第三章医学超声传感器
- 格式:ppt
- 大小:3.89 MB
- 文档页数:11
超声波传感器的实验报告一、超声波传感器的定义:超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。
超声波是振动频率高于20KHz的机械波。
它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
超声波传感器广泛应用在工业、国防、生物医学等方面。
超声波传感器的原理:二、超声波传感器按其工作原理,可分为1、压电式2、磁致伸缩式3、电磁式压电式超声波传感器压电式超声波传感器是利用压电材料的压电效应原理来工作的。
常用的敏感元件材料主要有压电晶体和压电陶瓷。
根据正、逆压电效应的不同,压电式超声波传感器分为发生器(发射探头)和接收器(接收探头)两种,根据结构和使用的波型不同可分为直探头、表面波探头、兰姆波探头、可变角探头、双晶探头、聚焦探头、水浸探头、喷水探头和专用探头等。
压电式超声波发生器是利用逆压电效应的原理将高频电振动转换成高频机械振动,从而产生超声波。
当外加交变电压的频率等于压电材料的固有频率时会产生共振,此时产生的超声波最强。
压电式超声波传感器可以产生几十千赫到几十兆赫的高频超声波,其声强可达几十瓦每平方厘米。
压电式超声波接收器是利用正压电效应原理进行工作的。
当超声波作用到压电晶片上引起晶片伸缩,在晶片的两个表面上便产生极性相反的电荷,这些电荷被转换成电压经放大后送到测量电路,最后记录或显示出来。
压电式超声波接收器的结构和超声波发生器基本相同,有时就用同一个传感器兼作发生器和接收器两种用途。
典型的压电式超声波传感器结构主要由压电晶片、吸收块(阻尼块)、保护膜等组成。
压电晶片多为圆板形,超声波频率与其厚度成反比。
压电晶片的两面镀有银层,作为导电的极板,底面接地,上面接至引出线。
为了避免传感器与被测件直接接触而磨损压电晶片,在压电晶片下粘合一层保护膜。
超声波传感器原理、特点及用途导语:常用的超声波传感器由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。
常用的超声波传感器由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。
超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。
超声波是振动频率高于20KHz的机械波。
它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
超声波传感器广泛应用在工业、国防、生物医学等方面。
超声波传感器的应用传感器:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。
3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和“0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
在这里,主要给大家介绍一种在日常生活中运用非常广泛的,给人类社会带来很大便利的传感器——超声波传感器以及其在倒车雷达上的应用。
超声探头⼯作原理
超声探头也叫超声换能器,是各种型号的超声诊断仪借以将⾼频电能转换为超声机械能向外辐射,并接收超声回波将声能转换为电能的⼀种声-电可逆转换器件。
在医学实验中常⽤的换能器有张⼒(机械-电)换能器和压⼒换能器两类。
由上图我们可以发现,声波的发射、接收都是通过探头完成的,那探头是如果实现的呢?
我们⾸先来看看探头的组成及作⽤。
组成:
声透镜、匹配层、阵元、背衬、保护层和外壳。
作⽤:
声透镜(acoustic lens)(是会聚或发散声波的声学元件)(横/纵轴)轴向聚焦。
匹配层(layer)主要作⽤是是晶体辐射的超声有效进⼊⼈体,实现对⼈体组织的检查。
换能器和⼈体之间声阻抗匹配。
阵元作⽤主要是在发射时将电信号转换成超声波,在接收时将超声波转换成电信号。
背衬(Back):作⽤是吸收晶体背向辐射的超声,减少或消除晶体两端之间超声的多次反射造成的⼲扰;增⼤晶体阻尼,使发射脉冲窄,从⽽提⾼分辨率。
保护层和外壳:⽤于保护内部结构。
由上可见,阵元是声波发射、接收的器件,是探头的核⼼部件。
阵元实现换能是基于其选择的特殊材料的压电效应原理。
特殊材料:⽬前常⽤于超声探头的晶体⽚有锆酸铅、钛酸钡、⽯英、硫酸锂等⼈⼯或天然晶体。
压电效应:泛指晶体处于弹性介质中所具有的⼀种声-电可逆特性,此现象为法国物理学者居⾥兄弟于1880年所发现,故也称居⾥效应。
超声探头⼯作原理:
主机通过电缆在阵元上施加电信号,使阵元振动,发出超声波,超声波经物体反射吸收再作⽤在阵元上,使阵元两端产⽣电信号,通过电缆传送⾄主机信号处理、显⽰器图像显⽰。
超声波传感器超声波传感器是利用超声波的特性,将超声波信号转换成电信号的传感器。
在讲述超声波传感器之前,我们先来了解一下超声波。
声波是一种能在气体、液体、固体中传播的机械波。
声波按频率可分为次声波、声波和超声波。
声波频率在16Hz-20kHz 之间,是能为人耳所闻的机械波;次声波就是频率低于16 Hz 的机械,而波超声波则是频率高于20kHz的机械波。
超声波的特性是频率高、波长短、绕射现象小。
它最显著的特性是方向性好,且在液体、固体中衰减很小,穿透本领大,碰到介质分界面会产生明显的反射和折射,因而广泛应用于工业检测中。
超声波的传播速度:超声波通常有纵波、横波及表面波,他们的传播速度,取决于介质的弹性常数及介质密度。
气体和液体中只能传播纵波,气体中声速为344m/s,液体中声速为900-1900m/s。
在固体中,纵波、横波和表面波三者的声速成一定关系。
通常可认为横波声速为纵波声速的一半,表面波声速约为横波声速的90% 。
超声波在介质中传播时,随着传播距离的增加,能量逐渐衰减。
能量的衰减决定于超声波的扩散、散射和吸收。
以超声波作为检测手段,能产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器。
超声波传感器性能指标超声波传感器的主要性能指标,包括;(1)工作频率。
工作频率就是压电晶片的共振频率。
当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。
(2)工作温度。
由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。
医疗用的超声探头的温度比较高,需要单独的制冷设备。
(3)灵敏度。
主要取决于制造晶片本身。
机电耦合系数大,灵敏度高;反之,灵敏度低。
工作原理超声波传感器按其工作原理,可分为压电式、磁致伸缩式、电磁式等,以压电式最为常用。
※压电式超声波传感器压电式超声波传感器是利用压电材料的压电效应原理来工作的。
英文名称:ultrasonic sensor定义:利用超声波检测技术,将感受的被测量转换成可用输出信号的传感器。
超声波传感器超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
基本介绍超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。