第九章中心对称图形复习(2)
- 格式:ppt
- 大小:144.00 KB
- 文档页数:8
8年级下学期数学讲义05 ( 第九章中心对称图形)知识点:9.1 图形的旋转1.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。
9.2 中心对称和中心对称图形2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
9.3 平行四边形3.平行四边形的对边相等、对角相等、对角线互相平分。
4.一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
9.4 矩形、菱形、正方形5.矩形的四个角都是直角,对角线相等。
三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。
6.菱形的四条边相等,对角线互相垂直。
四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
7.有一组领边相等的矩形是正方形;有一个角是直角的菱形是正方形。
9.5 三角形的中位线8.三角形的中位线平行于第三边,并且等于第三边的一半。
9.1 图形的旋转试题1.(2013•南昌)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°2.(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对3.(2011•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是()A.45°B.30°C.25°D.15°4.(2009•漳州)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°5.(2008•庐阳区)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°6.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为___________.7.(2013•吉林)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=___________度.8.(2008•厦门)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=___________cm,△ABC的面积=___________cm2.9.(2011•珠海)如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.10.(2006•三明)已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示).(1)求角α;(2)说明四边形EBCD是等腰梯形.9.2 中心对称和中心对称图形试题1.(2013•黔西南州)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个2.(2013•抚顺)下列图形中,不是中心对称图形的是()A.B.C.D.3.(2010•连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④4.把26个英文字母依照轴对称性和中心对称性分成5组:①FRPJLG□②HIO□③NS□④BCKE□⑤VATYWU□,现在还有5个字母D、M、Q、X、Z请你按原规律补上,其顺序依次为()A.Q XZMD B.D MQZX C.Z XMDQ D.Q XZDM5.下列的正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是()A.B.C.D.6.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距___________公里.7.(1997•安徽)如右图,线段AB关于点O(不在AB上)的对称线段是A′B′;线段A′B′关于点O′(不在A′B′上)的对称线段是A″B″.那么线段AB与线段A″B″的关系是___________.8.(2012•广陵区二模)如下图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是___________.9.(1)已知实数a,b满足a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.(2)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长?10.已知:如图所示,E是等腰梯形一腰CD的中点,EF⊥AB,垂足为F,求证:S梯形ABCD=AB•EF.9.3 平行四边形试题1.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.A B∥DC,AD∥BC B.A B=DC,AD=BC C.A O=CO,BO=DO D.A B∥DC,AD=BC 2.(2013•乐山)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为()A.5B.7C.10 D.143.(2013•湖北)若平行四边形的一边长为2,面积为4根号6,则此边上的高介于()A.3与4之间B.4与5之间C.5与6之间D.6与7之间4.(2012•包头)如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S25.(2009•桂林)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12 D.246.(2012•眉山)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=___________.7.(2011•天津)如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于___________.8.(2010•海南)如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=___________cm.9.(2013•玉溪)如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.10.2013•茂名)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.11.(2012•永州)如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.9.4 矩形、菱形、正方形试题1.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°2.(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.133.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.对角线互相平分4.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12√3 D.16√35.(2012•西宁)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A.45°B.120°C.60°D.90°6.(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是___________.7.(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为___________cm.8.(2013•盐城)如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.9.(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.10..(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.9.5 三角形的中位线试题1.(2013•西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为()A.2B.4C.6D.82.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A.9B.10.5 C.12 D.153.(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.3cm B.4cm C.2.5cm D.2cm4.(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10 D.115.(2013•安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.6.(2010•沈阳)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.7.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.答案9.11,解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.2,解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:B.3,解:由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,∴∠CC′B′=15°.故选D.4,解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC-∠DOC=50°.故选C.5,解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°-20°=70°.故选C.6,解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为:1.6.7,解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=1/2(180°-∠BAB′)=1/2(180°-40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°-∠ABB′=90°-70°=20°.故答案为:20.8,解:∵点G是△ABC的重心,∴DE=GD=1/2GC=2,CD=3GD=6,∵GB=3,EG=GC=4,BE=GA=5,∴BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,∴S△ACD=S△BCD,∴S△ABC=S△ACD+S△BCD=2S△BCD=2×1/2×BG×CD=18cm2.填:2,18.9,(1)解:∵∠ABC=120°,∴∠CBC1=180°-∠ABC=180°-120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC,∴∠A1AC=∠C,∴∠A1AC=∠C1.10,解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵△BDC与△ADE重合,∴∠DBC=∠A=36°,∠AED=∠C=72°,∴∠ADE=∠BDC=180°-(72°+36°)=72°,∴α=180°-∠BDC=180°-72°=108°.(2)由(1)∠ADE=∠C=72°,∴DE∥BC,又BE与CD不平行,∴四边形EBCD是梯形,∵∠ABC=∠C=72°,∴四边形EBCD是等腰梯形.9.21,解:矩形、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形、等腰梯形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的是:矩形、菱形.故选:B.2,解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选A.3,解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.4,解:①不是对称图形,5个子母中不是对称图形的只有:Q;(2)有两条对称轴,并且两对称轴互相垂直,则规律相同的是:X;(3)是中心对称图形,则规律相同的是:Z;(4)是轴对称图形,对称轴是一条水平的直线,满足规律的是:D;(5)是轴对称图形,对称轴是竖直的直线,满足规律的是:M.故各个空,顺序依次为:Q,X,Z,D,M.故选D.5,解:A、不是轴对称图形,也不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,但不是轴对称图形;D、不是中心对称图形,是轴对称图形.故选A.6,解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里.故答案为:4.7,解:中心对称图形中的不在同一直线上的两条对应线段的关系是:平行且相等.故线段AB与线段A″B″的关系是:平行且相等.故答案为:平行且相等.8,解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为3.9,解:(1)∵a(a+1)-(a2+2b)=1,∴等式变形得:a-2b=1;原式=(a-2b)2-2(a-2b)=12-2=-1;(2)设AC=x,AB=2x,BB′=4x,在Rt△ABC中AB2=AC2+BC2,∴(2x)2=x2+12,解得:x=±√3/3(负数舍去),∴AB=2×√3/3=2√3/3,∴BB′=4√3/3.10,证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∠D=∠ECG;DE=EC;∠DEA=∠CEG∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.9.31,解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.2,解:∵四边形ABCD为平行四边形,∴DC∥=AB,AD∥=BC,∵E为CD的中点,∴DE为△FAB的中位线,∴AD=DF,DE=1/2AB,∵DF=3,DE=2,∴AD=3,AB=4,∴四边形ABCD的周长为:2(AD+AB)=14.故选D.3,解:根据四边形的面积公式可得:此边上的高=4√6÷2=2√6,2√6介于4与5之间,则则此边上的高介于4与5之间;故选B.4,解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;AD=BC,AB=CD,BD=DB∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即S1=S2.故选C.5,解:通过观察结合平行四边形性质得:S阴影=1/2×6×4=12.故选C.6,解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC-DE=AB-AD=5-3=2,∴CF=2.故答案为:2.7,解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为15.8,解:在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.9,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.10,(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,∠1=∠2,∠DEA=∠FEB,AE=BE∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.11,证明:∵梯形ABCD是等腰梯形,AD∥BC,∴∠B=∠C,∵GF=GC,∴∠GFC=∠C,∴∠GFC=∠B,∴AB∥GF,又∵AE=GF,∴四边形AEFG是平行四边形.9.41,解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.2,解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=1/2BC=4,∵点E为AC的中点,∴DE=CE=1/2AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.3,解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.4,解:如图,连接BE,在矩形ABCD中,AD∥BC,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°,∴∠AEB=∠AEF-∠BEF=120°-60°=60°,在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2√3,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2√3×8=16√3.故选D.5,解:将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF时,A和B重合,即∠AOB是旋转角,∵四边形ABCD是正方形,∴∠BAO=∠ABO=45°,∴∠AOB=180°-45°-45°=90°,即旋转角是90°,故选D.6,解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE=√62+82=10,故PB+PE的最小值是10.故答案为:10.7,解:设AB=x,则可得BC=10-x,∵E是BC的中点,∴BE=1/2BC=10−x/2,在Rt△ABE中,AB2+BE2=AE2,即x2+(10−x/2)2=52,解得:x=4.即AB的长为4cm.故答案为:4.8,证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.9,证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,∠BCF=∠D,∠CBE=∠BFC=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.10,证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠C,AB=CB,∴△ABF≌△CBE(SAS),∴BF=BE.9.51,选A.2,解:∵E和F分别是AB和CD的中点,∴EF是梯形ABCD的中位线,∴EF=1/2(AD+BC),∵EF=6,∴AD+BC=6×2=12.故选C.3,解:∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm,∵对角线AC、BD相交于O点,∴BO=DO,又∵E是AD的中点,∴OE是△ABD的中位线,∴OE=1/2AB=1/2×6=3cm.故选A.4,解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC=√BD2+CD2=5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=1/2BC=EF,EH=FG=1/2AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.5,(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2√3,∴菱形的面积为4×2√3=8√3.6,证明:∵点E,F分别为AB,AD的中点∴AE=1/2AB,AF=1/2AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),又∵菱形ABCD的对角线AC与BD相交于点O ∴O为BD的中点,∴OE,OF是△ABD的中位线.(6分)∴OE∥AD,OF∥AB,∴四边形AEOF是平行四边形(8分),∵AE=AF,∴四边形AEOF是菱形.7,(1)证明:∵AD∥BC,(AD∥BG)∴∠D=∠FCG,∠DAF=∠G.(2分)∵DF=CF,∴△ADF≌△GCF.(4分)(2)解法一:由(1)得△ADF≌△GCF,∴AF=FG,AD=CG.(5分)∵AE=BE,∴EF为△ABG的中位线.∴EF=1/2BG.(6分)∴BG=2×7.5=15.(7分)∴AD=CG=BG-BC=15-10=5.(8分)。
中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
苏教版八年级下册第9章:中心对称图形——平行四边形重难点题型训练1.如图1,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)如图2,延长BC和DE相交于点G,不添加任何辅助线的情况下,直接写出图中所有的平行四边形.(除四边形ABCD和四边形OCED外)2.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.3.如图,四边形ABCD为平行四边形,延长BC到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)连接BF,若BF⊥AE,∠E=60°,AB=4,求平行四边形ABCD的面积.4.如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.(1)求证:CD=EF;(2)已知∠ABC=60°,连接BE,若BE平分∠ABC,CD=6,求四边形BDEF 的周长.5.(1)如图①,点E、F分别在正方形ABCD的边AB、BC上,∠EDF=45°,连接EF,求证:EF=AE+FC.(2)如图②,点E,F在正方形ABCD的对角线AC上,∠EDF=45°,猜想EF、AE、FC的数量关系,并说明理由.6.如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=,求▱ABCD的面积.7.如图,在平面直角坐标系中,正方形ABCD的顶点C、A分别在x、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H、E、F为顶点作菱形EFGH.(1)当H(﹣2,6)时,求证:四边形EFGH是正方形;(2)若F(﹣5,0),求点G的坐标.8.如图,过四边形ABCD的四个顶点分别作对角线AC,BD的平行线,所围成的四边形EFGH显然是平行四边形.(1)当四边形ABCD分别是菱形、矩形、平行四边形时,相应的四边形EFGH一定是“平行四边形、菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:四边形ABCD菱形矩形平行四边形四边形EFGH (2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形时,相应的原四边形ABCD必须满足怎样的条件?当 时,四边形EFGH是矩形;当 时四边形EFGH是菱形.9.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是点M、N(1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.10.如图,△ABC≌△DBC,AD平分∠BAC,AD交BC于点O.(1)如图1,求证:四边形ABDC是菱形;(2)如图2,点E为BD边的中点,连接AE交BC于点F,若∠AFO=∠ADC,在不添加任何辅助线和字母的条件下,请直接写出图2中所有长度是线段EF长度的偶数倍的线段.11.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长;(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.12.已知:正方形ABCD,E是BC的中点,连接AE,过点B作射线BM交正方形的一边于点F,交AE于点O.(1)若BF⊥AE,①求证:BF=AE;②连接OD,确定OD与AB的数量关系,并证明;(2)若正方形的边长为4,且BF=AE,求BO的长.13.如图,在四边形ABCD中,AB∥CD,AB=CD,∠A=∠ADC,E,F分别为AD,CD的中点,连接BE,BF,延长BE交CD的延长线于点M.(1)求证:四边形ABCD为矩形;(2)若MD=6,BC=12,求BF的长度.(结果可保留根号)14.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=2,AB=4,求BF的长度.15.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:△AEF≌△DEC;(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.参考答案1.(1)证明:∵四边形ABCD是菱形,∴∠COD=90°,OC=AC,∵DE=AC,∴OC=DE,∵DE∥AC,∴四边形OCED是平行四边形,∴四边形OCED是矩形,∴OE=CD;(2)图中所有的平行四边形有:四边形AOED,四边形ACGD,四边形OBCE.由AO DE可得四边形AOED是平行四边形;由AC∥DG,AD∥CG可得四边形ACGD是平行四边形;由OE∥BC,OB∥CE可得四边形OBCE是平行四边形.2.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.3.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴∠BAE=∠E,∴∠BAE=∠DAE,∴AE平分∠BAD;(2)解:由BE=AB,∠BEA=60°,∴△ABE为等边三角形,∴AB=AE=4,又∵BF⊥AE,∴AF=EF=2,∴BF==2,∵∠DAE=∠E,AF=EF,∠AFD=∠CFE,∴△ADF≌△ECF(ASA),∴平行四边形ABCD的面积=△ABE的面积=×4×2=4.4.(1)证明:∵DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,∴EF=BD,∵点D是BC边的中点,∴BD=CD,∴CD=EF;(2)解:∵BE平分∠ABC,∴∠FBE=∠DBE,又∵四边形BDEF是平行四边形,∴BD=EF,BF=ED,EF∥BD,∴∠FEB=∠DBE,∴∠FBE=∠BEF,∴BF=EF,∴BD=EF=BF=ED,又∵BD=CD=6,∴BD=EF=BF=ED=6,∴四边形BDEF的周长=6×4=24.5.证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠C=∠ADC=∠DAB=90°,如图①:延长BA,使AM=CF,连接MD,在△AMD和△CFD中,,∴△AMD≌△CFD(SAS),∴∠MDA=∠CDF,MD=DF,∵∠EDF=45°,∴∠ADE+∠FDC=45°,∴∠ADM+∠ADE=45°=∠MDE,∴∠MDE=∠EDF,在△EDF和△EDM中,,∴△EDF≌△EDM(SAS),∴EF=EM,∵EM=AM+AE=AE+CF,∴EF=AE+CF;(2)EF2=AE2+CF2,理由如下:如图②,将△CDF绕点D顺时针旋转90°,可得△ADN,由旋转的性质可得DN=DF,AN=CF,∠DAN=∠DCF=45°,∠CDF=∠ADN,∴∠CAN=∠CAD+∠DAN=90°,∴EN2=AE2+AN2,∵∠EDF=45°,∴∠CDF+∠ADE=45°,∴∠ADE+∠ADN=45°=∠NDE=∠EDF,在△EDF和△EDN中,,∴△EDF≌△EDN(SAS),∴EF=EN,∴EF2=AE2+CF2.6.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=(BE+EC)•GF=(5+)×=36.7.解:(1)∵四边形ABCD是正方形,∴∠BAO=∠AOC=90°,∵E(0,2),H(﹣2,6),∴AH=OE=2,∵四边形EFGH是菱形,∴EH=EF,在Rt△AHE和Rt△OEF中,,∴Rt△AHE≌Rt△OEF,∴∠AEH=∠EFO,∵∠EFO+∠FEO=90°,∴∠AEH+∠FEO=90°,∴∠HEF=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.(2)连接EG交FH于K.∵HE=EF,∴AH2+AE2=EO2+OF2,∴AH2+16=4+25,∴AH=,∴H(﹣,6),∵KH=KF,∴K(﹣,3),∵GK=KE,∴G(﹣5﹣,4).8.解:(1)四边形ABCD是菱形时,平行四边形EFGH是矩形,四边形ABCD是矩形时,平行四边形EFGH是菱形,四边形ABCD是平行四边形时,四边形EFGH是平行四边形;故答案为:矩形;菱形;平行四边形;(2)当平行四边形是矩形时,原四边形ABCD必须满足的条件是对角线互相垂直,当平行四边形是菱形时,原四边形ABCD必须满足的条件是对角线相等.故答案为:对角线互相垂直(AC⊥BD);对角线相等(A C=BD).9.(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1.10.(1)证明:∵△ABC≌△DBC,∴AB=BD,AC=CD,∴∠BAD=∠BDA,∠CAD=∠CDA,∵AD平分∠BAC,∴∠DAB=∠DAC,∠ADC=∠ADC,在△ADB和△ADC中,,∴△ADB≌△ADC,∴AB=AC,∴AB=BD=CD=AC,∴四边形ABCD是菱形.(2)解:∵∠AFO=∠ADC=∠ADB,又∵∠AFO+∠EFO=180°,∴∠EFO+∠EDO=180°,∴∠FED+∠FOD=90°,∵四边形ABCD是菱形,∴AD⊥BC,∴∠FEO=∠FOD=90°,∵BE=ED,∴AB=AD,∴AB=AD=BD,∴△ABD是等边三角形,∴∠EBF=∠ABD=30°,在Rt△BEF中,BF=2EF,∵∠FBA=∠FAB=30°,∴FA=FB,在Rt△AFC中,CF=2AF=4EF,综上所述,长度是线段EF长度的偶数倍的线段有BF,AF,CF.11.解:(1)作AM⊥BC于M,设AC交PE于N.如图所示:∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,∴PN=AP=t,CE=NE=5﹣t,∵CE=CQ﹣QE=2t﹣2,∴5﹣t=2t﹣2,解得:t=,所以BQ=BC﹣CQ=10﹣2×=;(2)存在,t=4或12;理由如下:若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,∴t=10﹣2t+2或t=2t﹣2﹣10解得:t=4或12∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4或12.12.解:(1)①如图1①,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABE=∠C=90°,∴∠BAE+∠AEB=90°,∵BF⊥AE,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BF=AE;②OD=AB.证明:延长AD,交射线BM于点G,如图1②,∵△ABE≌△BCF,∴BE=CF.∵E为BC的中点,∴CF=BE=BC=DC,∴CF=DF.∵DG∥BC,∴∠DGF=∠CBF.在△DGF和△CBF中,,∴△DGF≌△CBF,∴DG=BC,∴DG=AD.∵BF⊥AE,∴OD=AG=AD=AB;(2)①若点F在CD上,如图2①,在Rt△ABE和Rt△BCF中,,∴Rt△ABE≌Rt△BCF(HL),∴∠BAE=∠CBF,∵∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,∴∠AOB=90°.∵∠ABE=90°,AB=4,BE=2,∴AE==2.∵S△ABE=AB•BE=AE•BO,∴BO===.②若点F在AD上,如图2②,在Rt△ABE和Rt△BAF中,,∴Rt△ABE≌Rt△BAF(HL),∴∠BAE=∠ABF,∴OB=OA.∵∠BAE+∠AEB=90°,∠ABF+∠EBF=90°,∴∠AEB=∠EBF,∴OB=OE,∴OA=OB=OE.∵∠ABE=90°,AB=4,BE=2,∴AE==2,∴OB=AE=.综上所述:BO的长为或.13.(1)证明:∵在四边形ABCD中,AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=∠ADC,∴∠A=90°,∴四边形ABCD是矩形;(2)解:∵AB∥CD,∴∠ABE=∠M,∵E为AD的中点,∴AE=DE.在△ABE和△DME中,∴△ABE≌△DME(AAS),∴AB=DM=6,∵四边形ABCD是矩形,∴DC=AB=DM=6,∠C=90°,∵F为CD的中点,∴CF=CD=3,在Rt△BCF中,由勾股定理得:BF===3.14.(1)证明:连接AC,交BD于O,如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OB=OD,∵DE=FB,∴OE=OF,∴四边形AFCE是平行四边形;(2)解:∵DE=EF=BF,AE⊥BD,∴AD=AF=2,∴BD===2,∴BF=BD=.15.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,∴△AEF≌△DEC(AAS);(2)当△ABC满足:AB=AC时,四边形AFBD是矩形;∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.。
苏科版八年级下册第9章中心对称图形~平行四边形重难点题型训练1.如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且AG=AB,垂足为G,则:(1)△ABF与△AGF全等吗?说明理由;(2)求∠EAF的度数;(3)若AG=7,△AEF的面积是21,求△CEF的面积.2.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E 在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?3.已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是线段OB、OC上的动点(1)如果动点E、F满足BE=OF(如图),且AE⊥BF时,问点E在什么位置?并证明你的结论;(2)如果动点E、F满足BE=CF(如图),写出所有以点E或F为顶点的全等三角形(不得添加辅助线).4.如图,正方形ABCD,点F在BC上,试在图中画出一条线段,构出另一个三角形,使得这个三角形全等于△DFC.(1)你能在图中画出几种不同位置的线段得到这个三角形?试写出能够画出的种数共有 种.(2)画出其中的1种位置的线段,并证明你构出的三角形全等于△DFC.5.已知正方形ABCD中,AB=BC=CD=DA=16,∠A=∠B=∠C=∠D=90°.动点P以每秒1个单位速度从点B出发沿射线BC方向运动,设点P的运动时间为t.连接PA.(1)如图1,动点Q同时以每秒4个单位速度从A点出发沿正方形的边AD运动,求t 为何值时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等;(2)如图2,在(1)的基础上,当点Q到达点D以后,立即以原速沿线段DC向点C运动,当Q到达点C时,两点同时停止运动,求t为何值时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等.6.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.7.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.8.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC于点E,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.9.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.10.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.11.如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.(1)求证:OE=OF;(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.12.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=BE.(1)求证:四边形BECF是菱形;(2)当∠A的大小满足什么条件时,菱形BECF是正方形?回答并证明你的结论.13.如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.求证:(1)四边形ABCD是菱形.(2)BF=DE.14.如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)15.如图:∠MON=90°,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON 上,点B1是ON上的任意一点,在∠MON的内部作正方形AB1C1D1.(1)连续D1D,求证:∠D1DA=90°;(2)连接CC1,猜一猜,∠C1CN的度数是多少?并证明你的结论;(3)在ON上再任取一点B2,以AB2为边,在∠MON的内部作正方形AB2C2D2,观察图形,并结合(1)、(2)的结论,请你再做出一个合理的判断.参考答案1.解:(1)结论:△ABF≌△AGF.理由:在Rt△ABF与Rt△AGF中,,∴△ABF≌△AGF(HL)(2)∵△ABF≌△AGF∴∠BAF=∠GAF,同理易得:△AGE≌△ADE,有∠GAE=∠DAE;即∠EAF=∠EAD+∠FAG=∠BAD=45°,故∠EAF=45°.(3)∵S△AEF=×EF×AG,AG=4∴21=×EF×AG,∴EF=6,∵BF=FG,EG=DE,AG=AB=BC=CD=7,设FC=x,EC=y,则BF=7﹣x,DE=7﹣y,∵BF+DE=FG+EG=EF=6,∴7﹣x+7﹣y=6,∴x+y=8 ①在Rt△EFC中,∵EF2=EC2+FC2,∴x2+y2=62②①2﹣②得到,2xy=28,∴S△CEF=xy=7.方法二:易知S△ABF=S△AGF,S△AED=S△AEG,∴S△ABF+S△ADE=S△AEF=21,∴S△EFC=S正方形ABCD﹣S五边形ABFED=49﹣42=7.2.解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CPQ,∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CPQ,此时点Q的运动速度为6÷=(cm/s)3.解:(1)当AE⊥BF时,点E在BO中点.证明如下:延长AE交BF于点M,如图所示:∵∠BME=∠AOE,∠BEM=∠AEO,∴△BEM∽△AEO,∴,∵∠MBE=∠OBF,∠BME=∠BOF,∴△BEM∽△BFO,∴,∵AO=BO,∴EO=OF,∵BE=OF,∴BE=EO,故当AE⊥BF时,点E在BO中点.(2)∵四边形ABCD是正方形,∴AO=CO=BO=DO,AC⊥BD,AB=BC=AD=CD,∠ACB=∠ABD=∠ADE=∠BAC=45°∵BE=CF,∴OE=OF,AF=DE,∵BE=CF,∠ABD=∠ACB,AB=BC∴△ABE≌△BCF(SAS)同理可得△AOE≌△BOF,△ADE≌△BAF;∴以点E或F为顶点的全等三角形有△ABE≌△BCF,△AOE≌△BOF,△ADE≌△BAF;4.解:(1)如图,共可以构造出8个满足条件的三角形;故答案为:8.(2)如图1,作AE=CF,则△DFC≌△DAE,证明如下:∵四边形ABCD是正方形,∴AD=CD,∠A=∠C=90°,在△DFC和△DAE中,,∴△DFC≌△DAE(SAS).5.解:(1)由题意,得BP=t,AQ=4t,QD=16﹣4t,∵△ABP≌△CDQ∴BP=QD∴t=16﹣4t解得:t=,∴当t=时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等;(2)如图2,依题意有△ADQ≌△ABP或△BCQ≌△ABP∴DQ=BP或CQ=BP∵DQ=4t﹣16,CQ=32﹣4t∴4t﹣16=t或32﹣4t=t解得:t=或t=,∴当t=或t=时,以点Q及正方形的某两个顶点组成的三角形和△PAB全等.6.证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∴四边形DECF是平行四边形,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.7.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC==5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.8.解:(1)如图,连接AC,∵E为BC的中点,AE⊥BC,∴AB=AC,又∵菱形的边AB=BC,∴△ABC是等边三角形,∴AE=AB=×4=2,∴菱形ABCD的面积=BC•AE=4×2=8;(2)在等边三角形ABC中,∵AE⊥BC,∴∠CAE=∠BAC=×60°=30°,同理∠CAF=30°,∴∠EAF=∠CAE+∠CAF=30°+30°=60°,∵AE∥CG,∴∠CHA=180°﹣∠EAF=180°﹣60°=120°.9.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°;(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.10.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=4,∴在矩形OCED中,CE=OD===2.在Rt△ACE中,AE==2.11.解:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.(2)OE=OF成立.∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠F+∠MBF=90°,∠E+∠OBE=90°,又∵∠MBF=∠OBE,∴∠F=∠E.在△BOE和△AOF中,∵,∴△BOE≌△AOF.∴OE=OF.12.1)证法一:如图∵EF垂直平分BC,∴BE=EC,BF=CF,∵CF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;证法二:如图∵EF垂直平分BC,∴BD=DC,EF⊥BC∵BE=CF,∴△BED≌△CFD,∴DE=DF∴四边形BECF是菱形;(2)解法一:当∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.解法二:当∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°,∵BE=EC,∴∠ECB=∠EBC=45°∴∠BEC=90°,∴菱形BECF是正方形.13.证明:(1)∵AD∥BC,AD=BC(已知),∴四边形ABCD为平行四边形.又邻边AD=DC,∴四边形ABCD为菱形;(3分)(2)证法一:如图:记EF与AC交点为G,EF与AB的交点为M.由(1)证得四边形ABCD为菱形,所以对角线AC平分∠A,即∠BAC=∠DAC.又∵EF⊥AC,AG=AG,∴△AGM≌△AGE,∴AM=AE.(6分)又∵E为AD的中点,四边形ABCD为菱形,∴AM=BM.∠MAE=∠MBF.又∵∠BMF=∠AME,∴△BMF≌△AME.∴BF=AE.∴BF=DE.(8分)证法二:如图:连接BD∵四边形ABCD为菱形∴BD⊥AC∵EF⊥AC∴EF∥BD∵BF∥DE∴四边形BDEF是平行四边形∴BF=DE(8分)14.(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形AHBG是菱形.(3)解:需要添加的条件是AB=BC.15.(1)证明:∵∠D1AD+∠B1AD=90°,∠OAB1+∠B1AD=90°,∴∠B1AO=∠D1AD,∵AD1=AB1,AO=AD,∴△OAB1≌△DAD1,∴∠D1DA=∠O=90°;(D1,D,C在同一条直线上).(2)解:猜想∠C1CN=45°.证明:作C1H⊥ON于H.作C1G⊥CD1于G;则有C1G=CH.∵∠C1D1C+∠AD1D=90°,∠C1B1H+∠AB1O=90°∴∠C1D1C=∠C1B1H,∵C1D1=B1C1,∠D1C1E=∠C1HB1=90°,∴△C1GD1≌△C1B1H,∴C1G=C1H,又∵CH=C1G,∴直角三角形CHC1是个等腰直角三角形,∴∠C1CN=45°.(3)解:作图;得∠ADD2=90°(∠ADD2=90°、∠C2CN=45°均可).。
中心对称图形——平行四边形压轴题复习(二)1.如图,四边形ABCD是平行四边形,E、F分别为边AB、CD的中点,连接DE、DB、BF.(1)求证:∠DEB=∠BFD;(2)若∠ADB=90°,证明:四边形BFDE是菱形.2.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求四边形DEBF的面积S四边形DEBF.3.如图1,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE的垂直平分线上,PE交CD于点F.(1)猜测PC和PE有什么大小及位置关系,并给出证明.(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系.并说明理由.4.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC,AE分别交于点O,E,连接EC.(1)求证:四边形ADCE是菱形;(2)若AB=AO,OD=1,则菱形ADCE的周长为.5.如图,四边形ABCD是平行四边形,AC,BD相交于点O,∠1=∠2.它是一个矩形吗?为什么?6.如图,在矩形ABCD中,F是CD的中点,连接AF交BC延长线于点E.求证:BC=EC.7.如图,四边形ABCD为矩形,连接对角线AC,分别作∠BAC、∠BCA、∠ACD、∠DAC的角平分线AE、CE、CF、AF.(1)当AB=BC时,求证:四边形AECF是菱形;(2)设AB=4,BC=3,分别作EM⊥AC于点M,FN⊥AC于点N,求MN的长;(3)分别作EG⊥BC于点G,FH⊥CD于点H,当GC=3,HC=4时,求矩形ABCD的面积.8.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD 边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求DF的长.9.已知P是正方形ABCD边BC上一点,连接AP,作PE⊥AP,且∠DCE=45°.若PE 和CE交于E点,连接AE交CD于F.(1)求证:EP=AP;(2)若正方形的边长为4,CF=3,求CE的长.10.已知在△ABC中,AD平分∠BAC,交BC于点D,点E在边AC上AB=AE,过点E 作EF∥BC,交AD于点F,连接BF.(1)如图1,求证:四边形BDEF是菱形;(2)如图2,当AB=BC时,在不添加辅助线的情况下,请直接写出图中度数等于∠BAD 的2倍的所有的角.11.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB 上,EF⊥AB,OG∥EF.(1)OE AE(填<、=、>);(2)求证:四边形OEFG是矩形;(3)若AD=10,EF=4,求OE和BG的长.12.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=12,BF=16,CE=5,求四边形ABCD的面积.13.如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且∠BED+∠F =180°求证:DE=DF.14.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC上.(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.(2)如图2,若AE=CF=0.5,AM=CN=x(0<x<2),且四边形EMFN为矩形,求x的值.15.如图,在平行四边形ABCD中,线段AC的垂直平分线交AC于O,分别交BC,AD 于E,F,连接AE,CF.(1)证明:四边形AECF是菱形;(2)在(1)的条件下,如果AC⊥AB,∠B=30°,AE=2,求四边形AECF的面积.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴DC=AB且DC∥AB,∵E,F分别为边AB、CD上的中点,∴DF=DC,BE=AB,且DF∥BE,∴DF=BE且DF∥BE,∴四边形BFDE是平行四边形,∴∠DEB=∠BFD;(2)证明:∵E为边AB的中点,∴AE=BE,∵∠ADB=90°,∴△ADB为直角三角形∴DE=AB=BE,由(1)得,四边形BFDE是平行四边形,∴平行四边形BFDE是菱形.2.(1)证明:∵四边形ABCD是矩形,∴DC∥AB,∴∠FDO=∠EBO,∵O是BD的中点,∴DO=BO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴DF=BE,∵DC∥AB(即DF∥BE),∴四边形DEBF是平行四边形;(2)解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=8,AD=6,∴BD===10,∵四边形DEBF是平行四边形,DE=DF,∴四边形DEBF是菱形,∴DE=BE,设DE=BE=x,在Rt△DAE中,AD2+AE2=DE2,即62+(8﹣x)2=x2,解得:x=,即BE=,∴四边形DEBF的面积S四边形DEBF=BE×AD=×6=.3.解:(1)PC=PE,PC⊥PE证明∵点P位于AE的垂直平分线上,∴PA=PE,∵四边形ABCD是正方形,∴AB=AC,∠ADB=∠CDB,∵PD=PD,∴△ABP≌△CBP(SAS)∴PA=PC,∴PC=PE,∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CBP,∵PB=PB,∴△ADP≌△CDP(SAS),∴∠PAD=∠PCD,∵PA=PE,∴∠PAD=∠E,∴∠PCD=∠E,∵∠PFC=∠DFE,∴△CPF∽△EDF,∴∠CPF=∠FDE,∵四边形ABCD是正方形,,∴∠ADC=90°,∴∠FDE=90°,∴∠CPF=90°,∴PC⊥PE.(2)PA=CE.理由如下:证明:∵点P位于AE的垂直平分线上,∴PA=PE,∵四边形ABCD是菱形,∴AB=AC,∠ADB=∠CDB,∵PD=PD,∴△ABP≌△CBP,∴PA=PC∴PC=PE,∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CBP,∵PB=PB,∴△ADP≌△CDP,∴∠PAD=∠PCD,∵PA=PE,∴∠PAD=∠PED,∴∠PCD=∠PED,∵∠PFC=∠DFE,∴△CPF∽△EDF,∴∠CPF=∠EDF,∵四边形ABCD是菱形,∠ABC=120°∴∠ADC=∠ABC=120°∴∠EDF=180°﹣∠ADC=60°∴∠CPF=60°∵PE=PC∴△PCE是等边三角形∴CE=PE∴AP=CE.4.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,又∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴AD=AE=CE=CD,AC⊥DE,OA=OC,∵BD=CD,∴OD是△ABC的中位线,∴AB=2OD=2,∴AO=AB=2,∴AD===,∴菱形ADCE的周长=4AD=4,故答案为:4.5.解:四边形ABCD是矩形.理由如下:证明:如图,∵四边形ABCD是平行四边形,∴OC=AC,OB=BD.又∵∠1=∠2,∴OB=OC,∴BD=AC,∴▱ABCD是矩形.6.证明:∵四边形ABCD是矩形,∴AD∥BE,AD=BC,∴∠ADF=∠ECF,∠DAF=∠CEF,∵F是CD的中点,∴DF=CF,∴在△ADF和△ECF中,∴△ADF≌△ECF(AAS).∴AD=EC,而AD=BC∴BC=EC.7.解:(1)∵四边形ABCD为矩形,∴AB∥CD,∴∠BAC=∠DCA,∵AE平分∠BAC,CF平分∠ACD,∴∠EAC=∠FCA,∴AE∥CF,同理,AF∥CE,∴四边形AECF是平行四边形,∵AB=BC,∴∠BAC=∠ACB,∵AE平分∠BAC,CE平分∠ACB,∴∠EAC=∠ECA,∴AE=CE,∴四边形AECF是菱形;(2)过E作EH⊥BC于点H,EG⊥AB于点G,∵∠B=90°,∴四边形BHEG为矩形,∵AE平分∠BAC,CE平分∠ACB,∴EM=EG=EH,∴四边形BHEG是正方形,∴BG=BH,∵EM=EG=EH,AE=AE,CE=CE,∴Rt△AEG≌Rt△AEM(HL),Rt△CEH≌Rt△CEM(HL),∴AM=AG,CM=CH,∵AB=4,BC=3,∴AC=5,设AM=AG=x,CM=CH=y,BH=BG=z,则,解得,,∴AM=3,CM=2,∵由(1)知四边形AECF是平行四边形,∴AF=CE,AF∥CE,∴∠FAN=∠ECM,∵∠ANF=∠CME=90°,∴△ANF≌△CME(AAS),∴AN=CM=2,∴MN=AM﹣AN=3﹣2=1;(3)过E作EK⊥AB于点K,EL⊥AC于点L,如图,∵矩形ABCD中AB∥CD,∴∠BAC=∠ACD,∵AE、CF分别平分∠BAC和∠ACD,∴∠KAE=∠HCF,∵四边形AECF是平行四边形,∴AE=CF,∵∠AKE=∠CHF=90°,∴△AEK≌△CHF(AAS),∴AK=CH=4,∵AE平分∠BAC,CE平分∠ACB,∴EK=EL=EG,∵AE=AE,CE=CE,∴Rt△AEK≌Rt△AEL(HL),Rt△CEG≌Rt△CEL(HL),∴AK=AL=4,CG=CL=3,∴AC=AL+CL=4+3=7,∵EK=EG,∠EKB=∠B=∠EGB=90°,∴四边形BGEK为正方形,∴BG=BK,∴矩形ABCD的面积=AB•BC=24.8.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵DF=.9(1)证明:连接AC,过P点作PG⊥BC交AC于G点,∵四边形ABCD是正方形,∴∠ACB=45°,∠BCD=90°,∵PG⊥BC,∴∠GPC=90°,∴∠PGC=45°,∴PG=PC,∵∠DCE=45°,∴∠AGP=∠ECP=90°+45°=135°,∵AP⊥PE,∴∠APE=∠GPC=90°,∴∠APG=∠EPC=90°﹣∠GPE,在△PAG和△PEC中∴△PAG≌△PEC(ASA),∴PE=PA;(2)解:延长CB到Q,使BQ=DF,过E作EH⊥BC,EH交BC延长线于H,连接AQ,PF,∵四边形ABCD是正方形,∴∠D=∠DAB=∠ABC=90°,AD=AB,∴∠ABQ=∠D=90°,在△ABQ和△ADF中∴△ABQ≌△ADF(SAS),∴AQ=AF,∠DAF=∠QAB,∵∠APE=90°,AP=PE,∴∠PAE=∠AEP=45°,∴∠AQP=∠QAB+∠BAP=∠DAF+∠BAP=∠DAB﹣∠PAE=90°﹣45°=45°=∠PAE,在△QAP和△FAP中∴△QAP≌△FAP(SAS),∴QP=PE,∵EH⊥BC,∠ABP=90°,∠APE=90°,∴∠ABP=∠H=90°,∠APB=∠PEH=90°﹣∠EPH,在△PEH和△APB中∴△PEH≌△APB(AAS),∴BP=EH,∵∠H=90°,∠DCE=45°,∴∠ECH=45°=∠CEH,∴CH=EH=BP,设EH=CH=BP=x,∴PC=4﹣x,PF=BQ+BP=DF+BP=4﹣3+x=1+x,在Rt△PCF中,由勾股定理得:(1+x)2=(4﹣x)2+32,解之得:x=,即CH=EH=,∴在Rt△CHE中,由勾股定理得:CE=CH=.10.解:(1)证明:∵AD平分∠BAC,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴DB=DE,∠BDA=∠EDA.∵EF∥BC,∴∠EFD=∠BDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=BD,∵EF∥BD,∴四边形BDEF为菱形.(2)∵AD平分∠BAC,∴∠BAC=2∠BAD,∵AB=BC,∴∠BAC=∠BCA=2∠BAD,∵EF∥BC,∴∠FEC=∠BCA=2∠BAD,∵∠ABF=∠AEF,∴∠ABF=2∠BAD.所以图中度数等于∠BAD的2倍的所有的角:∠BAC,∠BCA,∠ABF,∠AEF.11.(1)解:∵四边形ABCD是菱形,∴AC⊥BD,∵E是AD的中点,∴OE=AD=AE,故答案为:=;(2)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(3)解:∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF===3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.12.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBE,∵BF平分∠ABC,∴∠ABF=∠EBF,∴∠AFB=∠ABF,∴AF=AB,∵AE⊥BF,∴∠AOB=∠EOB=90°,OB=OB,∠ABO=∠EBO,∴△ABO≌△EBO(ASA),∴AB=BE,∴AF=BE,又AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴平行四边形ABEF是菱形.(2)如图,作AG⊥BC于点G,∵四边形ABEF是菱形,OA=OE=AE=6,OB=OF=BF=8,∴AB==10,BE=10,设BG=x,则EG=BE﹣BG=10﹣x,∴在Rt△ABG和Rt△AEG中,根据勾股定理,得AG2=AB2﹣BG2=AE2﹣EG2即102﹣x2=122﹣(10﹣x)2解得x=,∴AG==.∴四边形ABCD的面积为:BC•AG=15×=144.13.解:如图,过点D作DN⊥AB于N,DM⊥BC于F,∵四边形ABCD是菱形,∴AB=BC,∵S菱形ABCD=AB×DN=BC×DM,∴DN=DM,∵∠BED+∠F=180°,∠BED+∠AED=180°,∴∠F=∠AED,又∵∠DNE=∠DMF,∴△DNE≌△DMF(AAS)∴DE=DF.14.(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,AC===5,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM是矩形,∴MN=AB=3,在△AME和△CNF中,,∴△AME≌△CNF(SAS),∴EM=FN,∠AEM=∠CFN,∴∠MEF=∠NFE,∴EM∥FN,∴四边形EMFN是平行四边形,又∵AE=CF=1,∴EF=AC﹣AE﹣CF=3,∴MN=EF,∴四边形EMFN为矩形.(2)解:连接MN,作MH⊥BC于H,如图2所示:则四边形ABHM是矩形,∴MH=AB=3,BH=AM=x,∴HN=BC﹣BH﹣CN=4﹣2x,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC﹣AE﹣CF=4,在Rt△MHN中,由勾股定理得:32+(4﹣2x)2=42,∴x=2﹣.15.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,∵EF是线段AC的垂直平分线,∴OA=OC,EF⊥AC,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)解:由(1)得:四边形AECF是菱形,EF⊥AC,∴CE=AE=2,OA=OC,OB=OD,∵AC⊥AB,∴EF∥AB,∴∠OEC=∠B=30°,∴OC=CE=1,OE=OC=,∴AC=2OC=2,EF=2OE=2,∴四边形AECF的面积=AC×EF=×2×2=2.。
苏科版八年级数学下册第九章中心对称图形-平行四边形期末复习一、选择题(本大题共6小题,每题3分,共18分;每个小题只有一个正确的选项) 1.将数字“6”旋转180°,得到数字“9”; 将数字“9”旋转180°,得到数字“6”.现将数学“69”旋转180°,得到的数字是( )A .96B .69C .66D .992.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,在平行四边形ABCD 中,∠B +∠D =100°,则∠A 等于( )A .50°B .130°C .100°D .65°4.菱形具有而矩形不一定具有的性质是( )A .邻边相等B .对角线互相平分C .对角线相等D .邻角互补5.如图,在ABC 中,7AB =,6AC =,5BC =,D 、E 分别是AB 、AC 的中点,则DE 的长为( )A .3B .2.5C .4D .3.56.已知四边形ABCD ,对角线AC 和BD 交于点O ,从下列条件中:∠//AB CD ;∠AD BC =;∠ABC ADC ∠=∠;∠OA OC =.任选其中两个,以下组合能够判定四边形ABCD 是平行四边形的是( )A .∠∠B .∠∠C .∠∠D .∠∠二、填空题(本大题共10小题,每题3分,共30分)7.如图,在等腰Rt∠ABC 中,∠C=90°,AC=7.点O 在BC 上,且CO=1,点M 是AC 上一动点,连接OM ,将线段OM 绕点O 逆时针旋转90°,得到线段OD ,要使点D 恰好落在AB 上,CM 的长度为__________.8.平面直角坐标系中,点()3,2P -关于点()1,0Q 成中心对称的点的坐标是_______.9.在平行四边形ABCD 中,若50A ∠=︒,则C ∠=_______︒.10.如图,Rt ∠ABC 中,∠ACB =90°,点D 为斜边AB 的中点,CD =6cm ,则AB 的长为_____cm .11.如图,CD 是ABC ∆的中线,点E 、F 分别是AC 、DC 的中点,3BD =,则EF =_________.12.已知平行四边形ABCD 中,点E 和点G 分别是边AD 和CD 上的点,56D ∠=,80DGE ∠=,将DEG △沿EG 翻折,点D 落在点F 处,EF 交BC 于点H ,则EHC ∠=______.13.如图,在ABC 中,6cm AB =,8cm AC ,10cm BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,连接EF ,则EF 的最小值为______cm .14.如图,在边长为10的菱形ABCD 中,对角线BD =16,点O 是线段BD 上的动点,OE ∠AB 于E ,OF ∠AD 于F .则OE +OF =___.15.如图,ABC 中,DE 垂直平分BC ,CE 平分∠ACB ,FG 为ACE 的中位线,连接DF ,若∠DFG =108°,则∠AED =_____.16.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC ,BD 于点E ,P ,连接OE ,∠ADC=60°,112AB BC ==,则下列结论:∠∠CAD =30°∠BD ABCD S AB AC =•平行四边形∠14OE AD =,正确的个数是______________三、解答题(本大题共8小题,共52分)17.如图,在平行四边形ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,连接EF ,分别与BC ,AD 交于点G ,H ,EG FH =.求证:BE DF =.18.如图,将Rt ABC 绕直角顶点C 按逆时针方向旋转90︒得到DEC Rt △.已知35B ∠=︒,求CDE ∠的度数.19.如图,ABCD 是正方形,G 是BC 上任意一点,DE AG ⊥于E ,BF AG ⊥于F .求证:AE BF =.20.如图,在∠ABC 中,过点C 作CD//AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,连接AD ,CF .(1)求证:四边形AFCD 是平行四边形;(2)若AB =6,∠BAC =60°,∠DCB =135°,求AC 的长.21.如图,在正方形网格中,点A 、B 、P 、Q 均为格点.(请按要求用无刻度的直尺画图.........,保留画图痕迹........) (1)在图1中,将线段AB 绕点P 逆时针旋转90°得到线段A 'B '. 请在图中画出线段A 'B ';(2)在图2中,请画出能满足以下条件的一个平行四边形ABCD ,条件:点C 、点D 均为格点,且点P ,Q 都在平行四边形ABCD 的对角线上.22.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)求证:四边形AEBO 的为矩形;(2)若OE =10,AC =16,求菱形ABCD 的面积.23.如图,在∠ABC 中,AF ∠BC 于点F .将∠ABC 绕点A 按顺时针旋转一定角度得到∠ADE ,点B 的对应点D 恰好落在BC 边上.(1)若∠B =50°,求∠DAF 的度数;(2)若∠E =∠CAD ,求证:AD =CD .24.在∠ABC 中AB =AC ,点P 在平面内,连接AP 并将线段AP 绕点A 顺时针方向旋转与∠BAC 相等的角度,得到线段AQ ,连接BQ ;(发现问题)如图1,如果点P 是BC 边上任意一点,则线段BQ 和线段PC 的数量关系是 ; (探究猜想)如图2,如果点P 为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用(拓展应用)如图3,在∠ABC 中,AC =2,∠ACB =90°,∠ABC =30°,P 是线段BC 上的任意一点连接AP ,将线段AP 绕点A 顺时针方向旋转60°,得到线段AQ ,连接CQ ,请直接写出线段CQ 长度的最小值. 25.如图,在Rt ABC 中,90C ∠=︒,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点'',P AP AP =).当AP 旋转至AP AB '⊥时,点'B P P ,,恰好在同一直线上,此时作'⊥P E AC 于点E .(1)求证:∠=∠CBP ABP ;(2)若4,8AB BC AC -==,求PBC 的面积;(3)在(2)的条件下,点N 为边BC 上一动点,点M 为边BP 上一个动点,连接MC MN ,,求MC MN +的最小值.参考答案1.B【分析】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.2.B【分析】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意.D、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;故选:B.3.B【分析】解:在平行四边形ABCD中,∠B=∠D,AD∠BC,∠∠B+∠D=100°,∠∠B=50°,∠∠A=180°-∠B=180°-50°=130°.故选:B.4.A【分析】解:A、邻边相等,菱形具有而矩形不具有,故本选项正确;B、对角线互相平分,菱形具有而矩形也具有,故本选项错误;C、对角线相等,菱形不具有矩形具有,故本选项错误;D、邻角互补,菱形具有而矩形也具有,故本选项错误;故选:A.5.B【分析】解:点D、E分别是边AB、AC的中点,∠DE是ABC的中位线,∠115 2.522DE BC==⨯=.故选:B.6.A【分析】以∠∠作为条件能够判定四边形ABCD 是平行四边形;理由:如图所示,∠AB CD ∥,∠OAB OCD ∠=∠,在∠AOB 和∠COD 中,OAB OCD AO COAOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠AOB COD ≅△△,∠OB OD =,∠四边形ABCD 是平行四边形;故答案选A .7.5【分析】解:如图,过点D 作DE OB ⊥于点E ;DEO DOM C ∠=∠=∠,DOE COM COM CMO ∴∠+∠=∠+∠,DOE OMC ∴∠=∠;由题意得:OD OM =;在DOE ∆与OMC ∆中,DOE OMC DEO OCM OD OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DOE OMC AAS ∴∆≅∆,1DE OC ∴==,CM OE =;ABC ∆为等腰直角三角形,45B ∴∠=︒,45BDE ∠=︒,1BE D E ∴==,7115OE =--=,5CM OE ∴==,故答案为5.8.(-1,2)【分析】解:如图,设Q (1,0),连结PQ 并延长到点P ′,使P ′Q =PQ ,设P ′(x ,y ),则x <0,y >0. 过P 作PM ∠x 轴于点M ,过P ′作PN ∠x 轴于点N .在∠QP ′N 与∠QPM 中,QNP QMP NQP MQP QP QP ∠=∠⎧⎪∠=='∠'⎨'⎪⎩,∠∠QP ′N ∠∠QPM (AAS ),∠QN =QM ,P ′N =PM ,∠1-x =3-1,y =2,∠x =-1,y =2,∠P ′(-1,2).故答案为(-1,2).9.50°【分析】解:在平行四边形ABCD 中,∠A =50°,则∠C =∠A =50°.故答案为:50°10.12【分析】∠在Rt ∠ABC 中,∠ACB =90°,D 是AB 的中点, ∠线段CD 是斜边AB 上的中线;又∠CD =6cm ,∠AB =2CD =12cm .故答案为:1211.1.5【分析】解:∠CD 是ABC 的中线,3BD =∠AD=BD= 3∠点E 、F 分别是AC 、DC 的中点,∠EF 是ACD 的中位线, ∠EF=12AD=1.5, 故答案为:1.5.12.92︒【分析】解:∠56D ∠=︒,80DGE ∠=︒∠180--=180-80-56=44DEG DGE D ∠=︒∠∠︒︒︒︒ ∠DEG △沿EG 翻折∠44GEF DEG ∠=∠=︒∠+88DEF GEF DEG ∠=∠∠=︒∠四边形ABCD 是平行四边形∠//AD BC∠180-180-8892EHC DEF ∠=︒∠=︒︒=︒.故答案为:92°.13.245【分析】解:6AB cm =,8AC cm =,BC 10cm =,222AB AC BC ∴+=,ABC ∆∴为直角三角形,90A ∠=︒,PE AB ⊥于E ,PF AC ⊥于F ,90AEP AFP ∴∠=∠=︒,∴四边形AEPF 为矩形,连接AP ,如图,EF AP =,当AP 的值最小时,EF 的值最小,当⊥AP BC 时,AP 的值最小,根据ABC ∆面积公式,1122AB AC AP BC ⨯=⨯, 6824105AB AC AP BC ⨯∴===, EF ∴的最小值为245. 故答案为:245.14.485【分析】如图所示,连接AC 交BD 于P 点,延长EO 交CD 于G 点,根据菱形的性质得:AB =10,BP =8,∠APB =90°,∠在Rt ∠APB 中,根据勾股定理得:AP =6,∠AC =2AP =12, 又根据菱形的对称性得:OF =OG ,∠OE +OF =EG ,根据菱形的面积公式:12AC BD AB EG =, ∠11216102EG ⨯⨯=, 解得:485EG =,即:485 OE OF+=,故答案为:485.15.126°【分析】解:∠DE是BC的垂直平分线,∠BE=CE,∠∠EBC=∠ECB,设∠EBC=∠ECB=x,∠∠AEC=∠EBC+∠ECB=2x,∠CE平分∠ACB,∠∠BCE=∠ACE=x,∠FG是∠ACE的中位线,∠FG∠AC,∠∠EFG=∠ACE=x,∠D为BC的中点,F为CE的中点,∠DF∠AB,∠∠EFD=∠AEF=2x,∠∠DFG=∠GFE+∠EFD=x+2x=3x,∠3x=108°,∠x=36°,∠∠AED=∠AEC+∠CED=2x+90°-x=90°+x=90°+36°=126°,故答案为:126°.16.∠∠∠∠【分析】解:∠∠AE平分∠BAD,∠∠BAE=∠DAE,∠四边形ABCD是平行四边形,∠AD∠BC,∠ABC=∠ADC=60°,∠∠DAE=∠BEA,∠∠BAE=∠BEA,∠∠ABE是等边三角形,∠AE=BE=1,∠BC=2,∠EC=1,∠AE=EC,∠∠EAC=∠ACE,∠∠AEB=∠EAC+∠ACE=60°,∠∠ACE=30°,∠AD∠BC,∠∠CAD=∠ACE=30°,故∠正确;∠∠BE=EC,OA=OC,∠OE=12AB=12,OE∠AB,∠∠EOC=∠BAC=60°+30°=90°,Rt∠EOC中,,Rt∠OAB中,,故∠正确;∠由∠知:∠BAC=90°,∠S∠ABCD=AB•AC,故∠正确;∠由∠知:OE是∠ABC的中位线,∠OE=12AB , ∠∠BAC=90°,∠ACB=30°, ∠AB=12BC=12AD, ∠14OE AD =, 故∠正确;本题正确的有:∠∠∠∠,4个,故答案为:∠∠∠∠.17.证明:∠四边形ABCD 是平行四边形,∠AB ∠CD ,∠ABC =∠CDA ,∠∠EBG =∠FDH ,∠E =∠F ,在∠BEG 与∠DFH 中,E F EBG FDH EG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠BEG ∠∠DFH ,∠BE DF =.18.55︒【分析】解:∠35B ∠=︒∠9055A B ∠=︒-∠=︒∠将Rt ABC 绕直角顶点C 按逆时针方向旋转90︒得到DEC Rt △∠Rt ABC Rt DEC ≌∠55CDE A ∠=∠=︒.故答案是:55︒19.解:ABCD 是正方形,,90,AB AD BAD ∴=∠=︒90,BAF DAE ∴∠+∠=︒DE AG ⊥,BF AG ⊥,90,DEA AFB ∴∠=∠=︒90,DAE ADE ∴∠+∠=︒,BAF ADE ∴∠=∠在ABF 与DAE △中,,BAF ADE AFB DEA AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABF DAE ∴≌.BF AE ∴=20.(1)略;(2)6.【分析】(1)证明:∠E 是AC 的中点,∠AE =CE ,∠CD //AB ,∠∠AFE =∠CDE ,在∠AEF 和∠CED 中,AFE CDE AEF CED AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠AEF ∠∠CED (AAS ),∠AF =CD ,又∠CD //AB ,即AF //CD ,∠四边形AFCD 是平行四边形;(2)解:过C 作CM ∠AB 于M ,如图所示:则∠CMB =∠CMA =90°,∠CD //AB ,∠∠B +∠DCB =180°,∠∠B =180°﹣135°=45°,∠∠BCM 是等腰直角三角形,∠BM =CM ,∠∠ACM =30°,∠AC =2AM ,BM =CM ,∠AM +BM =AB ,∠AM + =6,解得:AM =3 3,∠AC =2AM =66.21.解:(1)如图,线段A 'B '为所求;(2)如图,四边形ABCD 为所求.22.(1)略;(2)96【分析】解:(1)证明:∠//BE AC ,//AE BD ,∠四边形AEBO 为平行四边形,又∠四边形ABCD 为菱形,∠BD AC ,∠平行四边形AEBO 为矩形;(2)∠四边形AEBO 为矩形,∠AB =OE =10,又∠四边形ABCD 为菱形,∠AO =12AC =8, ∠90AOB ∠=︒,∠6BO ==,∠BD =2BO =12,∠菱形ABCD 的面积=12121696⨯⨯=. 23.(1)40°;(2)略【分析】解:(1)∠将∠ABC 绕点A 按顺时针旋转一定角度得到∠ADE ,∠AD =AB ,∠∠ADF =∠B =50°,∠AF ∠BC ,∠在Rt∠ADF 中,∠DAF =90°﹣50°=40°;(2)证明:∠将∠ABC 绕点A 按顺时针旋转一定角度得到∠ADE ,点B 的对应点D 恰好落在BC 边上. ∠∠C =∠E ,又∠∠E =∠CAD ,∠∠C =∠CAD ,∠AC =CD .24.发现问题:BQ =PC ;探究猜想:BQ =PC 仍然成立,理由略;拓展应用:线段CQ 长度最小值是1【分析】发现问题:由旋转知,AQ =AP ,∠∠P AQ =∠BAC ,∠∠P AQ -∠BAP =∠BAC -∠BAP ,∠∠BAQ =∠CAP ,在∠BAQ 和∠CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∠∠BAQ ∠∠CAP (SA S ),∠BQ =CP ,故答案为:BQ =PC ;探究猜想:结论:BQ =PC 仍然成立,理由:由旋转知,AQ =AP ,∠∠P AQ =∠BAC ,∠∠P AQ -∠BAP =∠BAC -∠BAP ,∠∠BAQ =∠CAP ,在∠BAQ 和∠CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∠∠BAQ ∠∠CAP (SA S ),∠BQ =CP ;解:拓展应用:如图,在AB 上取一点E ,使AE =AC =2,连接PE ,过点E 作EF ∠BC 于F , 由旋转知,AQ =AP ,∠P AQ =60°,∠∠ABC =30°,∠∠EAC =60°,∠∠P AQ =∠EAC ,∠∠CAQ =∠EAP ,在∠CAQ 和∠EAP 中,AQ AP CAQ EAP AC AE =⎧⎪∠=∠⎨⎪=⎩,∠∠CAQ ∠∠EAP (S A S ),∠CQ =EP ,要使CQ 最小,则有EP 最小,而点E 是定点,点P 是AB 上的动点,∠当EF ∠BC (点P 和点F 重合)时,EP 最小,即:点P 与点F 重合,CQ 最小,最小值为EP ,在Rt ∠ACB 中,∠ACB =30°,AC =2,∠AB =4,∠AE =AC =2,∠BE =AB -AE =2,在Rt ∠BFE 中,∠EBF =30°,BE =2,∠EF =12BE =1. 故线段CQ 长度最小值是1.25.(1)略;(2)9;(3)4.8【分析】解:(1)证明:AP '是AP 旋转得到,AP AP ∴=',APP AP P ∴∠'=∠',90C ∠=︒,AP AB '⊥,90CBP BPC ∴∠+∠=︒,90ABP AP P ∠+∠'=︒,又BPC APP ∠=∠'CBP ABP ∴∠=∠;(2)如图,过点P 作PD AB ⊥于D ,又CBP ABP ∠=∠,90C ∠=︒,CP DP ∴=,P E AC '⊥,90EAP AP E ∴∠'+∠'=︒,又90PAD EAP ∠+∠'=︒,PAD AP E ∴∠=∠',在APD ∆和∠P AE '中,PAD AP E ADP P EA AP AP ∠=∠⎧⎪∠=∠'='⎨'⎪⎩,APD ∴∆≅∠()P AE AAS ',AE DP ∴=,AE CP ∴=,4AB BC -=,8AC =,10AB ∴=,6BC =,设PC PD x ==,则1064AD =-=,8PA x =-,在Rt PDA 中,2224(8)x x +=-,解得3x =,3AE CP ∴==,∠∠PBC 的面积=12PC BC ⨯⨯=9; (3)∠BP 平分∠ABC ,且PD ∠AB ,∠点D 为C 点关于BP 的对称点,连接CD ,过D 作DH ∠BC ,交BP 于M ,交BC 于H ,此时H 点即为N 点,连接CM , ∠CM =DM ,MC +MN =MN +MD =DN ,由等面积法得:6342BCD ACD S BD S AD ===△△, ∠33172685525BCD ABC S S ==⨯⨯⨯=△△, 即17225BC DN ⋅=, ∠172625DN ⨯⨯=,∠245 DN=,∠245 MC MN+=.。
苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计一. 教材分析《中心对称与中心对称图形》是苏科版数学八年级下册第九章第二节的内容。
本节内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的,旨在让学生了解中心对称的概念和性质,以及中心对称图形的特点。
教材通过丰富的实例,引导学生探究中心对称图形的性质,从而培养学生的观察能力、操作能力和推理能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的相关知识,对对称性有一定的认识。
但由于中心对称与轴对称在概念和性质上有较大的区别,学生在理解和掌握上可能会有一定的难度。
因此,在教学过程中,教师需要关注学生的认知差异,针对不同学生的学习情况,采取合适的教学策略,引导学生逐步理解和掌握中心对称的概念和性质。
三. 教学目标1.了解中心对称的概念和性质,能识别中心对称图形。
2.能运用中心对称的性质解决一些简单的问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.中心对称的概念和性质。
2.中心对称图形的特点。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察和操作,从而理解和掌握中心对称的概念和性质。
2.小组合作学习:学生在小组内进行讨论和探究,分享学习心得,培养团队合作精神。
3.启发式教学:教师提问引导学生思考,激发学生的学习兴趣,提高学生的解决问题的能力。
六. 教学准备1.教学课件:制作中心对称与中心对称图形的课件,包括图片、动画和例题等。
2.教学素材:准备一些中心对称图形的图片,用于课堂展示和练习。
3.学生活动用品:如剪刀、彩纸等,用于学生的操作活动。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的对称现象,如建筑、艺术作品等,引导学生关注对称性。
提问:你们认为这些现象是什么对称?引出中心对称的概念。
2.呈现(15分钟)展示一些中心对称图形的图片,如圆、平行四边形等,引导学生观察和思考:这些图形有什么特点?教师引导学生总结出中心对称图形的定义和性质。
§9.1 图形的旋转【知识点总结】1、生活中的旋转例1:下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有()A.2个B.3个C.4个D.5个2、旋转的概念将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
图形的旋转不改变图形的形状、大小,只改变图形上点的位置。
例2:如图所示,ΔABC绕顶点C顺时针方向旋转某一角度后,得到ΔA′B′C′。
请回答下列问题:(1)旋转中心是哪一点?(2)旋转角是哪个角?(3)经过旋转,点A、B分别移动到什么位置?(4)找出图形中所有相等的角和线段。
3、旋转的性质一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。
例3:四边形ABCD是正方形,E、F分别是DC和CB延长线上的点,且DE=BF,连接AE、AF、EF(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.4、画旋转后的图形利用图形的旋转的性质,可以画出一个图形绕某点按照一定的方向旋转一定角度后的图形。
基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。
例4:如图,O为ΔABC外的一点,求作:ΔABC绕点O按顺时针方向旋转60°后所得的ΔA′B′C′。
例2图【误区警示】误点1 不能抓住图形旋转的基本要素,导致错误例1:如图,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图形的阴影部分)绕中心O至少经过次旋转而得到,每一次旋转°误点2 不能灵活运用图形旋转的性质,导致错误例2:如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC饶点C按顺时针旋转后得到ΔEDC,此时点D 在AB边上,则旋转角的大小为.§9.2 中心对称与中心对称图形【知识点总结】1、中心对称的概念一个图形绕某点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。
NO.28 课题:23.2.2中心对称图形主编:王晶审核:许爱农验收负责人:赵翠英课型:新授课学习目标:1. 掌握中心对称图形的概念,会识别哪些平面图形是中心对称图形.2. 理解中心对称和中心对称图形的区别与联系.学习重点:中心对称图形的有关概念.学习难点:区别中心对称和中心对称图形.一、预习导学简记1.轴对称的定义:把一个图形沿着,如果它能够与另一个图形,那么就说这两个图形轴对称.2.轴对称图形的定义:如果一个图形,直线两旁的部分,这样的图形叫做.3.作图题.(1)作出线段AO关于O点的对称图形BO.A O(2)作出△AOB关于O点的对称图形△COD.AOB二、学习研讨1.探究:①将上面的(1)题中线段AB绕它的中点旋转180°你有什么发现?②上面的(2)题中,连结AD、BC,则刚才的两个关于中心对称的两个图形就成平行四边形,将□ABCD绕它的两条对角线交点O旋转180°,你有什么发现?小结:像这样,把一个图形绕着 ,如果旋转后的图形与 简记 原图形 ,那么这个图形叫做中心对称图形,这个点就是它的 .所以线段、平行四边形都是___________,它们的对称中心分别是___ ______.练习:除了线段、平行四边形外再举出三个中心对称图形的例子三、巩固练习1. 下列图形中哪些是中心对称图形,并指出其对称中心.哪些既是轴对称图形又是中心对称图形?2.下面关于中心对称图形的描述正确的是( )A.中心对称图形与中心对称是同一个概念。
B.中心对称描述的是两个图形的位置关系,中心对称图形是一个图形的性质;C.一个图形绕某一点旋转的过程中,只要能与原来的图形重合,那么这个图形叫中心对称图形;D.中心对称图形的对称中心可能有两个.四、教(学)后反思(1)三角形(6)正方形 (7)等腰梯形 (8)圆 (9)正五边形 (10)正六边形。
第九章中心对称图形-平行四边形单元复习课【知识梳理】9.1 图形的旋转1.概念:在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角.2.图形旋转的性质:(1)旋转前后的图形全等;(2)对应点到旋转中心的距离相等;(3)每一对对应点与旋转中心的连线所成的角彼此相等.3.练习:(1)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A. B.2 C.3 D.2(2)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.(3)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.(4).如图1,在△ABC 中,AB=AC ,∠BAC=90°,D 、E 分别是AB 、AC 边的中点.将△ABC 绕点A 顺时针旋转α角(0°<α<180°),得到△AB ′C ′(如图2). (1)探究DB ′与EC ′的数量关系,并给予证明; (2)当DB ′∥AE 时,试求旋转角α的度数.9.2 中心对称与中心对称图形1.一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称.这个点叫做对称中心.2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.3.把一个图形绕 旋转 ,如果旋转后的图形能够与 ,那么这个图形叫做 ,这个点就是 。
中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
苏科版八年级下册 第9章 《中心对称图形——平行四边形》重难点题型训练(二)1.已知:如图,四边形ABCD 中,AC 与BD 相交于点O ,OB =OD ,∠BAO =∠DCO .(1)求证:四边形ABCD 是平行四边形;(2)把线段AC 绕O 点顺时针旋转,使AC ⊥BD ,这时四边形ABCD 是什么四边形?简要说明理由;(3)在(2)中,当AC ⊥BD 后,又分别延长OA 、OC 到点A 1,C 1,使OA 1=OC 1=OD ,这时四边形A 1BC 1D 是什么四边形?简要说明理由.2.如图,AC 是正方形ABCD 的对角线,AE 平分∠BAC ,EF ⊥AC 交AC 于点F .(1)图中与线段BE 相等的所有线段是 ;(2)选择图中与BE 相等的任意一条线段,并加以证明.3.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?4.已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的一平分线,BE,CF相交于点O.(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)5.如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.6.如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.7.如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.8.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE.(1)试探究,四边形BECF是什么特殊的四边形?(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)9.已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.10.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,另一直角边的长为.(1)四边形ABCD是平行四边形吗?说出你的结论和理由:.(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:.(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为时,四边形ABC1D1为矩形,其理由是;当点B的移动距离为时,四边形ABC1D1为菱形,其理由是.(图3、图4用于探究)11.如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于F.(1)求证:∠DEF=∠CBE;(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.12.已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为;对图(3)的探究结论为;证明:如图(2)13.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,点G在边BC上.(1)求证:AE=BF;(2)若BC=cm,求正方形DEFG的边长.14.如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC 于点F.(1)点D是△ABC的心;(2)求证:四边形DECF为菱形.15.如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB (1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.参考答案1.(1)证明:∵AC与BD相交于点O,∴∠AOB=∠COD,(1分)在△AOB和△COD中,∴△AOB≌△COD,(2分)∴OA=OC,(3分)∵OA=OC,OB=OD,∴四边形ABCD为平行四边形(4分)(2)解:四边形ABCD是菱形.(5分)因为对角线互相垂直平分的四边形是菱形.(6分)(或对角线互相垂直的平行四边形是菱形)(3)解:四边形A1BC1D是正方形(7分)因为对角线互相垂直平分且相等的四边形是正方形.(8分)(或对角线相等的菱形是正方形)2.解:(1)EF和FC;∵AE平分∠BAC,EF⊥AC交AC于点F,BE⊥AB,∴BE=EF;又∵AC是正方形ABCD的对角线,∴∠ECF=45°,∴∠CEF=45°,∴EF=FC.(2)证明:∵四边形ABCD是正方形,∴∠B=90°,又∵EF⊥AC,∴∠AFE=∠B,∵AE 平分∠BAC ,∴∠BAE =∠FAE ,在△ABE 和△AFE 中,,∴△ABE ≌△AFE (AAS ),∴BE =EF .3.(1)证明:∵EF ∥AB ,PM ∥AC ,∴四边形AEPM 为平行四边形.∵AB =AC ,AD 平分∠CAB ,∴∠CAD =∠BAD ,∵∠BAD =∠EPA ,∴∠CAD =∠EPA ,∴EA =EP ,∴四边形AEPM 为菱形.(2)解:P 为EF 中点时,S 菱形AEPM =S 四边形EFBM ∵四边形AEPM 为菱形,∴AD ⊥EM ,∵AD ⊥BC ,∴EM ∥BC ,又∵EF ∥AB ,∴四边形EFBM 为平行四边形.作EN ⊥AB 于N ,则S 菱形AEPM =EP •EN =EF •EN =S 四边形EFBM .4.(1)证明:∵四边形ABCD 是平行四边形∴AB∥CD∴∠ABC+∠BCD=180°(1分)又∵BE,CF分别是∠ABC,∠BCD的平分线∴∠EBC+∠FCB=90°∴∠BOC=90°故BE⊥CF(3分)(2)解:AF=DE理由如下:∵AD∥BC∴∠AEB=∠CBE又∵BE是∠ABC的平分线,∴∠ABE=∠CBE∴∠AEB=∠ABE∴AB=AE同理CD=DF(5分)又∵四边形ABCD是平行四边形∴AB=CD∴AE=DF∴AF=DE(6分)(3)解:当△BOC为等腰直角三角形时四边形ABCD是矩形.(8分)5.(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠1=∠2=45°,DE=DE,∴△ADE≌△CDE.(2)证明:∵△ADE≌△CDE,∴∠3=∠4,∵CH⊥CE,∴∠4+∠5=90°,又∵∠6+∠5=90°,∴∠4=∠6=∠3,∵AD∥BG,∴∠G=∠3,∴∠G=∠6,∴CH=GH,又∵∠4+∠5=∠G+∠7=90°,∴∠5=∠7,∴CH=FH,∴FH=GH.(3)解:存在符合条件的x值此时,∵∠ECG>90°,要使△ECG为等腰三角形,必须CE=CG,∴∠G=∠8,又∵∠G=∠4,∴∠8=∠4,∴∠9=2∠4=2∠3,∴∠9+∠3=2∠3+∠3=90°,∴∠3=30°,∴x=DF=1×tan30°=.6.解:(1)∵ABCD是正方形,∴AD=DC=2,AE=CF=1,∠BAD=∠DCF=90°,在△ADE与△CDF中,∵,∴△ADE≌△CDF,∴把△ADE绕点D逆时旋转90°时能与△CDF重合.(2)由(1)可知∠1=∠2,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠EDF=90°,∵AH∥DF,∴∠EGH=∠EDF=90°,∴AH⊥ED,∵AE=1,AD=2,∵ED=,∴AE•AD=ED•AG,即×1×2=××AG,∴AG=.7.(1)证明:∵四边形ABCD是矩形,∴OB=OD(矩形的对角线互相平分),AE∥CF(矩形的对边平行).∴∠E=∠F,∠OBE=∠ODF.∴△BOE≌△DOF(AAS).(2)解:当EF⊥AC时,四边形AECF是菱形.证明:∵四边形ABCD是矩形,∴OA=OC(矩形的对角线互相平分).又∵由(1)△BOE≌△DOF得,OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)又∵EF⊥AC,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).8.解:(1)四边形BECF是菱形.证明:∵BC的垂直平分线为EF,∴BF=FC,BE=EC,∴∠1=∠3,∵∠ACB=90°,∴∠1+∠2=90°,∠3+∠A=90°,∴∠2=∠A,∴EC=AE,又∵CF=AE,BE=EC∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵四边形BECF是菱形,∴∠EBF=2∠3,∵∠A=45°,∠ACB=90°,∴∠3=45°,∴∠EBF=2∠3=90°,∴菱形BECF是正方形.9.解:(1)∵正方形ABCD中,AH=2,∴DH=4,∵DG=2,∴HG=2,即菱形EFGH的边长为2.在△AHE和△DGH中,∵∠A=∠D=90°,AH=DG=2,EH=HG=2,∴△AHE≌△DGH(HL),∴∠AHE=∠DGH,∵∠DGH+∠DHG=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,即菱形EFGH是正方形,同理可以证明△DGH≌△CFG,∴∠FCG=90°,即点F在BC边上,同时可得CF=2,=×4×2=4.(2分)从而S△FCG(2)作FM⊥DC,M为垂足,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF.在△AHE和△MFG中,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.因此S=×2×(6﹣x)=6﹣x.(6分)△FCG(3)若S △FCG =1,由(2)知S △FCG =6﹣x ,得x =5,∴在△DGH 中,HG =, ∴在△AHE 中,AE =,即点E 已经不在边AB 上.∴不可能有S △FCG =1.(9分)另法:∵点G 在边DC 上,∴菱形的边长至少为DH =4,当菱形的边长为4时:∵点E 在AB 边上且满足AE =2,此时,当点E 逐渐向右运动至点B 时,HE 的长(即菱形的边长)将逐渐变大,∴最大值为HE =2. 此时,DG =2,故0≤x ≤2. ∵函数S △FCG =6﹣x 的值随着x 的增大而减小,∴当x =2时,S △FCG 取得最小值为6﹣2.又∵6﹣2=1, ∴△FCG 的面积不可能等于1.(9分)10.解:(1)四边形ABCD 是平行四边形,根据两组对边分别相等;(2)四边形ABC 1D 1是平行四边形,根据一组对边平行且相等;(3)当点B 的移动距离为时,四边形ABC 1D 1为矩形,根据有一直角的平行四边形是矩形;当点B 的移动距离为时,四边形ABC 1D 1为菱形,根据对角线互相垂直平分的四边形是菱形.11.(1)证明:∵EF ⊥BE ,∴∠DEF +∠CEB =90°.∵∠CBE +∠CEB =90°,∴∠DEF =∠CBE .(2)EB =EF .理由如下:∵AE 平分∠DAB ,∴∠DEA =∠EAB =∠DAE , DA =DE ,DA =BC ,∴DE =BC .∵EF ⊥BE ,∴∠DEF +∠CEB =∠EBC +∠CEB =90°,∴∠DEF =∠EBC ,∵∠C =∠D =90°,∴△FDE ≌△CEB (ASA ).∴EB =EF .12.解:结论均是PA 2+PC 2=PB 2+PD 2.(1)如图2,过点P 作MN ∥AB ,交AD 于点M ,交BC 于点N ,∴四边形ABNM和四边形NCDM均为矩形,根据(1)中的结论可得,在矩形ABNM中有PA2+PN2=PB2+PM2,在矩形NCDM中有PC2+PM2=PD2+PN2,两式相加得PA2+PN2+PC2+PM2=PB2+PM2+PD2+PN2,∴PA2+PC2=PB2+PD2.(2)如图3,过点P作MN∥AB,交AB的延长线于点M,交CD的延长线于点N,∴四边形BCNM和四边形ADNM均为矩形,同样根据(1)中的结论可得,在矩形BCNM中有PC2+PM2=PB2+PN2,在矩形ADNM中有PA2+PN2=PD2+PM2,两式相加得PA2+PN2+PC2+PM2=PD2+PM2+PB2+PN2,∴PA2+PC2=PB2+PD2.13.(1)证明:∵等腰Rt△ABC中,∠C=90°,∴∠A=∠B.∵四边形DEFG是正方形,∴DE=GF,∠DEA=∠GFB=90°.∴△ADE≌△BGF.∴AE=BF.(2)解:∵∠DEA=90°,∠A=45°,∴∠ADE=45°.∴AE=DE,同理BF=GF,又∵AB=BC,∴EF=AE=BF=AB===(cm).∴正方形DEFG的边长为cm.14.解:(1)点D是△ABC的内心.(2分)(2)证法一:连接CD,(3分)∵DE∥AC,DF∥BC,∴四边形DECF为平行四边形,(4分)又∵点D是△ABC的内心,∴CD平分∠ACB,即∠FCD=∠ECD,(5分)又∠FDC=∠ECD,∴∠FCD=∠FDC∴FC=FD,(6分)∴▱DECF为菱形.(7分)证法二:过D分别作DG⊥AB于G,DH⊥BC于H,DI⊥AC于I.(3分)∵AD,BD分别平分∠CAB,∠ABC,∴DI=DG,DG=DH.∴DH=DI.(4分)∵DE∥AC,DF∥BC,∴四边形DECF为平行四边形,(5分)∴S▱DECF=CE•DH=CF•DI,∴CE=CF.(6分)∴▱DECF为菱形.(7分)15.(1)证明:∵△ABC与△CDE都是等边三角形,∴ED=CD.∴∠A=∠DCE=∠BCA=∠DEC=60°.(1分)∴AB∥CD,DE∥CF.(2分)又∵EF∥AB,∴EF∥CD,(3分)∴四边形EFCD是菱形.(4分)(2)解:连接DF,与CE相交于点G,(5分)由CD=4,可知CG=2,(6分)∴,(7分)∴.(8分)。
第九章中心对称图形复习(2)【学习目标】1. 回顾、思考本章所学的知识及思想方法,并能用自己喜欢的方式进行梳理,使所学知识系统化;2. 进一步丰富对平面图形相关知识的认识,能有条理的、清晰地阐述自己的观点;3. 通过“小结与思考”的教学,培养学生归纳、反思的意识;【学习重点、难点】重点:本章知识的巩固与应用;难点:灵活应用本章所学知识【学习过程】一、课前复习:1.已知:△ABC 和一点O ,画△ABC 关于点O 成中心对称的三角形;(1)点O 在△ABC 外;(2)点O 与△ABC 的顶点A 重合(3)点O 是△ABC 的一边 BC 的中点2.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是 ( )3.如图:△ABC 和△ADE 都是顶角为45°的等腰三角形,BC 、DE 分别是两个三角形的底边。
图中的△ACE 可以看成是三角形 通过 得到4.能判断一个四边形是平行四边形的为( )A 、一组对边平行,另一组对边相等B 、一组对边平行,一组对角相等C 、一组对边平行,一组对角互补D 、一组对边平行,两条对角线相等5.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是6.若菱形ABCD 的周长为20,一条对角线AC 长为6,菱形的面积= 。
7.如图,点E 是正方形ABCD 的边BC 延长线上的一点,且CE=AC ,若AE 交CD 于点F ,则∠E= °;∠AFC= °二、课堂学习研讨三、课堂测试晴 A 冰雹B 雷阵雨C 大雪 (D )1.下列说法中,正确的是 ( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .四条边相等的四边形是菱形D .对角线互相垂直平分的四边形是正方形2.下列说法中,不正确的是( )A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形3.如图,在□ABCD 中,CE ⊥AB ,垂足为E 若∠A=125°,则∠BCE度数为 ( )A .55°B .35°C .25°D .30°4.在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形中,既是中心对称图形又是轴对称图形的有( )A .1个B .2个C .3个D .4个5.正方形具有而菱形不一定具有的特征是 ( )A .对角线互相垂直B .四条边都相等C .对角线互相平分D .对角线相等五、课后作业1.如图,正方形ABCD 旋转后得到正方形AB ′C ′D ′.(1)旋转角是______°;(2)若AB=1,求C ′D .2.如图,E 、F 是□ABCD 的对角线AC 上的两点,AE=CF .试说明:(1)△ADF ≌△CBE .(2)BE ∥DF .3.在正方形ABCD 中,P 为对角线BD 上一点.PE ⊥BC,PF ⊥CD.求证:(1)四边形PECF 为矩形 (2)EF=AP4. 如图,点O 是菱形ABCD 对角线的交点,过点C 作BD 的平行线CE ,过点D 作AC 的平行线DE ,CE 与DE 相交于点E ,试说明四边形OCED 是矩形。