段,复习性质是为了和判定方法的对比,分清区别和联系,使学生知道平行四边形的定义既是性质,又是判定。
为应用作准备自然、合理,符合学生的任知规律。
问题情境2有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的小X拿着细绳很快将原来的平行四边形画了出来,你知道他用的是什么方法吗?设计意图:(1)设置学生活动任务:用尽可能多的方法画平行四边形。
从真实的生活中发现数学,让学生体验数学来源于生活有服务于生活;(2)激发学习兴趣,引导学生树立科学的人生观和价值观活动要求:1、先自己画,再小组交流2、每个小组派两名同学展示,并说出画法交流展示:一个小组上台展示画法,其他小组补充不同画法学生画法预设:分别过A、C作DC、DA的平行线,两平行线相交于B延长AD到E,做DAB=EDC,过C做CBAD;连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。
19.1.2 平行四边形的判定(一)教学目知识与技能1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题过程与方法经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力. 情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点理解和掌握平行四边形的判定定理.难点几何推理方法的应用.教学过程备注教学设计与师生互动第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?演示图片:选择各种四边形图片展示.提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?总结:平行四边形判定1 两组对边分别相等的四边形是平行四边形.平行四边形判定2 对角线互相平分的四边形是平行四边形.第二步:应用举例:例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.证明:(1) ∵A′B′∥BA,C′B′∥BC,∴四边形ABCB′是平行四边形.∴∠ABC=∠B′(平行四边形的对角相等).同理∠CAB=∠A′,∠BCA=∠C′.(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C 是平行四边形.∴AB=B′C,AB=A′C(平行四边形的对边相等).∴B′C=A′C.同理B′A=C′A,A′B=C′B.∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.第三步:随堂练习1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)第四步:课后练习:1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,B O=1/2BD,则四边形ABCD是平行四边形.()2、在四边形ABCD中,AC交BD 于点O,若OC= 且,则四边形ABCD是平行四边形.3、下列条件中,能够判断一个四边形是平行四边形的是()(A)一组对角相等;(B)对角线相等;(c)一组对角相等;(D)对角线相等;3、下列条件中能判断四边形是平行四边形的是().A、对角线互相垂直B、对角线相等C对角线互相垂直且相等D 对角线互相平分4、已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形.(用两种方法)5、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.6、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN .7.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF课后小结与反思:19.1.2 平行四边形的判定(三)教学目标知识与技能1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算过程与方法经历探索、猜想、证明的过程,进一步发展推理论证的能力.感悟几何学的推理方法.情感态度与价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.重点掌握和运用三角形中位线的性质.难点三角形中位线性质的证明(辅助线的添加方法)教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?第二步: 引入新课例(教材P98例4) 如图,点D 、E 、分别为△ABC边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)第三步:应用举例例1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ H G ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.第四步:课堂练习1.如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点的距离是 m ,理由是 .2.已知:三角形的各边分别为8cm 、10cm 和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,(1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ;(2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.第五步:课后巩固1.(填空)一个三角形的周长是135cm ,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△A BC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.课后小结与反思:19.1.2 平行四边形的判定(二)教学目标知识与技能1.掌握用一组对边平行且相等来判定平行四边形的方法2.会综合运用平行四边形的四种判定方法和性质来证明问题3、使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系.过程与方法通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.难点几何推理方法的应用.平行四边形的判定定理与性质定理的综合应用.教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;2.平行四边形的判定方法;3.【探究】取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.第二步:应用举例:例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CD.∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC . ∴DE=BF . ∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).∴ BE=DF .此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.例2(补充)已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平行四边形.分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.证明:∵ 四边形ABCD 是平行四边形,∴ AB=CD ,且AB ∥CD .∴ ∠BAE=∠DCF .∵ BE ⊥AC 于E ,DF ⊥AC 于F ,∴ BE ∥DF ,且∠BEA=∠DFC=90°.∴ △ABE ≌△CDF (AAS ).∴ BE=DF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).例3、 已知:如图3,E 、F 是平行四边形ABCD 对角线AC 上两点,且AE =CF.求证:四边形BFDE 是平行四边形.B A OC D EF图3分析:已知平行四边形可用平行四边形的性质,求证平行四边形要想判定定理,由于E 、F 在对角线上,显然用对角线互相平分来判定.证明:连结BD 交AC 于O.是平行四边形四边形即平行四边形ABCD OFEO CF OC AE AO CFAE ODOB ,OC OA ABCD ∴=-=-∴===∴(对角线互相平分的四边形是平行四边形)这道题,还可以利用CFB AED ,DFC ABE ∆≅∆∆≅∆用对边相等或平行来判定平行四边形,相比之下使用对角线较简便.例4、 已知:如图DBC ADB BF DE ,AC BF ,AC DE ∠=∠=⊥⊥。
平行四边形的判别教案一、教学目标1.理解平行四边形的定义以及判别条件。
2.掌握平行四边形的性质。
3.能够判断一个四边形是否为平行四边形。
二、教学内容1. 平行四边形的定义和判别条件•定义:具有两对对边分别平行的四边形称为平行四边形。
•判别条件:–对边是平行的;–邻边相等。
2. 平行四边形的性质•性质1:对边相等–证明方法:•已知平行四边形的定义,可以得到对边分别平行;•由平行线的性质可得,对边上任意两个点与顶点之间的线段相互平行,且长度相等;•所以对边相等。
•性质2:邻边互补–证明方法:根据平行线的性质,对边分别平行,所以邻边互补。
•性质3:对角线互相平分–证明方法:•已知平行四边形的定义,可以得到对边分别平行;•又根据平行线的性质,对边上的任意两个点与顶点之间的线段相互平行;•所以平行四边形的两条对角线分别平分对边。
3. 判断一个四边形是否为平行四边形•通过观察四边形的对边是否平行以及邻边是否相等来判断。
三、教学步骤1.师生互动导入,老师通过一个日常生活中的例子引出平行四边形的概念,让学生思考什么是平行四边形。
2.教师介绍平行四边形的定义和判别条件,引导学生理解平行四边形的性质。
3.老师通过举例演示平行四边形的对边相等、邻边互补和对角线互相平分等性质。
4.学生进行小组讨论,通过给出的几个四边形判断是否是平行四边形,并给出理由。
5.学生进行个人练习,完成课本上关于平行四边形的练习题。
6.教师进行板书总结,梳理平行四边形的判别条件和性质。
7.学生进行课后作业,练习判断四边形是否为平行四边形的能力。
四、教学评估1.上课过程中观察学生的积极性和参与度,及时给予肯定和指导。
2.批改学生完成的课后作业,检查学生是否掌握了平行四边形的判别方法。
3.定期组织小测验,检查学生对平行四边形的理解和应用能力。
五、教学延伸1.引导学生通过实际生活中的例子去观察和判断平行四边形的存在,并总结出更多的性质。
2.给予学生更多的练习题,加深对平行四边形判别条件和性质的理解。
平行四边形教案(7篇)作为一位杰出的老师,时常需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?读书破万卷下笔如有神,以下内容是本文范文为您带来的7篇《平行四边形教案》,如果能帮助到亲,我们的一切努力都是值得的。
平行四边形教案篇一导学目标:1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
能根据判别方法进行有关的应用。
3、在探索过程中发展学生的合理推理意识、主动探究的习惯。
4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
导学重点:平行四边形的判别方法。
导学难点:根据判别方法进行有关的应用导学准备:多媒体课件导学过程:一、快速反应1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?结论:______________________________________符号表示:4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。
图中有哪些互相平行的线段?二、议一议1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?三、平行四边形的判别方法:(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的。
四边形是平行四边形。
数学教案-平行四边形的判定数学教案-平行四边形的判定(精选3篇)数学教案-平行四边形的判定篇1教学建议1.重点平行四边形的判定定理重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.2.难点灵活运用判定定理证明平行四边形难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.3.关于平行四边形判定的教法建议本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.教学设计示例1[教学目标] 通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
平行四边形判定(一)教学目标:1、知识目标:(1)、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。
(2)、探索并了解平行四边形的判别方法。
能根据判别方法进行有关的应用。
2、能力目标:经历观察、归纳等教学活动过程,培养学生的合作精神和有条理的思考和探究的能力。
3、情感目标:通过生动有趣的数学活动,让学生主动探索、敢于表达、乐于合作交流,进一步体验数学在生活中的应用,体验因学习而带来的快乐。
教学重点:平行四边形的判定方法重点分析:平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定方法是本节的重点。
教学难点:灵活运用判定定理证明平行四边形难点分析:平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点。
教学准备:多媒体课件教学方法探索法:让学生在补全平行四边形的活动过程中,积累数学活动经验。
讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。
练习法:精心设计随堂变式练习,巩固和提高学生的认知水平。
教学过程:一、创设情境,回顾旧知问题一:有一天,李老师的儿子从幼儿园放学来到办公室,看到郑老师办公桌上一块平行四边形纸片,于是就拿起笔来画画,画了一会儿,对自已的作品不满意撕去了一些,巧的是刚好从A、C两个顶点撕开。
你只有两把没刻度的直尺,你能帮它补好吗?(设计思路:通过问题情境,让学生动手画图复习回顾平行四边形的定义,这样一方面巩固学生的旧知,另一方面使学生知道平行四边形的定义既是性质,又是判定。
)问题二:想一想平行四边形具有什么性质?(设计思路:通过复习平行四边形的性质使学生了解研究四边形的问题常常从边、角、对角线三方面入手,也为下面探究平行四边形的判定打下伏笔。
)二、设疑导思,激活主体问题三:学习了平行四边形后,小明回家用细木棒钉制了一个。
平行四边形认识教案(汇总13篇)平行四边形认识教案第1篇[教学目标]1、知识与技能直观地认识平行四边形学会从各种平面图或实物中辨认平行四边形培养初步的观察能力,空间观念和动手能力。
2、过程与方法让学生在观察、操作、合作交流中探索新知3、情感态度与价值观渗透事物之间相互联系及转化的辩证唯物主义思想。
[教学重点]引导学生直观的认识平行四边形[教学难点]引导学生通过直观感知抽象出平行四边形。
[教学关键]在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。
[教学方法]演示法、观察法、操作法等。
[教具准备]多媒体课件、可拉动的长方形框架、钉子板,方格纸[学具准备]可拉动的长方形框架,一张长方形的纸。
[教学过程]一、复习引入游戏引入(出示课件)以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。
板书课题:平行四边形二、探索新知1、观察感知(课件展示)教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的平行四边形,课件出示平行四边形的图和文字。
2、操作感知教学例2拉一拉:⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。
在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。
《平行四边形的判别》教案(第一课时)教学目标:1.让学生经历平行四边形判别方法的探索过程,在活动中发展学生的合情推理意识和主动探究的习惯,使学生逐步掌握说理的基本方法。
2.掌握平行四边形的三种判别方法,并能根据判别方法进行初步应用。
教学重点:探索平行四边形的判别方法教学难点:探索平行四边形的判别方法的合情推理教学方法:采用“引导探索法”.让学生自主探索、合作交流。
教学手段:多媒体辅助教学教学过程活动5:知识小结→整体感知判断题)对角线相等的四边形是平行。
目标检测C实践应用→拓展提高《确定位置》说课稿一、说教材教材的地位与作用:本节课是在学习了三角形的相关知识、两直线平行的判别、平行四边形的定义、性质的基础上进行学习的,同时又是学习菱形、矩形判别的基础,在教学内容上起着承上启下的作用。
平行四边形是初中几何的重要内容,本节课是平行四边形的判别的第一课时,它既是平行四边形的性质和全等三角形等知识的延续和深化,也是学习特殊四边形的基础,还是运用转化思想的优秀素材,对培养学生的探索精神、动手能力及合情推理能力具有重要作用。
二、说教法当前,教师是课堂教学活动的组织者、指导者、参与者。
其作用在于营造师生、生生交往互动的氛围,发挥学生的主体作用,有效地组织、指导、调控学生学习的兴趣,使学生通过亲身经历,以对知识“再发现”的形式获得新知识,并且尝试科学探索。
本节课我通过创设具体情境 , 让学生理解知识的形成过程 , 再通过学生具体活动和交流 , 加深学生对“平行四边形判别”的各种方法的理解。
本节课主要采用合作探索、体验式教学等方法。
三、说学法学生在学习平行四边形性质的过程中,已经能初步掌握几何的简单推想,也初步体会到了四边形问题向三角形问题的转化思想。
但由于八年级学生的逻辑思维仍处于起始阶段,合情推理能力较弱,在推理方面,认知难度仍然较大。
为此,本节课将采用“创设情境----探索归纳------知识运用”的方法及小组合作学习的方式,将教材中平行四边形的探究活动完全放开,给学生提供充分探索和交流的空间。
《平行四边形的判别》说课教案|参考教案_数学说课稿各位老师,大家好!我说课的内容是九年义务教育北师大版数学教材八年级上册第四章第二节《平行四边形的判别》,下面我从五个方面来汇报我是如何分析教材和设计教学过程的。
一、教材分析1.从在教材中的地位与作用来看《平行四边形的判别》紧接《平行四边形的性质》一节。
纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。
这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。
2.从教材编写角度看教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判定。
这样的安排使抽象的定理让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。
3.基于对教材的分析,我认为本节课的教学重点是平行四边形的判别方法,教学难点是判别方法的灵活运用。
4.根据新课程标准的要求及学生的实际情况,本节课我制定了如下教学目标:(一)知识目标:1.经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法。
2、探索并掌握平行四边形的四种判别方法,能根据判别方法进行有关的应用。
(二)能力目标:在探索过程中发展学生的合理推理意识、主动探究的习惯。
(三)德育目标:体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
二、教法分析针对本节课的特点,我准备采用创设情境观察探索总结归纳知识运用为主线的教学方法。
在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。
使课堂洋溢着轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者。
《平行四边形的判别》说课教案《平行四边形的判别》说课教案2.做一做例题;如图所示,在四边形abcd中,e、f分别是ab、cd的中点.下图中有几个平行四边形?请说明理由.设计意图:此题作为本课的例题,要求学生不仅找出五个平行四边形,而且能有条理的写出证明过程,教师要及时查缺补漏,规范解题格式,此题完成后,学生已顺利达到教学目标。
3.画一画如图,在abcd中,已知两条对角线相交于点o,e、f、g、h分别是ao、bo、co、do的中点,以图中的点为顶点,尽可能多地画出平行四边形。
设计意图:此题的综合性,灵活性比较强,学生能够顺利解决,对培养他们学好数学的信心大有好处。
4.挑战自我在四边形abcd中,若分别给出四个条件:⑴ab∥cd ⑵ad=bc ⑶∠a=∠c ⑷ad∥bc现在,以其中的两个为一组,能识别四边形abcd为平行四边形的条件是________(只填序号)设计意图:此题为条件型开放题,答案不唯一。
设计此题的目的是:培养学生的发散思维,力求使学生不停留在重复与模仿的阶段。
5.实际应用生物实验室有一块平行四边形的玻璃片,在做生物实验时,小华一不小心碰碎了一部分(如图所示)。
同学们!有没有办法把原来的平行四边形重新画出来?(a,b,c为三顶点,即找出第四个顶点d)设计意图:目的是让学生了解数学问题来源于实际,同时又应用于实际,让学生充分体验历经困难探索结果而轻松用于实际的快乐感觉。
(四)布置作业1课本p92习题4.4:1、2、2体会本堂课你所获得成功的经验,写好数学日记,同学交流设计意图:让学生写“数学日记”这种作业形式,能够培养学生善于归纳总结的能力,逐步养成良好的.学习习惯。
五.评价分析本节课教学过程中通过问题设置,引发学生学习的兴趣,引导学生主动探索,通过对平行四边形判别方法的讨论发现新知,归纳总结,得出结论。
本节内容逻辑性较强,对学生的逻辑思维能力要求较高,学生在说理上存在一定困难是正常的。
《平行四边形的判别》教案
(第一课时)
教材分析
“平行四边形的判别”是初中数学几何部分一节十分重要的内容.主要体现在
知识技能和思想方法两个方面.
从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想. 教学目标
知识与技能
经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法;掌握平行四边形的判别方法,能根据判别方法进行初步应用;
过程与方法
在探索判别方法的过程中发展学生的合理推理意识、主动探究的习惯;在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验.
情感态度与价值观
激发学生学习数学的热情,培养勇于探索的精神,体验数学活动来源于生活又服务于生活,提高学生的学习兴趣;通过与他人的合作,培养学生的合作意识和团队精神.
教学重难点
重点
探索平行四边形的判别方法.
突破方法:为了突出重点,以学生自主探索、合作交流为主线,提出问题让学生动眼观察,动脑猜想,动手验证,进而掌握平行四边形的判别方法.
难点
判别方法的理解和初步运用.
突破方法:采用教师引导和学生合作的教学方法及化归的数学思想.
教法
采用“引导探索法”.
学法
自主探索、合作交流.
教学手段
多媒体辅助教学
学具准备
小木条、橡皮筋.
教学过程
板书设计
《平行四边形的判别》教案说明
数学在人类文明进程中的价值是巨大的,几何又以其图形语言展现无穷的魅力,平行性更是奇妙无比.平行的本质是在同一平面内永不相交的直线.符合“两组对边分别平行的四边形”的平行四边形是平面图形中最简单的具有平行特征的图形.而本节内容正是探讨如何判别一个四边形是平行四边形.
“平行四边形的判别”是初中数学几何部分一节十分重要的内容.主要体现在知识技能和思想方法两个方面.
从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想. 因此,本节课不论从知识技能还是思想方法上,都是一节十分难得的素材,它对培养学生的探索精神、动手能力、应用意识和抽象建模能力都有很好的作用.
在学习了平行四边形的判别后,学生能较为准确的依据各种条件或要求画出平行四边形,这对于今后在物理学科中力学一部分的学习有着重要的作用.
依据课程标准,结合学生的认知结构和年龄特点,本节课的教学力求达到以下三个教学目标:1、知识与技能目标:让学生经历并了解平行四边形判别方法的探索过程,逐步掌握说理的基本方法;掌握平行四边形的判别方法,能根据判别方法进行有关的应用;2、过程与方法目标:在探索判别方法的过程中发展学生的合理推理意识、主动探究的习惯;在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验. 3、情感态度与价值观目标:激发学生学习数学的热情,培养勇于探索的精神,体验数学活动来源于生活又服务于生活,提高学生的学习兴趣;通过与他人的合作,培养学生的合作意识和团队精神.
由于学生探索到:“两组对边分别相等的四边形为平行四边形”和“两条对角线互相平分的四边形为平行四边形”这两种判别方法后,由边和对角线数量关系分别判别四边形为平行四边形就比较容易解决,并且学生在探索过程中所经历的“观察—猜想—验证—说理—建模”的思维过程也是以后学习和认识世界的重要方法,具有广泛的应用价值,所以本节课的重点为探索平行四边形的两种判别方法,由于从理论上说明平行四边形的判别方法,对于几何逻辑思维尚处于起始阶段的八年级学生来讲,认知难度较大,所以本节课的难点是:平行四边形的判别方法的理解和应用,突破难点的关键是:采用教师引导和学生合作的教学方法
及化归的数学思想.
学生在学习本节内容时,通过动眼观察,动脑猜想,动手验证,结合前面所学全等三角形的相关知识,容易完成对判别方法的验证和掌握判别方法.然而,由于刚接触平行四边形的判别方法,学生对平行四边形的性质与判别方法的区别与联系还不太清楚,容易将平行四边形的性质与判别方法混淆.
针对本节课的特点,我准备采用“创设情境—观察探索—总结归纳—知识运用”为主线的教学方法。
在教法上突出三个特点:
1、动(师生互动):老师通过多媒体呈现问题情境,给学生足够时间亲自动脑、动手、动口参与教学,与老师共同探究判别方法,感悟知识的发生、发展过程.
2、变(多层变式):在作业中通过例题的变式,培养学生思维的广阔性和深刻性.
3、引(适当引导):在教学中对思维受阻的地方,教师通过层层铺垫,给予必要的引导,做到“引而不灌”,教师的引是为学生更好地学.
本节课的教学,期望能让学生的探索精神,动手能力,合作意识,应用意识得到锻炼,并较好地掌握平行四边形的判别方法,能根据判别方法进行初步应用.
知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课两种判别方法的得出都非常重视知识的发生、形成过程,让学生亲历了类比、观察、实验、猜想、验证、推理的整个过程,培养学生的探究能力,发展学生的合情推理能力.同时,通过练习、例题及实际应用等题组训练,使学生把所学知识灵活地加以运用,使传授知识和培养能力融为一体,使学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.。