动量守恒定律的典型模型
- 格式:ppt
- 大小:369.00 KB
- 文档页数:30
第16章 动量守恒定律的几个典型模型(一)一、碰撞类。
1.弹性碰撞:碰撞前后,系统的动量守恒、动能守恒。
2.非弹性碰撞:碰撞前后,系统的动量守恒、动能不守恒。
3.完全非弹性碰撞:碰后粘在一起,系统的动量守恒,动能损失最大,损失的动能转化为热。
(1)一般的弹性碰撞:当m 1=m 2时,v 1′ = v 2,v 2′ = v 1 (速度交换)(2)以质量为m 1速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例结论:①当两球质量相等时,V 1’=0,V 2’=V 1。
两球碰撞后交换了速度、动量、动能.②当质量大的球碰质量小的球时,碰撞后两球都向前运动.m 1≫m 2,v 1’=v 1,v 2’=2v 1. ③当质量小的球碰质量大的球时,碰撞后质量小的球被反弹回来.m 1≪m 2,v l ’=一v 1,v 2’=0.(3)碰撞问题须同时遵守的三个原则:①系统动量守恒原则。
②系统动能不增加原则。
③合理性原则。
例如:追赶碰撞中,碰撞后,前面物体的速度一定不小于后面物体的速度。
例1. A 、B 两球在光滑水平面上沿同一直线,向同一方向运动,A 球动量为p A =5 kg ·m/s ,B 球动量为p B =7 kg ·m/s ,两球碰后B 球动量变为p B ′=10 kg ·m/s ,则两球质量关系可能是( ) A .m A =m B B .m A =2m B C .m B =4m A D .m B =6m A二、人船模型类。
(适用条件是:两个物体组成的系统动量守恒,系统的合动量为零。
)例2.静止在水面上的小船长为L ,质量为M ,在船的最右端站有一质量为m 的人,不计水的阻力,当人从最右 端走到最左端的过程中,小船移动的距离是多大?三、当堂检测1.在一个足够大的光滑平面内,有两质量相同的木块A 、B,中间用一轻质弹簧相连.如图所示.用一水平恒力F 拉B,A 、B 一起经过一定时间的匀加速直线运动后撤去力F.撤去力F 后,A 、B 两物体的情况是( ).(A)在任意时刻,A 、B 两物体的加速度大小相等 (B)弹簧伸长到最长时,A 、B 的动量相等 (C)弹簧恢复原长时,A 、B 的动量相等 (D)弹簧压缩到最短时,系统的总动能最小2.动量分别为5kg ∙m/s 和6kg ∙m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。
动量守恒的十种模型解读人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:mv 人-Mv 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=m M +mL 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m 。
“人船模型”的拓展(某一方向动量守恒)【典例分析】1如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
【针对性训练】1(2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
当细绳断裂后,木块与铁块均在竖直方向上运动,木块刚浮出水面时,铁块恰好同时到达池底。
仅考虑浮力,不计其他阻力,则池深为()A.M +m M hB.M +m m (h +2a )C.M +m M (h +2a )D.M +m Mh +2a 2(2024全国高考模拟)一小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船。
用卷尺测出船后退的距离d ,然后用卷尺测出船长L 。
动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。
根据动量守恒定律,我们可以推导出许多有趣的模型和应用。
本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。
1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。
当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。
根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。
2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。
这样做的好处是简化计算,使得动量守恒定律更易于应用。
3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。
当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。
通过爆炸模型,我们可以计算出碎片的速度和动量。
4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。
当一个旋转物体发生转动时,它的动量也必须守恒。
转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。
5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。
在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。
在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。
它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。
8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。
通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。
9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。
高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。
④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
不同时刻的动量不能相加。
(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。
02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。
2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。