典型物理模型 动量守恒
- 格式:doc
- 大小:1.12 MB
- 文档页数:9
§动量守恒定律常见模型子弹打击木块类模型例题1:设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,设木块对子弹的阻力恒为f ,求:(1)木块至少多长子弹才不会穿出?(2)子弹在木块中运动了多长时间?变式:若不固定木块时,子弹穿透木块后的速度为v 0/3,现固定木块,其它条件相同,则子弹穿过木块时的而速度为多少?例题2:如图质量为M 的模板B 静止在光滑的水平面上,一质量为m 的长度可忽略的小木块A 以速度v 0水平地沿模板的表面滑行,已知小木块与木板间的动摩擦因数为µ,求:(1)木板至少多长小木块才不会掉下来?(2)小木块在木板上滑行了多长时间?拓展1:上题中,如果已知木板长为L ,(端点为A 、B ,中点为O),问v 0在什么范围内才能使小木块滑到OB 之间相对木块静止?v 0拓展2:如图所示,一辆质量m=2kg 的平板车左端放有质量M=3kg 的小滑块,滑块与平板车之间的动摩擦因数µ=0。
4。
开始时平板车和滑块共同以2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短、且碰撞后平板车速度大小保持不变,但方向与原来相反。
平板车足够长,以至滑块不会滑出平板车右端(g=10m/s 2).求:(1)平板车第一次与墙壁碰撞后想做运动的最大距离。
(2)平板车第二次与墙壁碰撞前瞬间的速度.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?拓展3:两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒ab 和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0。
若两导体棒在运动中始终不接触,求: (1)在运动中产生的较耳热最多是多少?(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?人船模型动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
动量守恒的十种模型解读反冲和火箭模型模型解读1. 反冲运动作用原理反冲运动是系统内物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加2.火箭(1)火箭的原理火箭的工作原理是反冲运动,其反冲过程动量守恒,它靠向后喷出的气流的反冲作用而获得向前的速度。
(2)影响火箭获得速度大小的因素①喷气速度:现代液体燃料火箭的喷气速度约为2__000~4__000m/s 。
②火箭的质量比:指火箭起飞时的质量与火箭除燃料外的箭体质量之比,决定于火箭的结构和材料。
现代火箭的质量比一般小于10。
火箭获得的最终速度火箭发射前的总质量为M 、燃料燃尽后的质量为m ,火箭燃气的喷射速度为v 1,如图所示,在火箭发射过程中,由于内力远大于外力,所以动量守恒。
发射前的总动量为0,设燃料燃尽后火箭的飞行速度为v ,发射后的总动量为mv -(M -m )v 1(以火箭的速度方向为正方向)由动量守恒定律,mv -(M -m )v 1=0解得v=Mm-1 v1由此可知,燃料燃尽时火箭获得的最终速度由喷气速度及质量比Mm决定。
喷气速度越大,质量比越大,火箭获得的速度越大。
(3).多级火箭:能及时把空壳抛掉,使火箭的总质量减少,因而能够达到很高的速度,但火箭的级数不是越多越好,级数越多,构造越复杂,工作的可靠性越差,目前多级火箭一般都是三级火箭。
【典例精析】1.(2017·全国理综I卷·14)将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)A.30kg⋅m/sB.5.7×102kg⋅m/sC.6.0×102kg⋅m/sD.6.3×102kg⋅m/s【针对性训练】1.(2024重庆模拟2)如题图1所示,水火箭又称气压式喷水火箭、水推进火箭,由饮料瓶、硬纸片等环保废旧材料制作而成。
-高考物理复习动量守恒定律10个模型最新模拟题精选训练.ks5u.动量守恒的十种模型精选训练动量守恒定律是自然界中最普遍、最基本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。
通过对最新高考题和模拟题研究,可归纳出命题的十种模型。
一.碰撞模型【模型解读】碰撞的特点是:在碰撞的瞬间,相互作用力很大,作用时间很短,作用瞬间位移为零,碰撞前后系统的动量守恒。
无机械能损失的弹性碰撞,碰撞后系统的动能之和等于碰撞前系统动能之和,碰撞后合为一体的完全非弹性碰撞,机械能损失最大。
例1.如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。
A的质量为m,B、C的质量都为M,三者均处于静止状态。
现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞。
设物体间的碰撞都是弹性的。
针对训练题 1.如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直;a和b相距l,b与墙之间也相距l;a的质量为m,b的质量为m。
两物块与地面间的动摩擦因数均相同。
现使a以初速度v0向右滑动。
此后a与b发生弹性碰撞,但b没有与墙发生碰撞。
重力加速度大小为g。
求物块与地面间的动摩擦因数满足的条件。
2.如图所示,在水平光滑直导轨上,静止着三个质量为m=1 kg的相同的小球A、B、C。
现让A球以v0=2 m/s的速度向B球运动,A、B两球碰撞后粘在一起继续向右运动并与C球碰撞,C球的最终速度vC=1 m/s。
问:3.如图,小球a、b用等长细线悬挂于同一固定点O.让球a静止下垂,将球b向右拉起,使细线水平.从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:4.水平光滑轨道AB与半径为R=2m竖直面内的光滑圆弧轨道平滑相接,质量为m=0.2kg的小球从图示位置C(C点与圆弧圆心的连线与竖直方向的夹角为60°)自静止开始滑下,与放在圆弧末端B点的质量为M=13kg的物体M相碰时,每次碰撞后反弹速率都是碰撞前速率的11/12,设AB足够长,则m与M能够发生多少次碰撞?5.如图所示,质量均为M=lkg的A、B小车放在光滑水平地面上,A车上用轻质细线悬挂质量m=0.5kg的小球。
动量守恒的八种模型弹性碰撞模型模型解读1.碰撞过程的四个特点(1)时间短:在碰撞现象中,相互作用的时间很短。
(2)相互作用力大:碰撞过程中,相互作用力先急剧增大,后急剧减小,平均作用力很大。
(3)位移小:碰撞过程是在一瞬间发生的,时间极短,在物体发生碰撞的瞬间,可忽略物体的位移,认为物体在碰撞前后仍在同一位置。
(4)满足动量守恒的条件:系统的内力远远大于外力,所以即使系统所受合外力不为零,外力也可以忽略,系统的总动量守恒。
(5).速度要符合实际(i)如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞。
碰撞后,原来在前的物体的速度一定增大,且原来在前的物体的速度大于或等于原来在后的物体的速度v'前≥v'后。
(ii)如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。
若碰后沿同向运动,则前面物体的速度大于或等于后面物体的速度,即v'前≥v'后。
2.动动弹性碰撞已知两个刚性小球质量分别是m1、m2,m1v1+m2v2=m1v1'+m2v2',1 2m1v21+12m2v22=12m2v'22+12m乙v2乙,3.一动一静"弹性碰撞模型如图所示,已知A、B两个刚性小球质量分别是m1、m2,小球B静止在光滑水平面上,A以初速度v0与小球B发生弹性碰撞,取小球A初速度v0的方向为正方向,因发生的是弹性碰撞,碰撞前后系统动量守恒、动能不变,有m1v0=m1v1+m2v21 2m1v20=12m1v21+12m2v22联立解得v1=(m1-m2)v0m1+m2,v2=2m1v0m1+m2讨论:(1)若m1>m2,则0<v1<v0、v2>v0,物理意义:入射小球质量大于被碰小球质量,则入射小球碰后仍沿原方向运动但速度变小,被碰小球的速度大于入射小球碰前的速度。
动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。
根据动量守恒定律,我们可以推导出许多有趣的模型和应用。
本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。
1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。
当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。
根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。
2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。
这样做的好处是简化计算,使得动量守恒定律更易于应用。
3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。
当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。
通过爆炸模型,我们可以计算出碎片的速度和动量。
4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。
当一个旋转物体发生转动时,它的动量也必须守恒。
转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。
5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。
在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。
在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。
它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。
8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。
通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。
9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。
典型物理模型动量守恒典型物理模型:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类咨询题的差不多方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,能够把物体组作为整体考虑分受力情形,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
一起加速运动的物体N=212mmm+F(N为物体间相互作用力),与有无摩擦(μ相同)无关,平面斜面竖直都一样。
两木块的相互作用力N=212112mmFmFm++讨论:①F1≠0;F2=0N=Fmmm212+(与运动方向和接触面是否光滑无关)保持相对静止②F1≠0;F2≠0 N=212112mmFmFm++F=211221mmg)(mmg)(mm++F1>F2m1>m2N1<N2(什么缘故)N5对6=FMm(m为第6个以后的质量) 第12对13的作用力N12对13=Fnm12)m-(n水流星模型(竖直平面内的圆周运动)竖直平面内的圆周运动是典型的变速圆周运动研究物体通过最高点和最低点的情形,同时经常显现临界状态。
(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动〔汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转〕和物体在竖直平面内的圆周运动〔翻动过山车、水流星、杂技节目中的飞车走壁等〕。
⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重BAF1 F2BAF1m2m1Fm1m2Fm1m2力与弹力的合力——锥摆、〔关健要搞清晰向心力如何样提供的〕〔1〕火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。
由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。
高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。
④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
不同时刻的动量不能相加。
(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。
02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
动量守恒典型物理模型典型物理模型:连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体考虑分受力情况,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
一起加速运动的物体N=212mmm+F(N为物体间相互作用力),与有无摩擦(μ相同)无关,平面斜面竖直都一样。
两木块的相互作用力N=212112mmFmFm++讨论:①F1≠0;F2=0N=Fmmm212+(与运动方向和接触面是否光滑无关)保持相对静止②F1≠0;F2≠0 N=212112mmFmFm++F=211221mmg)(mmg)(mm++F1>F2m1>m2N1<N2(为什么)N5对6=FMm(m为第6个以后的质量) 第12对13的作用力N12对13=Fnm12)m-(n水流星模型(竖直平面内的圆周运动)竖直平面内的圆周运动是典型的变速圆周运动研究物体通过最高点和最低点的情况,并且经常出现临界状态。
(圆周运动实例)①火车转弯②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重BAF1 F2BAF1m2m1Fm1m2Fm1m2力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。
由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。
为转弯时规定速度)(得由合002sin tan v LRghv R v m L hmg mg mg F ===≈=θθ R g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=Rm2v③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=Rm2v即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。
(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:①临界条件:由mg+T=mv 2/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力,恰能通过最高点。
即mg=Rm2临v结论:绳子和轨道对小球没有力的作用(可理解为恰好通过或恰好通不过的速度),只有重力提供作向心力,临界速度V 临=gR②能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) ③不能过最高点条件:V<V 临(实际上球还未到最高点就脱离了轨道) 最高点状态: mg+T 1=Lm2高v (临界条件T 1=0, 临界速度V 临=gR , V ≥V 临才能通过)最低点状态: T 2- mg = L2m 低v高到低过程机械能守恒:mg2L m m 221221+=高低v v T 2- T 1=6mg (g 可看为等效加速度)半圆:mgR=221mv T-mg=R 2v m ⇒ T=3mg(3)有支承的小球,在竖直平面作圆周运动过最高点情况:①临界条件:杆和环对小球有支持力的作用知)(由RU m N mg 2=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)圆心。
增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(000>==>><<作用时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)(力的大小用有向线段,但(支持)时,受到杆的作用力,速度当小球运动到最高点时NgRvNgRvmgNNgRv==<<恰好过最高点时,此时从高到低过程mg2R=221mv低点:T-mg=mv2/R ⇒T=5mg注意物理圆与几何圆的最高点、最低点的区别(以上规律适用于物理圆,不过最高点,最低点, g都应看成等效的) 2.解决匀速圆周运动问题的一般方法(1)明确研究对象,必要时将它从转动系统中隔离出来。
(2)找出物体圆周运动的轨道平面,从中找出圆心和半径。
(3)分析物体受力情况,千万别臆想出一个向心力来。
(4)建立直角坐标系(以指向圆心方向为x轴正方向)将力正交分解。
(5)⎪⎩⎪⎨⎧=∑===∑2222yxFRTmRmRvmF)(建立方程组πω3.离心运动在向心力公式F n=mv2/R中,F n是物体所受合外力所能提供的向心力,mv2/R是物体作圆周运动所需要的向心力。
当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。
其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。
●力学模型及方法1.识图方法:一轴二线三斜率四面积五截距六交点2.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
3斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定m2m1FBAF1 F2 B A F╰ αμ=tg θ物体沿斜面匀速下滑或静止μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ)4.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定 只有θ=arctg(ga )时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?假设单B 下摆,最低点的速度V B =R 2g ⇐mgR=221Bmv 整体下摆2mgR=mg 2R +'2B '2A mv 21mv 21+'A'B V 2V =⇒'AV =gR 53 ;'A 'B V 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少?5.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )m L·Fm S 1S 2向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系统重心的运动1到2到3过程中 (1、3除外)超重状态绳剪断后台称示数 系统重心向下加速斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?铁木球的运动用同体积的水去补充6.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
◆弹性碰撞:m 1v 1+m 2v 2='22'11v m v m +(1)'222'12221mv 21mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换大碰小一起向前;质量相等,速度交换;小碰大,向后返。
◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)'v20mv 21='2M)v m (21++E 损 E 损=20mv 21一'2M)v (m 21+=02020E m M M m 21m)(M M M)2(m mM k v v +=+=+ E 损 可用于克服相对运动时的摩擦力做功转化为内能E 损=fd 相=μmg ·d 相=20mv 21一'2M)v (m 21+7.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中, 在此方向遵从动量守恒:mv=MV ms=MS s+S=d ⇒s=d Mm M+ M/m=L m /L M载人气球原静止于高h 的高空,气球质量为M ,人的质量为m .若人沿绳梯滑至地面,则绳梯至少为多长?20mMmO Ra图9θv 0 ABABv 0v sM vL 1 2Av 03xx 0A Om8.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型 竖直型 9.单摆模型:T=2πgL(类单摆) 利用单摆测重力加速度 10.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,④没波传播方向上两点的起振时间差=波在这段距离内传播的时间⑤波源振几个周期波就向外传几个波长。
波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf波速与振动速度的区别 波动与振动的区别:波的传播方向⇔质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)动量守恒:内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。
(研究对象:相互作用的两个物体或多个物体所组成的系统) 守恒条件:①系统不受外力作用。
(理想化条件)②系统受外力作用,但合外力为零。