第09章超声波传感器
- 格式:ppt
- 大小:4.24 MB
- 文档页数:47
超声波传感器工作原理超声波传感器是一种常用的距离测量传感器,它利用超声波的特性来实现对目标物体的距离测量。
超声波传感器主要由发射器、接收器和控制电路组成,通过发射超声波并接收回波来实现对目标物体距离的测量。
本文将详细介绍超声波传感器的工作原理及其应用。
超声波传感器的工作原理是基于声波在空气中的传播特性。
当超声波传感器发射器发出一束超声波时,这些超声波会在空气中传播,当它们遇到目标物体时,部分超声波会被目标物体反射回来,被接收器接收到。
通过测量发射超声波到接收回波的时间间隔,再结合超声波在空气中的传播速度,就可以计算出目标物体与传感器的距离。
超声波传感器的工作原理可以用以下公式表示:距离 = (传播时间×传播速度)/ 2。
其中,传播时间是发射超声波到接收回波的时间间隔,传播速度是超声波在空气中的传播速度,除以2是因为超声波来回的距离。
超声波传感器的工作原理非常简单,但却非常实用。
它可以实现对目标物体的非接触式距禽测量,具有测量范围广、精度高、反应速度快等优点,因此被广泛应用于工业自动化、机器人、汽车驾驶辅助系统等领域。
在工业自动化领域,超声波传感器常用于物体的定位、计数、检测等工作中。
比如,在生产线上,可以利用超声波传感器来检测产品的到位情况,实现自动化生产;在仓储物流中,可以利用超声波传感器来测量货物的堆垛高度,实现智能化仓储管理。
在机器人领域,超声波传感器可以帮助机器人实现环境感知和避障功能。
通过安装多个超声波传感器,可以实现对机器人周围环境的全方位感知,避免碰撞和损坏。
在汽车驾驶辅助系统中,超声波传感器常用于倒车雷达系统中。
它可以实时监测汽车周围的障碍物,当检测到障碍物靠近时,会发出警报,提醒驾驶员注意,避免碰撞事故的发生。
总的来说,超声波传感器的工作原理简单实用,应用范围广泛。
它在工业自动化、机器人、汽车等领域都有重要的应用价值,对提高生产效率、保障人身安全都起到了重要作用。
相信随着科技的不断发展,超声波传感器的应用将会更加广泛,为人们的生活带来更多便利。
超声波传感器的工作原理1、超声波传感器概述超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。
电致伸缩的材料有锆钛酸铅(PZT)等。
压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。
有的超声波传感器既作发送,也作接收。
小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23~25kHz及40~45kHz。
这类传感器适用于测距、遥控、防盗等用途。
另有一种密封式超声波传感器,它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好,如下图所示。
▲超声波探头2、超声波传感器的类型与组成超声波应用有三种基本类型,透射型用于遥控器、防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。
超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。
发送传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器的作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超声波进行检测,如下图所示。
▲超声波发射接收器a)超声波发送器b)超声波接收器而实际使用中,用作发送传感器的陶瓷振子也可以用作接收传感器的陶瓷振子。
控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
若对发送传感器内谐振频率为40kHz的压电陶瓷片(双晶振子)施加40kHz高频电压,则压电陶瓷片就根据所加高频电压极性伸长与缩短,于是发送40kHz频率的超声波,其超声波以疏密形式传播(疏密程度可由控制电路调制),并传给波接收器。
接收器是利用压力传感器所采用的压电效应的原理,即在压电元件上施加压力,使压电元件发生应变,则产生一面为“+”极,另一面为“-”极的40kHz正弦电压。
超声波传感器工作原理超声波传感器是一种常用的无接触式传感器,通过发射超声波并接收其反射信号来实现测量、距离和检测等功能。
在工业、汽车、医疗和消费电子等领域被广泛应用。
本文将介绍超声波传感器的工作原理。
超声波传感器的工作原理基于声波的特性。
声波是一种机械波,传播速度较快,频率一般在20kHz至200kHz之间。
传感器通过发射超声波并接收其反射信号,可以测量物体的距离、位置和速度等参数。
超声波传感器通常由发射器、接收器和控制电路组成。
发射器产生超声波,通常采用压电材料,如PZT(铅锆酸钛)晶体。
当施加电压时,PZT晶体会振动,并在其表面产生超声波。
超声波的频率可以根据应用的需求进行调整。
发射的超声波在空气中以声速传播,当超声波与物体相遇时,会发生反射。
接收器接收到反射的超声波,并将其转换成电信号。
接收器通常也是采用压电材料,同样是PZT晶体。
当超声波击打到PZT 晶体上时,晶体被压缩产生电荷,这个电信号被传送到控制电路。
控制电路对接收到的电信号进行处理,计算出超声波的往返时间。
根据声波的速度和往返时间,可以计算出物体与超声波传感器之间的距离。
传感器可以通过测量超声波的往返时间来检测物体的位置或移动速度。
超声波传感器具有高精度、快速响应和广泛的测量范围等优点。
它可以测量非常小的距离,例如几毫米,也可以测量较长的距离,例如几米。
这使得超声波传感器在许多应用中变得非常重要。
超声波传感器广泛应用于工业自动化中的测距和检测任务。
例如,在机器人操作中,超声波传感器可以帮助机器人感知并避开障碍物。
在汽车行业,超声波传感器用于倒车雷达系统,可以帮助驾驶员避免碰撞。
此外,超声波传感器还用于医疗行业的诊断设备和消费电子产品,如智能手机的距离检测。
尽管超声波传感器在许多应用中具有优势,但也存在一些限制。
例如,超声波的传播受到环境因素的影响,如温度、湿度和空气密度等。
此外,超声波传感器对目标物体的特性也有一定的要求,如目标物体必须具有足够的表面反射性。
超声波传感器工作原理
超声波传感器的工作原理主要基于超声波的发射和接收。
它由发射器和接收器
两部分组成,发射器发出超声波脉冲,然后接收器接收被测物体反射回来的超声波,并计算出被测物体与传感器之间的距离。
超声波传感器的工作原理可以简单概括为发射-接收-计算-输出的过程。
首先,超声波传感器通过发射器发出一定频率的超声波脉冲。
这些超声波脉冲
在空气中传播,当遇到物体时会被反射回来。
接收器接收到被测物体反射回来的超声波,并记录下超声波的传播时间。
根据声速和传播时间的关系,可以计算出被测物体与传感器之间的距离。
超声波传感器的工作原理基于声波在空气中传播的特性。
声波在空气中传播的
速度是一个常数,约为340米/秒。
因此,通过测量超声波从发射到接收的时间,
可以计算出被测物体与传感器之间的距离。
这种测距原理简单而有效,使得超声波传感器成为测距和障碍物检测的理想选择。
除了测距外,超声波传感器还可以实现障碍物检测。
当有物体遮挡超声波的传
播路径时,接收器接收到的超声波信号会发生改变,从而可以判断出是否有障碍物存在。
这种障碍物检测的原理也是基于超声波的发射和接收,通过检测超声波的反射情况来判断是否有障碍物存在。
总的来说,超声波传感器的工作原理是基于超声波的发射和接收,利用声波在
空气中传播的特性实现距离测量和障碍物检测。
这种工作原理简单而有效,使得超声波传感器在各种领域得到广泛应用。
希望本文能够帮助读者更好地理解超声波传感器的工作原理,为相关领域的应用提供帮助。
第9章电控悬架系统9.1 概述车辆行驶在复杂的环境里,即路况(路面不平度等级)、车速以及工况(加速、制动、转向、直线行驶)经常要发生变化。
例如汽车在急速起步或急速加速时会产生“加速后仰”现象,汽车高速行驶紧急制动时会产生“制动点头”现象;汽车在急转弯行驶时会产生“转向侧倾”现象。
上述情况会对汽车的行驶平顺性和操纵稳定性产生不利的影响。
被动悬架由于其结构特点,很难保证汽车的乘坐舒适性和操纵稳定性同时达到最佳。
因此,为解决这一问题产生了根据工况要求保证汽车的性能达到最佳的电控悬架。
电控悬架采用传感器技术、控制技术和机电液一体化技术对汽车的行驶工况进行监测。
由控制计算机根据一定的控制逻辑产生控制指令控制执行元件产生动作,保证汽车具有良好的行驶性能.9.1.1 电控悬架的功能1 调节车身高度。
汽车载荷变化时,电控悬架系统能自动维持车身高度不变,汽车即使在凸凹不平道路上行驶也可保持车身平稳。
2 提高车辆的行驶平顺性和操纵稳定性,抑制车辆姿态的变化(后仰、点头、侧倾) 。
当汽车急速起步或加速行驶时,由于惯性力及驱动力的作用,会使车尾下蹲产生"后仰"现象。
电控悬架能够及时地改变悬架的俯仰角刚度,抑制后仰的发生。
当汽车在高速行驶中紧急制动时,由于惯性力和轮胎与地面摩擦力的作用,会使车头下沉产生制动点头现象。
电控悬架能使汽车在这种工况下车头的下沉量得到抑制。
当汽车急转弯时,由于离心力的作用汽车车身向一侧倾斜,转弯结束后离心力消失。
汽车在这样的工况下会产生汽车车身的横向晃动.电控悬架在这种工况下能够减少车身倾斜的程度、抑制车身横向摇动的产生。
因此,电控悬架在一定程度上能使悬架适应负荷状况、路面不平度和操纵情况的变化.3 提高车轮与地面的附着力,改善汽车制动性能和提高汽车抵抗侧滑能力。
普通汽车在制动时车头向下俯冲,由于前、后轴载荷发生变化,使后轮与地面的附着条件恶化,延长了制动过程。
电控悬架系统可以在制动时使车尾下沉,充分利用车轮与地面的附着条件,加速制动过程,缩短制动距离。
超声波传感器的工作原理
超声波传感器是一种常用的非接触式测距传感器,它通过发射超声波并接收其反射信号来实现距离测量。
超声波传感器主要由发射器、接收器、控制电路和显示装置等组成。
其工作原理如下:
1. 发射器发射超声波。
超声波传感器的发射器会向目标物体发射一束超声波脉冲,超声波是一种机械波,其频率通常在20kHz到200kHz之间。
超声波在空气中传播时速度较快,能够迅速到达目标物体并发生反射。
2. 超声波被目标物体反射。
当超声波遇到目标物体时,会发生反射。
目标物体表面的声波反射系数取决于目标物体的材质、形状和表面状态等因素。
反射信号会返回传感器的接收器。
3. 接收器接收反射信号。
超声波传感器的接收器接收到目标物体反射回来的超声波信号,并将其转换成电信号。
接收到的信号强度与目标物体与传感器之间的距离有关,距离越远,接收到的信号强度越弱。
4. 控制电路处理信号。
接收到的电信号会被传感器内部的控制电路处理,控制电路会根据接收到的信号强度计算出目标物体与传感器之间的距离。
这个距离值可以通过显示装置显示出来,或者通过其他方式输出。
超声波传感器的工作原理简单清晰,其测距精度高、响应速度快,因此在许多领域得到了广泛应用。
例如,在工业自动化中,超声波传感器可用于测量物体到机器人的距离,以便机器人进行精准的定位和操作;在汽车领域,超声波传感器可用
于倒车雷达系统,帮助驾驶员避免碰撞;在智能家居中,超声波传感器可用于智能灯光系统,实现人体感应控制灯光开关。
总之,超声波传感器以其可靠的测距性能和广泛的应用前景,成为了现代传感技术中的重要组成部分。
超声波传感器超声波传感器是一种利用超声波进行测量和探测的设备。
它通过发射超声波并接收回弹的信号来判断目标物体的距离、位置以及其他相关信息。
超声波传感器在工业自动化、机器人技术、智能车辆、医疗设备等领域有着广泛的应用。
一、工作原理超声波传感器工作原理基于声音的传播和回声的接收。
它通过发射超声波脉冲并测量波的回弹时间来计算目标物体与传感器之间的距离。
通过不断地测量和比对回弹时间,超声波传感器可以实现对目标物体的准确测量。
二、特点与应用1. 非接触式测量:超声波传感器可以在不接触目标物体的情况下进行测量,避免了传统测量方法中接触到物体带来的误差和影响。
2. 高精度测量:超声波传感器具有较高的测量精度,可以实现毫米级的测量精确度,满足对距离和位置等信息的精确需求。
3. 多功能应用:超声波传感器可以广泛应用于测距、障碍物检测、水位检测、液体测量等不同的领域和场景。
4. 反应速度快:超声波传感器的反应速度非常快,可以实现实时的测量和控制,适用于对时间要求较高的应用场景。
5. 抗干扰性强:超声波传感器对外界环境的干扰较强,具备良好的抗干扰能力,可以在复杂的环境中稳定地工作。
超声波传感器在工业领域中被广泛应用,例如在自动化生产线中的测距与定位、机器人技术中的障碍物检测与定位,以及无人驾驶领域中的环境感知等。
此外,超声波传感器还被应用于医疗设备领域,用于测量血流速度、心脏功能以及体内器官的位置等。
在智能车辆中,超声波传感器可用于实现自动泊车功能,通过测量车辆与停车位之间的距离,准确引导车辆进行泊车操作。
同时,它也可以用于避免与其他车辆或物体的碰撞,提高行驶的安全性。
总的来说,超声波传感器凭借其高精度、快速响应和多功能应用等特点,成为了现代工业和科技领域中不可或缺的重要设备。
随着技术的不断发展和创新,相信超声波传感器在更多的领域和场景中将发挥更重要的作用。
一、超声波测距原理超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即:S = v·△t /2 ①这就是所谓的时间差测距法。
由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。
在使用时,如果温度变化不大, 则可认为声速是基本不变的。
常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。
如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。
已知现场环境温度T 时, 超声波传播速度V 的计算公式为:V = 331.45 + 0.607T ②声速确定后,只要测得超声波往返的时间,即可求得距离。
这就是超声波测距仪的机理。
二、系统硬件电路设计图2 超声波测距仪系统框图基于单片机的超声波测距仪框图如图2所示。
该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。
单片机是整个系统的核心部件,它协调和控制各部分电路的工作。
工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。
当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。
下面分别介绍各部分电路:1 、超声波发射电路超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。
超声波传感器工作原理
超声波传感器是一种利用超声波原理来检测距离、测量物体位置等的传感器。
它主要由超声波发射器、接收器和控制电路组成。
超声波传感器工作的原理是利用超声波在空气中的传播速度来计算距离,具有测距精度高、响应速度快、不受颜色、光照等环境因素影响的特点。
超声波传感器工作原理的核心是利用超声波的发射和接收来实现测距。
当超声
波发射器发出超声波信号后,它会在空气中以声速传播。
当超声波遇到物体时,会被物体反射回来,被超声波接收器接收到。
通过计算超声波发射和接收的时间差,再结合超声波在空气中的传播速度,就可以计算出物体与传感器的距离。
在实际应用中,超声波传感器通常会通过控制电路来控制超声波的发射和接收,并对接收到的超声波信号进行处理。
控制电路会根据发射和接收的时间差计算出距离,并将距离信息输出给外部设备进行处理。
超声波传感器工作原理的关键在于对超声波的发射和接收进行精准的控制,并
对接收到的超声波信号进行准确的处理。
只有这样,才能保证超声波传感器在测距、检测物体位置等方面具有较高的精度和可靠性。
除了测距外,超声波传感器还可以应用于障碍物检测、液位检测、智能家居等
领域。
在自动驾驶汽车、智能家居等领域,超声波传感器的应用越来越广泛。
总的来说,超声波传感器工作原理是利用超声波的发射和接收来实现测距和检
测物体位置。
它具有测距精度高、响应速度快、不受环境因素影响等优点,因此在自动化控制、智能家居等领域有着广泛的应用前景。
一、超声波测距原理超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即:S = v·△t /2 ①这就是所谓的时间差测距法。
由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。
在使用时,如果温度变化不大, 则可认为声速是基本不变的。
常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。
如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。
已知现场环境温度T 时, 超声波传播速度V 的计算公式为:V = + ②声速确定后,只要测得超声波往返的时间,即可求得距离。
这就是超声波测距仪的机理。
二、系统硬件电路设计图2 超声波测距仪系统框图基于单片机的超声波测距仪框图如图2所示。
该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。
单片机是整个系统的核心部件,它协调和控制各部分电路的工作。
工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。
当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。
下面分别介绍各部分电路:1 、超声波发射电路超声波发射电路如图3所示,89C51通过外部引脚输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。