信号与系统B复习提纲
- 格式:pdf
- 大小:55.70 KB
- 文档页数:2
信号和线性系统复习提纲第一章 信号和系统1.信号、系统的基本概念2.信号的分类,表示方法(表达式或波形)连续和离散;周期和非周期;实和复信号;能量信号和功率信号 3.信号的基本运算:加、乘、反转和平移、尺度变换。
图解时应注意仅对变量t 作变换,且结果可由值域的非零区间验证。
4.阶跃函数和冲激函数极限形式的定义;关系;冲激的Dirac 定义 阶跃函数和冲激函数的微积分关系 冲激函数的取样性质(注意积分区间))()0()()(t f t t f δδ⋅=⋅;⎰∞∞-=⋅)0()()(f dt t t f δ)()()()(111t t t f t t t f -⋅=-⋅δδ;⎰∞∞-=-⋅)()()(11t f dt t t t f δ5.系统的描述方法数学模型的建立:微分或差分方程系统的时域框图,基本单元:乘法器,加法器,积分器(连),延时单元(离) 由时域框图列方程的步骤。
6.系统的性质线性:齐次性和可加性;分解特性、零状态线性、零输入线性。
时不变性:常参量LTI 系统的数学模型:线性常系数微分(差分)方程(以后都针对LTI 系统) LTI 系统零状态响应的微积分特性因果性、稳定性(可结合第7章极点分布判定)1. 微分方程的经典解法:齐次解+特解(代入初始条件求系数) 自由响应、强迫响应、瞬态响应、稳态响应的概念0—~0+初值(由初始状态求初始条件):目的,方法(冲激函数系数平衡法)全响应=零输入响应+零状态响应;注意应用LTI 系统零状态响应的微积分特性 特别说明:特解由激励在t>0时或t>=0+的形式确定2. 冲激响应)(t h定义,求解(经典法),注意应用LTI 系统零状态响应的微积分特性阶跃响应)(t g 和)(t h 的关系3. 卷积积分定义及物理意义激励)(t f 、零状态响应)(t y f 、冲激响应)(t h 之间关系)()()(t h t f t y f *= 卷积的图示解法(了解)函数和冲激函数的卷积(和乘积不同))()()(t f t t f =*δ;)()()(11t t f t t t f -=-*δ 卷积的微分和积分复合系统冲激响应的求解(了解)1.离散系统的响应差分方程的迭代法求解差分方程的经典法求解:齐次解+特解(代入初始条件求系数)全响应=零输入响应+ 零状态响应初始状态(是)()2(),1(N y y y --- ),而初始条件(指的是)1()1(),0(-N y y y ) 2.单位序列响应)(k h)(k δ的定义,)(k h 的定义,求解(经典法);若方程右侧是激励及其移位序列时,注意应用线性时不变性质求解 阶跃响应)(k g 和)(k h 的关系 3. 卷积和定义及物理意义激励)(k f 、零状态响应)(k y f 、冲激响应)(k h 之间关系)()()(k h k f k y f *=卷积和的作图解 )(k f 和)(k δ的卷积和)()()(k f k k f =*δ;)()()(11k k f k k k f -=-*δ结合前面卷积积分和卷积和,知道零状态响应除经典解法外的另一方法。
西安交通大学《信号与系统B》课程教学大纲(说明:信通系应该学的是《信号与系统A》,但是找不到A的大纲。
只找到了西交大电子、计算机等专业的《信号与系统B》的大纲,因为用的教材是一样的,大家就凑活着用吧)英文名称:Signals and Systems B课程编号:INFT3014学时:68 (讲课60 ,实验8 );学分:4.0 开课时间:秋季学期适用对象:电子科学与技术、计算机科学与技术专业、光信息科学与技术专业先修课程:数学分析(工程类)或高等数学、电路使用教材及参考书:1. 阎鸿森、王新凤、田惠生编《信号与线性系统》,西安交通大学出版社,1999 年8 月第一版2. [ 美] A.V. 奥本海姆等著,刘树棠译,《信号与系统》(第二版),西安交通大学出版社,1998 年一.课程性质、目的和任务“信号与系统”是电气与电子信息类各专业本科生继“电路”或“电路分析基础”课程之后必修的重要主干课程。
该课程主要研究确知信号的特性,线性时不变系统的特性,信号通过线性时不变系统的基本分析方法,信号与系统分析方法在某些重要工程领域的应用,以及数字信号处理的基础知识。
通过本课程的学习,使学生掌握信号分析、线性系统分析及数字信号处理的基本理论与分析方法,并对这些理论与方法在工程中的某些应用有初步了解。
为适应信息科学与技术的飞速发展及在相关专业领域的深入学习打下坚实的基础。
同时,通过习题和实验,学生应在分析问题与解决问题的能力及实践技能方面有所提高。
该课程是学习《现代通信原理》、《自动控制理论》等后续课程所必备的基础。
二.教学基本要求通过本课程的学习,在掌握连续时间信号与系统和离散时间信号与系统分析以及数字信号处理的基本理论和方法方面应达到以下基本要求:1. 掌握信号与系统的基本概念,信号与系统的描述方法,基本信号的特性,系统的一般性质,系统的互联,增量线性系统的等效方法。
2. 掌握信号分解的基本思想及信号在时域、频域和变换域进行分解的基本理论及描述方法。
第一章绪论1、信号与系统的概念2、连续信号、离散信号、数字信号之间的判断3、信号的运算4、冲激信号的性质5、信号分解为直流、交流分量以及奇、偶分量的方法6、微分方程画系统框图或系统框图写出微分方程7、线性、时不变、因果系统的判断第二章连续时间系统的时域分析1、了解常系数微分方程的经典求解步骤2、了解起点的跳变3、了解零输入响应和零状态响应求解步骤4、自由响应、强迫响应、稳态响应、瞬态响应分类5、了解冲激响应、阶跃响应的概念6、了解卷积的计算7、卷积的性质,特别是一任意信号与冲激响应的卷积第三章傅里叶变换第二节周期信号的傅里叶级数分析三角函数形式的傅氏级数指数函数形式的傅氏级数两种傅氏级数的关系频谱图函数的对称性与傅里叶级数的关系周期信号的功率(帕氏定理)第三节典型周期信号的傅里叶级数了解周期矩形脉冲信号的傅里叶级数的分析主要讨论:频谱的特点,频谱结构,频带宽度,能量分布。
第四节傅里叶变换傅里叶变换及反变换的公式傅里叶变存在的条件第五节典型非周期信号的傅里叶变换重点掌握矩形脉冲信号的傅里叶变换。
第六节冲激函数和阶跃函数的傅里叶变换(典型非周期信号的傅里叶变换) 冲激函数的傅里叶变换冲激偶函数的傅里叶变换直流的傅里叶变换阶跃函数的傅里叶变换第七节傅里叶变换的性质(重点)第八节卷积特性(重点)第九节周期信号的傅里叶变换正弦、余弦的傅里叶变换(典型非周期信号的傅里叶变换)一般周期信号的傅里叶变换(式3-89)第十节抽样信号的傅里叶变换该节为周期信号的傅里叶变换与频域卷积定理的应用第十一节抽样定理掌握时域抽样定理的结论即可。
第四章拉普拉斯变换第二节拉普拉斯变换的定义拉氏变换存在的条件一些常用函数的拉氏变换阶跃函数、指数函数、t函数、冲激函数第三节拉氏变换的基本性质(重点是微分性质)第四节拉普拉斯逆变换掌握方法第五节用拉普拉斯变换分析电路(重点)微分方程的拉氏变换利用元件的s域模型分析电路第六节系统函数(重点)重点掌握求系统函数的方法正弦稳态响应第十一节线性系统的稳定性(重点)重点掌握线性系统的稳定性的判断第十二节双边拉普拉斯变换了解收敛域方面的内容第十三节拉普拉斯变换与傅里叶变换的关系掌握在什么情况下拉普拉斯变换可转变为傅里叶变换,以及如何转换。
《信号与系统》复习提纲第一章 绪论一、根本容〔1〕信号与波形;〔2〕冲激信号的定义与性质;〔3〕信号的运算与响应波形变换:平移、反褶、尺度变换、相乘、相加、微积分等; 〔4〕信号的分解:奇、偶分量,交、直流分量的求法。
; 〔5〕功率信号、能量信号的定义与其确定方法; 〔6〕函数正交性:最小均方误差;〔7〕线性时不变系统特性:线性、时不变性、因果、稳定判别方法。
二、根本公式〔一〕冲激信号的性质 〔1〕()()(0)f t t dt f δ∞-∞=⎰;00()()()f t t t dt f t δ∞-∞-=⎰;00()()()f t t t dt f t δ∞-∞'-=-'⎰〔2〕()()t t δδ-=;1()()at t aδδ=〔3〕000()()()()f t t t f t t t δδ-=-〔4〕()()du t t dtδ=;()()t d u t δττ-∞=⎰〔5〕()()()f t t f t δ*=〔6〕1212()()()t t t t t t t δδδ-*-=-- 〔二〕线性时不变因果稳定系统特性 假设激励为()e t ,响应()r t 〔1〕线性:叠加性+齐次性 11221122()()()()c e t c e t c r t c r t +→+ 〔2〕时不变性:00()()e t t r t t -→-〔3〕微分特性:()()d de t r t dt dt →〔4〕积分特性:0()()tte d r d ττττ→⎰⎰〔5〕因果性:假设0t t <时,()0e t =,那么0t t <时,()0r t =〔6〕稳定性:()()e t M r t N ≤<∞→≤<∞第二章 连续时间系统的时域分析一、根本容〔1〕微分方程建立与求解:齐次解与特征根关系,特解与特征根关系;〔2〕零输入与零状态响应:二者待定系数确实定条件,与自由响应和强迫响应的关系; 〔3〕起始状态与线性时不变性的关系; 〔4〕冲激响应和阶跃响应; 〔5〕求卷积的方法;〔6〕利用卷积求零状态响应。
信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。
信号可以是连续的或离散的,并且可以是模拟的或数字的。
系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。
在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。
二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。
离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。
连续时间信号和离散时间信号可以通过采样和保持操作相互转换。
三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。
周期信号具有重复的模式,并且在无穷远处也保持有界。
非周期信号则没有重复的模式,并且在无穷远处不保持有界。
另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。
四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。
系统可以是线性的或非线性的。
线性系统遵循叠加原则,输出信号是输入信号的线性组合。
非线性系统则不遵循叠加原则。
五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。
常用的时域分析技术包括时域图、自相关函数、互相关函数等。
时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。
自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。
六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。
傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。
傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。
功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。
信号与系统的复习提纲概念1、信号与系统的概念及关系2、消息、信号、信息的概念及关系3、常⽤时域信号的种类和定义、基本特性、以及相关关系4、信号分解主要⽅式有那些5、系统的基本分类有哪些6、线性时不变系统、因果系统有哪些特点7、连续时间系统时域分析的经典⽅法是什么;基本步骤是什么10、什么是冲击响应?响应有什么特点?什么是零输⼊响应?什么是零状态响应?11、连续时间系统的卷积定义是什么?基本运算步骤是什么?12、连续时间系统卷积的基本性质有哪些?13、傅⾥叶级数的物理意义及定义是什么?其中,幅频特性、相频特性的定义公式及物理意义⼜是什么?14、傅⾥叶变化的物理意义及定义公式是什么?与级数的区别⼜是什么?其中频谱密度的定义及物理意义有什么特点?15、傅⾥叶变换的存在条件、基本特性、卷积定理各是什么?16、抽样及抽样定理是什么?17、拉普拉斯变换定义及拉普拉斯变换对的公式是什么?18、拉普拉斯变换的性质有哪些?19、拉普拉斯变换的求解⽅法?常⽤元件的拉普拉斯变换模型20、零极点分布的特性、频响特性、线性系统的稳定性21、系统函数的物理意义22、什么是⽆失真传输、条件是什么23、调制与解调的概念、PCM过程、频分复⽤的概念及⼯作过程24、离散时间信号的基本运算及⽅法25、差分⽅程、常系数线性差分⽅程的求解计算1、如图所⽰电路,t<0开关S处于1位置⽽且已经达到稳态;当t=0时,S 由1转向2。
建⽴电流i(t)的微分⽅程,并求在t≧0时的全响应。
同样电路和参数求零输⼊响应。
()4= te()tLH41 =LΩ=23 22、⼀因果性的LTIS ,其输⼊、输出⽤下列微分⽅程表⽰:)()()()(5)(t e d t f t e t r t r dtd--=+?∞∞-ττ其中)(3)()(t t u e t f t σ+=-求该系统的冲击响应3、求图⽰的半波余弦信号的傅⾥叶级数。
若E=10V ,F=10K HZ ,⼤致画出幅度谱4、利⽤时域与频域的对称性,求傅⾥叶变换的时间函数)()()(00ωωωωω--+=u u F5、若f(t)的频谱F (ω)如图所⽰,利⽤卷积定理粗略画出f(t)cos(ω0t),f(t)e j ω0t,f(t)cos(ω1t)的频谱(注明频谱的边界频率)。
信号与系统知识点综合CT:连续信号DT:离散信号第一章信号与系统1、功率信号与能量信号性质:(1)能量有限信号的平均功率必为0;(2)非0功率信号的能量无限;(3)存在信号既不是能量信号也不是功率信号。
2、自变量变换(1)时移变换x(t)→x(t-t0),x[n]→x[n-n0](2)时间反转变换x(t)→x(-t),x[n]→x[-n](3)尺度变换x(t)→x(kt)3、CT、DT复指数信号周期频率CT 所有的w对应唯一TDT 为有理数4、单位脉冲、单位冲激、单位阶跃(1)DT信号关系(2)CT信号t=0时无定义关系(3)筛选性质(a)CT信号(b)DT信号5、系统性质(1)记忆系统y[n]=y[n-1]+x[n]无记忆系统y(t)=2x(t)(2)可逆系统y(t)=2x(t)不可逆系统y(t)=x2(t)(3)因果系统y(t)=2x(t)非因果系统y(t)=x(-t)(4)稳定系统y[n]=x[n]+x[n-1]不稳定系统(5)线性系统(零输入必定零输出)齐次性ax(t)→ay(t)可加性x1(t)+x2(t)→y1(t)+y2(t)(6)时不变系统x(t-t o)→y(t-t0)第二章1、DT卷积和,CT卷积积分2、图解法(1)换元;(2)反转平移;(3)相乘;(4)求和第三章CFS DFS1、CFS收敛条件:x(t)平方可积;Dirichlet条件。
存在“吉伯斯现象”。
DFS无收敛条件无吉伯斯现象2、三角函数表示第四、五章CTFT DTFT1、(1)CTFT(a)非周期收敛条件(充分非必要条件):x(t)平方可积;Dirichlet条件。
存在“吉伯斯现象”。
(b)周期(2)DTFT(a)非周期存在收敛条件不存在吉伯斯现象(b)周期2、对偶(1)CTFT、DFS 自身对偶CTFT的对偶性DFS的对偶性(2)DTFT与CFS 对偶3、时域、频域特性4、性质(1)时移与频移(a)CT信号(b)DT信号(2)时域微分(差分)和频域微分(求和)(a)CT信号(b)DT信号(3)时域扩展(内插)(a)CT信号(b)DT信号(4)共轭性质(a)CT信号(b)DT信号5、系统稳定系统才存在H(jw) y(t)=x(t)*h(t)Y(jw)=X(jw)H(jw)第六章时频特性1、模、相位2、无失真条件3、理想滤波器非因果,是物理不可能实现的。
信号与系统复习提纲第一章 信号的分类与基本特性1.1 信号的基本概念与分类能量信号:∞<=⎰-∞→dt t f E 222)(limτττ,能量信号的平均功率为零。
功率信号:∞<==∞→-∞→⎰E dt t f P ττττττ1lim)(1lim222,功率信号的能量无穷大。
时限信号是能量信号,周期信号是功率信号。
1.2 常用连续时间基本信号及特点● 欧拉公式:cos sin ,cos sin 11cos sin 22j t j t j t j tj t j te t j t e t j tt e e t e e jωωωωωωωωωωωω---=+=-=+=-(),()● 周期信号:()()sin(),()j t f t A t f t Ae ωϕωϕ+=+=,2T πω=12()()()f t f t f t =+,T 为1T 和2T 的最小公倍数。
● 奇异信号✓ 单位阶跃信号:10()0t u t t >⎧=⎨<⎩画信号波形:(),(1),(1)(),(1)(1),tu t tu t t u t t u t ----以阶跃信号可以将分段函数表达式写成封闭式函数表达式。
✓ 单位冲激信号:0(),()10t t t dt t δδ+∞-∞∞=⎧==⎨≠⎩⎰dt t du t )()(=δ ττδd t u t)()(⎰∞-= ✓ 冲激信号的性质)()0()()(t f t t f δδ= )()()()(000t t t f t t t f -=-δδ)()(t t -=δδ )(1)(t aat δδ=)(1)(00a t t a t at -=-δδ1.3离散时间基本信号及特点● 欧拉公式:cos sin ,cos sin 11cos sin 22j n j n j n j n j n j n e n j n e n j n n e e n e e j ωωωωωωωωωωωω---=+=-=+=-(),()● 周期序列:()()sin(),()j n f n A n f n Ae ωϕωϕ+=+=,2N kπω=,N 为整数12()()()f n f n f n =+,T 为1T 和2T 的最小公倍数。
《信号与系统》复习提纲《信号与系统》复习提纲第一部分绪论一.信号的定义和分类1.定义:由消息转换而成的变化着的电的量(电压、电流、电荷量、磁通量、电磁波)。
2.分类:根据不同的分类原则,信号可分为:确定信号与随机信号;连续时间信号与离散时间信号;周期信号与非周期信号;能量信号与功率信号;一维信号与多维信号;因果信号与非因果信号等等。
3.掌握下列基本信号:(1)常用信号: 1) 直流信号2) 正弦信号3) 指数信号4) 复指数信号5) 取样信号(2)奇异信号: 1) 斜变信号2) 阶跃信号3) 冲激偶信号4) 冲激信号定义及其性质5) 这些信号之间的关系(3)信号的变换: 1) 时移2) 翻转3)尺度变换二.系统的定义和分类1.定义:是一个由若干互有关联的单元组成的,并用来达到某些特定目的的有机整体。
(另一定义见书P2)分类:根据不同的分类原则,系统可分为:因果系统与非因果系统;线性系统与非线性系统;时变系统与非时变系统;连续时间系统与离散时间系统;即时系统和动态系统;集总参数系统和分布参数系统;无源系统和有源系统。
2.线性时不变系统(1)线性(叠加性与齐次性)(2)微分特性(3)时不变性(4)因果性第二部分信号分析一. 信号的时域分析1.将有规则较为复杂的信号分解为简单的基本信号之和。
2.任何信号可分解为冲激信号之和。
3.信号可以从不同角度分解:直流分量与交流分量;偶分量与奇分量;脉冲分量;实部分量与虚部分量;正交函数分量。
二. 周期信号的频谱1.傅里叶级数的三种表示方式:(1)正弦和余弦表示法11111110111102)4()(2)3()(2)2()(1)1()(100100100T n t d t S i n n t f T b n t d t C o s n t f T a dt t f T a tSinn b t Cosn a a t f T t t n T t t n T t t n n n n πωωωωω====++=∑∑+++∞=∞=次谐波正弦分量的振幅次谐波余弦分量的振幅直流分量(2)纯余弦表示法次谐波的初相角或次谐波的初相角n b a tg b a d a d t n Sin d d t f n a b tg b a c a c t n Cos c c t f n nn nn n n n n nn n nn n n n n 12200110122001102)8()()()7()6(2)5()()(-∞=-∞==+==++=-=+==++=∑∑θθω??ω (3)复指数表示法n n n n n n n j n n j n j n n n tjn n n t jn j n a b tg n b a c F e c F e F e c F e F e e c t f n n n n -=±±=+======?=--+∞-∞=+∞-∞=∑∑ωω? 210212222)(2211,,,2.傅里叶系数与信号对称的关系:A.偶对称B.奇对称 C. 奇谐对称(半波奇对称)3.掌握下列基本概念(1)谐波分量:包括直流分量、基波分量、二次谐波分量、三次谐波分量等;基频、二倍频、三倍频等。
第一章 信号与系统的基本概念
1. 奇异信号及其特点;
2. 会判断复合信号的周期性;
3. 冲激函数的重要性质;
4. 会判断的系统的线性性;
5. 系统的分类(时变,线性)。
第二章 线性时不变系统的时域分析
1. 零输入响应和零状态响应的概念;
2. 卷积的概念;
3. 会求电路系统的零输入,零状态响应,全响应;
4. 卷积法求零状态响应;
5. 系统的冲激响应,单位样值响应的概念
6. 会求系统的冲激响应。
7. 会求离散系统的响应(利用卷积求系统的零状态响应)
第三章 傅里叶变换
1. 周期信号的傅里叶级数;
2. 傅里叶变换的性质,会用性质求信号的频谱;
2. 会求非周期信号的频谱;
3. 周期信号的频谱特点。
4. 理解卷积定理
第五章 拉普拉斯变换和连续时间系统的s域分析
1. 拉氏变换的概念;
2. 系统函数的概念;
3. 拉氏逆变换的求解方法(部分分式法),会求常见函数的拉氏变换及拉氏逆变换;
4. 如何用拉氏变换分析电路;
5. 会用拉氏变换求解电路的响应。
第6章 z变换及其应用
1. z变换的定义;不同序列的收敛域特点;
2. 会求 z变换的收敛域;
3. 常用序列的z变换;
4. 会求序列的z变换;
5. 掌握逆z变换的求解方法(留数法)。
选择10 分
判断10分,
简答(5题,共35分)其中拉氏分析方法与步骤一题,
计算(4题,共45分)傅里叶变换频谱11分+零输入§零状态14分+拉氏(结合电路图)14分Z变换与逆变换6分。