混凝土质量事故案例图片
- 格式:doc
- 大小:57.57 KB
- 文档页数:4
例1某工程对原有建筑进行接建从8层开始。
工程部位为剪力墙,C40混凝土。
拆模后发现墙面出现竖向裂缝,裂缝很有规律,每隔1.5m~1.8m一条竖向裂缝,裂缝两头尖,中间宽,最宽处0.2mm~0.3mm。
个别裂缝为贯通裂缝。
混凝土强度均可达到C45左右。
处理:请省检测中心予以检测并出具修补方案。
原因分析:1.混凝土配合比水泥用量偏大,混凝土自收缩产生拉裂。
2.设计箍筋少、间距大。
3.混凝土养护不到位。
防止措施:1.混凝土配合比应在满足强度的前提下尽量减少水泥用量。
2.建议设计增加箍筋用量,缩小箍筋间距。
3.加强养护,当强度达到1N/mm2时,可使模板脱离混凝土,再将模板合上继续养护到最后拆模,这样可以加强混凝土的湿养护,防止干缩引起裂缝加大。
例2 施工单位验收混凝土试件制作及养护不按国家有关标准规范执行。
某工程从夏季开始施工,混凝土强度一直稳定合格。
而进入秋冬季施工以来,混凝土强度却出现偏低现象。
甚至有的试件不合格,采用非破损检测工程部位混凝土,强度却合格。
处理:搅拌站和施工单位技术人员共同分析原因,找出症结。
发现工地试验员做完混凝土试件后,对试件并没有进行“标准养护”而是将试件散落在工地上。
原因分析:1.工地试验员没有经过上岗培训,对混凝土的试件制作养护缺乏应有的知识,不了解国家有关标准规范,对“标准养护”缺乏应有的认识。
2.夏季施工气温偏高,混凝土试件在自然养护条件下气温高,强度也高,秋冬季气温偏低,混凝土试件强度也随之偏低。
防止措施:对工地施工单位的试验员应进行必要的培训和学习,对预拌混凝土的取样制作养护应执行国家有关的标准和规范。
例3 混凝土试件制作不合格某工程混凝土试件强度出现忽高忽低问题,混凝土试件离差太大,混凝土强度评定判为不合格,而在同一时间,同样部位,同一配合比的其他工地的混凝土却全部评定为合格,且混凝土离差小。
原因分析:1.施工单位采用混凝土试模不合格,试模本身尺寸误差偏大,有的试模对角线误差≥3mm,因而出现试件误差偏大的问题。
混凝土初期收缩怎么办这个事故案例告诉你
某办公楼为现浇钢筋桁架混凝土框架结构。
在达到预定混凝土强度拆除楼板模板时,发现板上有无数走向不规则的微细裂纹,如图2.16所示。
裂缝宽0.05~0.15mm,有时上下贯通,但其总体特征是板上裂纹多于板下裂纹。
事故原因分析及处理措施:
1)查得施工时的地型是:上午9时气温13°C,风速7m/s,相对湿度40%;中午温度15°C,风速13m/s(最大瞬时风速达18m/s),相对湿度29%;下午5时温度11°C,风速11m/s,相对湿度39%。
灌注混凝土就是在这种非常干燥的条件下进行的。
由于间歇性干燥加上强风影响,开裂故使得混凝土在凝结后不久即出现明显裂纹。
根据有关资料考证:当风速为16m/s时,混凝土的蒸发速度为无风时的4倍;当相对湿度10%时,混凝土的蒸发反应速度相对湿度为相对湿度90%时的9倍以上。
根据这些参数推算,本工程在下述气象条件下的气象条件蒸发速度可达通常条件的8~10倍。
2)因此,可以认为与大气接触的楼板上面受干燥空气和强风的影响成为产生较多失水收缩裂纹的主因,而曾受模板保护的楼板下面这种失水衰减裂纹会比较少一点。
经过对灌注楼板是的试块和对楼板承载能力进行试验,上均能达到设计要求。
3)这说明具有失水收缩的混凝土初期裂纹对楼板的并承载力无影响。
但是为了建筑物的耐久性,还应使用法及树脂注入法展开补强。
混凝土结构渗漏质量事故案例话说有这么一个新建的小区,那一排排高楼大厦刚盖起来的时候,看着可气派了。
这小区里有一栋楼啊,就像是个调皮捣蛋的家伙,刚交付没多久就出了岔子,这岔子就是混凝土结构渗漏。
这楼的地下室就像是个水帘洞似的。
业主们把车停在地下室,结果发现车身上老是有水渍,仔细一瞧,好家伙,天花板上时不时就滴下几滴水来。
原来是这地下室的混凝土结构出现了渗漏。
这一渗漏啊,可不仅仅是让车遭罪,地下室里还放着一些电气设备呢,那些设备也被弄得湿漉漉的,就像刚从水里捞出来一样。
这可把物业急得像热锅上的蚂蚁,为啥呢?因为这电气设备要是受潮短路了,那整栋楼的用电都得受影响啊。
再往上看,这栋楼的一些住户家里也没逃过渗漏的厄运。
有一户人家,刚装修好的漂亮新房,那墙面就像个哭泣的娃娃,时不时就有泪痕(水渍)出现。
尤其是下过雨之后,墙面上就会出现一小片一小片的湿印子,这湿印子就像地图一样,慢慢扩大。
这家的主人可心疼自己精心装修的房子了,本来想着能舒舒服服地住进去,结果却被这渗漏问题搞得心烦意乱。
为啥会出现这样的混凝土结构渗漏呢?经过调查发现啊,这施工的时候就埋下了隐患。
首先呢,在混凝土浇筑的时候,振捣就没做到位。
这振捣就像是给混凝土做按摩一样,得让它里面的空气都排出来,变得密实均匀。
可是那些工人啊,可能是着急下班或者是没太在意,振捣的时候就像蜻蜓点水似的,马马虎虎就过去了。
这就导致混凝土内部有很多空隙,就像一块充满了小气孔的海绵,水就容易从这些空隙里钻进去。
还有啊,这混凝土的配比也有点问题。
就像做菜一样,各种调料的比例得合适才能做出美味的菜肴。
混凝土里的水泥、沙子、石子还有水的比例要是不合适,那这混凝土的质量就没保障。
在这个案例里,水泥的用量可能稍微少了点,导致混凝土的强度和抗渗性都不够。
这就好比一个防护盾不够坚固,水这个敌人就轻易地突破防线,渗漏进来了。
另外,这栋楼的一些施工缝处理得也很粗糙。
施工缝就是在混凝土浇筑过程中,因为各种原因要分段浇筑而留下的缝隙。
混凝土受冻或养护温度过低事故案例图片
某工程为三层砖混结构,现浇钢筋混凝土楼盖,纵墙承重、灰土基础(图)。
施工后于当年10月浇灌二层楼盖混凝土。
全部主体结构于第二年1月完工。
在4月间进行装修工程时,发现各层大梁均有斜裂缝。
其现象:
裂缝多为斜向,倾角50°~60°,且多发生在300mm的钢箍间距内。
近梁中部为竖向裂缝。
斜裂缝两端密集,中部稀少(值得注意的是在纵筋截断处都有斜裂缝);其沿梁高度方向的位置较多地在中和轴以下,个别贯通梁高。
裂缝宽度在梁端附近约0.5~1.2mm,近跨中约0.1~0.5mm;裂缝深度一般小于1/3,个别的两端穿通;裂缝数量每根梁少则4根,多则22根,一般为10~15根。
施工原因:浇灌二层梁板时,未采用专门养护措施,浇灌后2h就在板面铺脚手板、堆放砖块进行砌墙。
11月初浇灌三层现浇板时,室内温度为0~1°C,未采取保温措施。
根据试验资料,混凝土在21d后的强度只达28d理论强度值的42.5%,一个月后才达到52%。
因此混凝土早期受冻是这起质量事故的重要原因。
另外,混凝土的水泥用量偏低(只有210kg/m3,略少于225kg/m3的最低值)也是因素之一。
设计原因:其一是箍筋间距过大。
《混凝土结构设计规范》7.2.7条规定,“当梁高为500mm且V﹥0.07fcbh0时,梁中箍筋的最大间距为200mm。
”而本工程箍筋间距却为300mm,这就是斜裂缝多发生在箍筋之间的原因。
其二是是纵筋在梁跨中间截断。
《混凝土结构设计规范》6.1.5条规定,“纵向受拉钢筋不宜在受拉区截断”。
而本工程梁中部分纵向受拉钢筋在跨中截断,截断处都出现斜裂缝,这说明受拉钢筋对梁截面的抗剪能力起到一定作用,也说明规范的规定是最适合的。
比较施工和设计原因,显然可见,施工中混凝土早期受冻是产生本工程质量事故的主要原因。
事故加固方案:
由于梁上有大量斜裂缝,很容易发生脆性截面破坏,引起梁的断裂,故必须进行加固。
加固方案是在原大梁外包一U形截面梁,该梁按承受原来梁的的全部弯矩和剪力进行设计,并在U形截面梁的端部沿墙设置钢筋混凝土柱和基础,作为加固梁的支承。
混凝土受腐蚀事故案例
北京某旅馆的某区为一6层两跨连续梁的现浇钢筋混凝土内框架结构,上铺预应力空心楼板,房屋四周的底层和二层为490mm厚承重砖墙,二层以上为370mm 厚承重砖墙。
全楼底层5.0m高,用作餐馆,底层以上层高3.60m,用作客房。
底层中间柱截面为圆形,直径550mm,配置9根直径为22的二级钢筋纵向受力钢筋,¢6@200箍筋,如图2.35所示。
柱基础的底面积为3.50m×3.50m的单柱钢筋混凝土阶梯形基础;四周承重墙为砖砌大放脚条形基础,底部宽度1.60m,二者均以地基承载力fk=180Kn/m2(持力土层为粘性土),并考虑基础宽、深度修正后的地基承载力设计值算得。
该房屋的一层钢筋混凝土工程在冬季进行施工,为混凝土防冻而在浇筑混凝土时掺入了水泥用量3%的氯盐。
该工程建成使用两年后,某日,突然在底层餐厅A柱柱顶附近处,掉下一块约40mm直径的混凝土碎块。
为防止房屋倒塌,餐厅和旅馆不得不暂时停止营业,检查事故原因。
事故原因分析:在该建筑物的结构设计中,对两跨连续梁施加于柱的荷载,均是按每跨50%的全部恒活荷载传递给柱估算的(另50%由承重墙承受),与理论上准确的两跨连续梁传递给柱的荷载相比,少算25%的荷重。
柱基础和承重墙基础虽均按fk=180Kn/m2设计,但经复核,两侧承重墙下条形基础的计算沉降估计45mm左右,显然大于钢筋混凝土柱下基础的计算沉降量(估计在34mm左右)。
虽然,他们间的沉降差为11mm﹤0.002l=0.002×7000=14mm,是允许的;但是,由于支承连续梁的承重墙相对“软”(沉降量相对大)。
而支承连续梁的柱相对“硬”(沉降量相对小),致使楼盖荷载往柱的方向调整,使得中间柱实际承受的荷载比设计值大而两侧承重墙实际承受的荷载比设计值要小。
(1)和(2)项累计,柱实际承受的荷载将比设计值要大得多。
柱虽按¢550圆形截面钢筋混凝土受压构件设计,配置9根直径为22的二级钢筋纵向钢筋,AS=3421mm2,含钢率1.44%,从截面承载力看是足够的,但箍筋配置不合理,表现为箍筋截面过细、间距太大、未设置附加箍筋,也未按螺旋箍筋考虑,致使箍筋难以约束纵向受压力后的侧向压屈。
底层混凝土工程是在冬季施工的,混凝土在浇筑是掺加了氯盐防冻剂,对混凝土有盐污染作用,对混凝土中的钢筋腐蚀起催化作用。
实际上,从底层柱破坏处的钢筋实况分析,纵向钢筋和箍筋均已生锈,箍筋直径原为¢6,锈后实为¢5.2左右,截面损失率约为25%。
如此细又如此稀的箍筋难以承受柱端截面上9根直径为22的二级钢筋纵筋侧向压屈所产生的横拉力,起结果必然是箍筋在其最薄弱处断裂,此断裂后的混凝土保护层剥落,混凝土碎块下掉。