数学试题Word
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
(人教版)小升初入学考试数学试卷(一)班级______姓名______得分______一、选择题:(每小题4分,共16分)1、在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()。
A、15点B、17点C、19点D、21点2、将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。
A、10B、12C、14D、163、一个车间改革后,人员减少了20%,产量比原来增加了20%,则工作效率()。
A、提高了50%B、提高40%C、提高了30%D、与原来一样4、A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,若按天数计算劳务费,则这48元中A就分()元。
A、18B、19.2C、20D、32二、填空题:(每小题4分,共32分)1、学校开展植树活动,成活了100棵,25棵没活,则成活率是()。
2、甲乙两桶油重量差为9千克,甲桶油重量的1/5等于乙桶油重量的1/2,则乙桶油重()千克。
3、两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是()。
4、一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是()厘米。
5、如图,电车从A站经过B站到达C站,然后返回。
去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时()千米。
6、扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步,分发左中右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步,从左边一堆拿出两张,放入中间一堆;第三步,从右边一堆拿出一张,放入中间一堆;第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。
这时小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是()。
初二数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.1010010001…(每两个1之间0的个数依次增加)B. 3.1415926C. √2D. 0.33333…(3无限循环)2. 一个数的平方是9,这个数是:A. 3B. -3C. ±3D. 93. 一次函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个三角形的三个内角中,至少有一个角是:A. 锐角B. 直角C. 钝角D. 任意角5. 以下哪个选项是方程2x-3=7的解?B. x=2C. x=5D. x=106. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 任意数7. 以下哪个选项是不等式3x-5>10的解集?A. x>3B. x<3C. x>5D. x<58. 一个数的绝对值是它自己,这个数是:A. 负数B. 正数C. 0D. 非负数9. 以下哪个选项是方程x²-4x+4=0的解?A. x=2B. x=-2C. x=4D. x=010. 一个数的立方是-27,这个数是:A. 3C. 27D. -27二、填空题(每题3分,共30分)1. 一个数的平方根是2,那么这个数是______。
2. 如果一个角的补角是120°,那么这个角的度数是______。
3. 一个数的绝对值是5,那么这个数可以是______或______。
4. 一个三角形的两个内角分别是45°和60°,那么第三个角的度数是______。
5. 一个数的立方根是-2,那么这个数是______。
6. 如果一个数的相反数是-5,那么这个数是______。
7. 一个数的倒数是1/2,那么这个数是______。
8. 一个数的平方是25,那么这个数可以是______或______。
9. 一个数的绝对值是它自己,那么这个数是______。
高学试题及答案选择题(本大题共40小题,每小题2。
5分,共100分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( B )....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()02lim1cos t t xx e e dtx-→+-=-⎰( A )A .0B .1C .-1D .∞3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( A ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( C )A 。
不连续 B.连续但左、右导数不存在 C.连续但不可导 D 。
可导 5.设C +⎰2-x xf(x)dx=e,则f(x)=( D )2222-x -x -x -x A.xe B.-xe C.2e D.-2e6. 设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B )。
(A )40220a rdr a d aπθπ=⎰⎰(B )4022021a rdr r d aπθπ=⋅⎰⎰(C)3022032a dr r d aπθπ=⎰⎰(D ) 402202a adr a d aπθπ=⋅⎰⎰7。
若L 是上半椭圆⎩⎨⎧==,sin ,cos t b y t a x 取顺时针方向,则⎰-Lxdy ydx 的值为( C ).(A )0 (B )ab 2π(C )ab π (D )ab π8。
设a 为非零常数,则当( B )时,级数∑∞=1n n r a收敛 . (A) ||||a r > (B) ||||a r > (C ) 1||≤r (D )1||>r9. 0lim =∞→n n u 是级数∑∞=1n nu收敛的( D )条件。
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
初中数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -5B. 0C. 1D. -1答案:C2. 计算下列哪个表达式的结果为负数?A. 3 + 2B. 5 - 8C. 4 × 2D. 6 ÷ 3答案:B3. 哪个分数的分母大于分子?A. 1/2B. 2/3C. 3/4D. 4/5答案:A4. 以下哪个图形不是轴对称图形?A. 圆B. 正方形C. 等边三角形D. 平行四边形答案:D5. 一个数的平方等于16,这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C6. 一个等腰三角形的底边长为6,两腰长为5,它的周长是多少?A. 16B. 17C. 18D. 19答案:A7. 一个数除以1/2等于乘以多少?A. 1/2B. 2C. 3D. 4答案:B8. 一个数的立方等于-8,这个数是多少?B. 2C. 8D. -8答案:A9. 以下哪个选项是无理数?A. 3.14B. √4C. 0.33333...D. π答案:D10. 一个直角三角形的两直角边长分别为3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A二、填空题(每题3分,共30分)1. 一个数的相反数是-7,这个数是________。
答案:72. 一个数的绝对值是5,这个数可以是________或________。
答案:5或-53. 一个数的平方根是2,这个数是________。
4. 一个数的立方根是3,这个数是________。
答案:275. 一个三角形的内角和是________度。
答案:1806. 一个数的倒数是1/4,这个数是________。
答案:47. 一个数的平方是9,这个数是________或________。
答案:3或-38. 一个数的立方是-27,这个数是________。
答案:-39. 一个直角三角形的两直角边长分别为5和12,斜边长是________。
成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分) 1. 计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°AB CDEA′9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。
专升本高等数学测试题1.函数y1sinx是〔D〕.〔A〕奇函数;〔B〕偶函数;〔C〕单调增加函数;〔D〕有界函数.解析因为1sinx1,即01sinx2,所以函数y1sinx为有界函数.2.假设f(u)可导,且y f(e x),那么有〔B 〕;〔A〕dy f'(e x)dx;〔B〕dy f'(e x)e x dx;〔C〕dy f(e x)e x dx;〔D〕dy[f(e x)]'e x dx.解析y f(e x)可以看作由y f(u)和u e x复合而成的复合函数由复合函数求导法y f(u)e x f(u)e x,所以d y y x f x x x.d'(e)ed3.e x dx=(B);(A)不收敛;(B)1;(C)-1;(D)0 .解析0e x dx e x011.4.y2y y(x1)e x的特解形式可设为〔A〕;(A)x2(ax b)e x;(B)x(ax b)e x;(C)(ax)e x;(D)(ax b)x2.b解析特征方程为r22r10,特征根为r1=r2=1.=1是特征方程的特征重根,于是有y p x2(axb)e x.5.x 2y2dxdy(C),其中D:≤x2y2≤4;1D2π42dr;2π4(A)0d r(B)d rdr;11(C )2π22dr;(D)2π2d rd rdr.11解析此题考察直角坐标系下的二重积分转化为极坐标形式.当x rcos时,dxdy rdrd,由于1≤x2y24D1r202≤,表示为,y rsinπ,故x2y2dxdy r rdrd 2π22dr.d1rD D6.函数y =1 arcsin(x1)的定义域3x 22解由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解 .即3 x 0,3 x 3, 3 x 20,推得x 1 1,0 x4,2即0x3,因此,所给函数的定义域为[0, 3).7.求极限lim2x2 =x22 x解:原式=lim(2x 2)(2 x 2) x 2=limx 221=.4(2 x)(2 x 2)1 2恒等变换之后“能代就代〞〕xsin πtdt8.求极限lim1=x11cos πx解:此极限是“0〞型未定型,由洛必达法那么,得x sin πtdtxsin πtdt)1( sin πx11=lim1=limlim(1lim()x11cos πx x1cos πx)x1πsin πxx1ππx t, 9.曲线在点〔1,1〕处切线的斜率yt 3,解:由题意知:1 t,1,1 t 3 t,dy t1(t 3)t13t 2 t13,dx(t)曲线在点〔 1,1〕处切线的斜率为310.方程y''2y' y 0,的通解为解:特征方程r 22r 1 0, 特征根r 1r 21,通解为y(C1C2x)e x.11.交错级数(1)n11的敛散性为n1n(n1)〔4〕(1)n11=1 ,n1n(n 1)n1n(n 1)而级数1收敛,故原级数绝对收敛.n1n(n1)12.lim(112)x.〔第二个重要极限〕xx1)x(11)x1)x1)x ]1解一 原式=lim(1lim(1 lim[(1 =ee 11,xxxx 0 x xx11解二原式=lim[(1( x 2)( x )=e 0 1 .2) ]xx13.lim[112ln(1x)]x0xx解所求极限为型,不能直接用洛必达法那么,通分后可变成或型.11xln(1x)1 11 xln(1x)]limlim[2limx 22xx0xxx0x0lim1x 1 li m1x)1 .x2x(1 x)x02(1 214.设f(x)x e x ,求f'(x).解:令yx e x,两边取对数得:lnye x lnx ,两边关于x 求导数得:1 y'exlnx e xyxy' y(e x lnxe x )x即y'xe x(e xlnxe x ).x15.求f(x)x 3 +3x 2 在闭区间5,5上的极大值与极小值,最大值与最小值.解:f(x)3x 26x ,令f(x)0,得x 1 0,x 2 2,f(x)6x6,f(0)60, f(2)60,∴f(x)的极大值为f(2) 4,极小值为 f(0)0.∵f(5) 50, f(5)200.∴比拟f(5),f(2),f(0),f(5)的大小可知:f(x)最大值为 200,最小值为50.16.求不定积分1dx .11x解:令1 xt ,那么 x t 21, dx 2tdt ,于是原式 = 2t dt =2 t 1 1dt ]= 2t2ln1tC 1 1 dt =2[dt1t t t =21x2ln11xC .17.求定积分41 x.1dxx解:〔1〕利用换元积分法,注意在换元时必须同时换限.令t x ,xt 2 ,dx 2tdt ,当x0时,t 0,当x 4时,t2,于是4xdx =2t2tdt =22t4 ]dt11 [41x1 t1 t4tt24ln1244ln3.t18.求方程(e xye x )dx (e xy e y )dy 0的通解;解 整理得e x (e y 1)dxe y (e x1)dy ,用别离变量法,得e y dye xe ye xdx ,1 1两边求不定积分,得ln(e y1) ln(e x 1) lnC ,于是所求方程的通解为e y1C,e x 1即e yC 1.e x119.uexsinxy ,求u, u.x(0,1)y(1,0)解:因ue x sinxy e x cosxy ye x (sinxyycosxy),xu e x cosxy x, yu e0(sin0cos0)1,x(0,1)ue(cos01)e. y(1,0)20.画出二次积分02dy 24y2f x,ydx的积分区域D并交换积分次序. 24y20y2,y解:D:y 2y224x24的图形如右图,由图可知,D也可表为0x4,O24x 0y4xx2,所以交换积分次序后,得4x04x x2fx ydy.0d,21.求平行于y轴,且过点A(1,5,1)与B(3,2,3)的平面方程.解一利用向量运算的方法。
2024年浙江省中考数学试题考试时间:120分钟,满分:120分一、选择题(本大题有10小题,每题3分,共30分) 1. 以下四个城市中某天中午 12 时气温最低的城市是( )A .北京B .济南C .太原D .郑州 2. 5个相同正方体搭成的几何体主视图为( )A .B .C .D .3. 2024 年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .20.137×109B .0.20137×108C .2.0137×109D .2.0137×108 4. 下列式子运算正确的是( )A .x 3+x 2=x 5B .x 3·x 2=x 6C .(x 3)2=x 9D .x 6÷x 2=x 45. 某班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( )A .7B .8C .9D .106. 如图,在平面直角坐标系中,△ABC 与△A ′B ′C ′是位似图形,位似中位为点O .若点A (-3,1)的对应点为A ′(-6,2),则点B (-2,4)的对应点B ′的坐标为( )A .(-4,8)B .(8,-4)C .(-8,4)D .(4,-8) 7. 不等式组()211326⎧⎪⎨⎪⎩-≥->-x x 的解集在数轴上表示为( )A .B .C .D .8. 如图,正方形ABCD 由四个全等的直角三角形(△ABE ,△BCF ,△CDG ,△DAH )和中间一个小正方形EFGH 组成,连接DE .若AE =4,BE =3,则DE =( ) A .5 B .26 C .17 D .49. 反比例函数y =4x的图象上有P (t ,y 1),Q (t +4,y 2)两点.下列正确的选项是( )A .当t <-4时,y 2<y 1<0B .当-4<t <0时,y 2<y 1<0C .当-4<t <0时,0<y 1<y 2D .当t >0时,0<y 1<y 2 10.如图,在□ABCD 中,AC ,BD 相交于点O ,AC =2,BD =23.过点A 作AE ⊥BC 的垂线交BC 于点E ,记BE 长为x ,BC 长为y .当x ,y 的值发生变化时,下列代数式的值不变的是( )A .x +yB .x -yC .xyD .x 2+y 2 二、填空题(本大题有6小题,每题3分,共18分) 11.因式分解:a 2-7a = . 12.若211=-x ,则x = . 13.如图,AB 是⊙O 的直径,AC 与⊙O 相切,A 为切点,连接BC .已知∠ACB =50º,则∠B 的度数为 . 14.有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是 .15.如图,D ,E 分别是△ABC 的边AB ,AC 的中点,连接BE ,DE .若∠AED =∠BEC ,DE =2,北京 济南 太原 郑州 0℃-1℃-2℃3℃主视方向OxA'A B 'B C'C y DA F BGCEHDA OB CE AOB CAD E16.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53=AC BD .线段AB 与A ′B ′关于过点O 的直线l 对称,点B 的对应点B ′在线段OC 上,A ′B ′交CD 于点E ,则△B ′CE 与四边形OB ′ED 的面积比为 .三、解答题(本大题8小题,第17~21题每题8分,第22、23题每题10分,第24题12分,共72分)17.计算:11854⎛⎫⎪⎝⎭--+-.18.解方程组: 254310⎧⎨⎩-=+=-x y x y .19.如图,在△ABC 中,AD ⊥BC ,AE 是BC 边上的中线,AB =10,AD =6,tan ∠ACB =1.(1)求BC 的长. (2)求sin ∠DAE 的值.20.某校开展科学活动.为了解学生对活动项目的喜爱情况, 随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:根据以上信息. 解答下列问题:(1)本次调查中最喜爱“AI 应用”的学生中更关注“辅助学习”有多少人?(2)某校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数. 科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写. 问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是( )(A )科普讲座 (B )科幻电影 (C )AI 应用 (D )科学魔术 如果问题1选择C .请继续回答问题2. 问题2:你更关注的AI 应用是( )(E )辅助学习 (F )虚拟体验 (G )智能生活 (H )其他问题1答题情况条形统计图C 类中问题2答题情况扇形统计图G25%F30%E40%H5%ADBCEA 'B 'lD CAB E A21.尺规作图问题:如图1,点E是□ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小孙:如图2,以C为圆心,CB为半径作弧,交BC于点F,连接AF,则AF∥CE.小童:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小孙:小童,你的作法有问题.小童:哦,……我明白了!(1)证明:AF∥CE.(2)指出小童作法中存在的问题.22.小孙和小童在跑步机上慢跑锻炼.小孙先跑,10分钟后小童才开始跑,小童跑步时中间休息了两次.跑步机C档比B档快40米/分、B档比A档快40米/分.小孙与小童的跑步相关信息如表所示,跑步累计里程s(米)与小孙跑步时间t(分)的函数关系如图所示.(1)求A,B,C 各档速度(单位:米分).(2)求小童两次休息时间的总和(单位:分).(3)小童第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.23.已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(-2,5),对称轴为直线x=-12.(1)求二次函数的表达式.(2)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c的图象上,求m的值.(3)当-2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为94,求n的取值范围.时间里程分段速度档跑步里程小孙16:00~16:50 不分段A档4000米小童16:10~16:50 第一段B档1800米第一次休息第二段B档1200米第二次休息第三段C档1600米小孙小童()t分()s米4600504000a1800103000DCABE1图FDCABE图224.如图,在圆内接四边形ABCD中,AD<AC,∠ADC<BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60º,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.。
初中毕业生学业考试数 学 试 卷※考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分)1.目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元2.计算23(2)a -的结果为( ) A .52a -B .68a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°, 则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左.视图是( )5.数据21,21,21,25,26,27的众数、中位数分别是( ) A .21,23 B .21,21 C .23,21 D .21,256.为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( ) A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=7.如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )A .B .C .D . 俯视图第4题图 EA BCD第3题图45°125°8.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )二、填空题(每小题3分,共24分) 9.分解因式:34a a -= . 10.函数33y x =+自变量x 的取值范围是 . 11.小丽想用一张半径为5cm 的扇形纸片围成一个底面半径为4cm 的圆锥,接缝忽略不计,则扇形纸片的面积是 cm 2.(结果用π表示)12.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是 . 13.如图所示,AB 为O ⊙的直径,P 点为其半圆上一点,40POA C ∠=°,为另一半圆上任意一点(不含A B 、),则PCB ∠= 度.14.已知抛物线()经过点,且顶点在第一象限.有下列三个结论:①0a < ②0a b c ++> ③02ba->.把正确结论的序号填在横线上 .15.如图所示,在正方形网格中,图①经过 变换(填“平移”或“旋转”或“轴对称”)可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点 (填“A ”或“B ”或“C ”). 16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .A .B .C .D .y 1 2 2 1 1- (21)A , y 2 y 1 x O垂直 A . B . C . D . 第8题图 第12题图 CB A P O 40° 第13题图O y x 第14题图1- ①② ③ 第15题图A B C三、解答题(每题8分,共16分)17.计算:012|32|(2π)+-+-.18.解方程:2111x x x -=-+.四、解答题(每题10分,共20分)19.如图所示,在Rt ABC △中,9030C A ∠=∠=°,°.(1)尺规作图:作线段AB 的垂直平分线l (保留作图痕迹,不写作法);(2)在已作的图形中,若l 分别交AB AC 、及BC 的延长线于点D E F 、、,连接BE . 求证:2EF DE =.20.某市开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该市所管辖的两个区内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题: (1)甲区参加问卷调查的贫困群众有 人; (2)请将统计图补充完整; (3)小红说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙区低.”你认为这种说法正确吗?为什么?第1个图形 第2个图形 第3个图形 第4个图形第16题图A CB 第19题图 非常满意 人数 800 600 400 200 满意 比较满意 不满意 满意程度 甲 乙第20题图420 700 760500250 3040五、解答题(每题10分,共20分)21.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.22.如图所示,已知AB 是半圆O 的直径,弦106CD AB AB CD ==∥,,,E 是AB 延长线上一点,103BE =.判断直线DE 与半圆O 的位置关系,并证明你的结论.六、解答题(每题10分,共20分)23.某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C .(1)求ADB ∠的度数; (2)求索道AB 的长.(结果保留根号)O AB ED C 第22题图A C DE F B 第23题图24.为迎接国庆六十周年,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x 件,买50件奖品的总钱数是w 元. (1)求w 与x 的函数关系式及自变量x 的取值范围; (2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?一等奖 二等奖 三等奖 单价(元) 12 10 5 E图(b ) 第25题图八、解答题(本题14分)26.如图所示,已知在直角梯形OABC 中,AB OC BC x ∥,⊥轴于点(11)(31)C A B ,,、,.动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,垂足为Q .设P 点移动的时间为t 秒(04t <<),OPQ △与直角梯形OABC 重叠部分的面积为S .(1)求经过O A B 、、三点的抛物线解析式; (2)求S 与t 的函数关系式;2009年铁岭市初中毕业生学业考试 数学试题参考答案及评分标准注:本参考答案只给出一种或几种解法(证法),若用其他方法解答并正确,可参考此评分标准相应步骤赋分.一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 C B B C A C D A∴3060EBA A AED BED ∠=∠=∠=∠=°,°,∴3060EBC EBA FEC ∠==∠∠=°,°. 又∵ED AB EC BC ⊥,⊥, ∴ED EC =. ······························································································· 8分 在Rt ECF △中,6030FEC EFC ∠=∴∠=°,°, ∴2EF EC =, ∴2EF ED =. ··························································································· 10分 第19题图(2)图形正确(甲区满意人数有500人) ··························································· 5分 (3)不正确. ······························································································· 6分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ·························································· 10分五、(每题10分,共20分) 21.解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 4∵,∴2.······························· 2分 ∵1025533OE OB BE =+=+=. ····························· 3分 ∴35325553DF OD OD OE ===,, ∴DF ODOD OE=. ····························································································· 6分 ∵CD AB ∥,∴CDO DOE ∠=∠. ································································ 7分3) A第22题图∴90ODE OFD ∠=∠=°, ∴OD DE ⊥∴直线DE 与半圆O 相切. ············································································ 10分 法二:连接OD ,作OF CD ⊥于点F ,作DG OE ⊥于点G . ∵6CD =,∴132DF CD ==. 在Rt ODF △中,2222534OF OD DF =-=-= ·········································· 3分 ∵CD AB ∥,DG AB OF CD ⊥,⊥, ∴四边形OFDG 是矩形,∴43DG OF OG DF ====,. ∵1025533OE OB BE =+=+=,2516333GE OE OG =-=-=, ························ 5分 在Rt DGE △中,22221620433DE DG GE ⎛⎫=+=+= ⎪⎝⎭.∵2222025533⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴222OD DE OE += ····················································································· 8分 ∴CD DE ⊥.∴直线DE 与半圆O 相切. ············································································ 10分 六、(每题10分,共20分) 23.(1)解:∵DC CE ⊥,∴90BCD ∠=°. 又∵10DBC ∠=°, ∴80BDC ∠=°, ····················································· 1分∵85ADF ∠=°,∴360809085105ADB ∠=---=°°°°°. ·················· 2分(2)过点D 作DG AB ⊥于点G . ······························ 3分 在Rt GDB △中,401030GBD ∠=-=°°°, ∴903060BDG ∠=-=︒°° ········································ 4分 又∵100BD =, ∴111005022GD BD ==⨯=. 3cos301005032GB BD ==⨯=°. ···························································· 6分 在Rt ADG △中,1056045GDA ∠=-=︒°° ······················································ 7分 ∴50GD GA ==, ························································································ 8分 ∴50503AB AG GB =+=+(米)································································ 9分A CDEF B 第23题图G答:索道长50+ ············································································· 10分 24.解:(1)1210(210)5[50(210)]x x x x ω=+-+--- ····································· 2分17200x =+.·········································································· 3分 由02100[50(210)]05[50(210)] 1.510(210)x x x x x x x >⎧⎪->⎪⎨--->⎪⎪---⨯-⎩≤ ························································ 5分(3)当CD CB =(2BD CD =或12CD BD =或30CAD ∠=°或90BAD ∠=°或30ADC ∠=°)时,四边形BCGE 是菱形. ················ 9分 理由:法一:由①得AEB ADC △≌△, ∴BE CD = ························································· 10分 又∵CD CB =, ∴BE CB =. ······················································ 11分 由②得四边形BCGE 是平行四边形, ∴四边形BCGE 是菱形. ······································· 12分ADCBFEG 图(b ) 第25题图法二:由①得AEB ADC △≌△, ∴BE CD =. ······························································································ 9分 又∵四边形BCGE 是菱形, ∴BE CB = ································································································ 11分 ∴CD CB =. ····························································································· 12分 法三:∵四边形BCGE 是平行四边形, ∴BE CG EG BC ∥,∥, ∴6060FBE BAC F ABC ∠=∠=∠=∠=°,° ··················································· 9分 ∴60F FBE ∠=∠=°, ∴BEF △是等边三角形. ············································································· 10分220(02)1(12)a h a h ⎧=-+⎪⎨=-+⎪⎩ 解得1343a h ⎧=-⎪⎪⎨⎪=⎪⎩································································· 3分 ∴所求抛物线解析式为214(2)33y x x =--+. ···················································· 4分 (2)分三种情况:①当02t <≤,重叠部分的面积是OPQ S △,过点A 作AF x ⊥轴于点F , ∵(11)A ,,在Rt OAF △中,1AF OF ==,45AOF ∠=°在Rt OPQ △中,OP t =,45OPQ QOP ∠=∠=°,∴cos 452PQ OQ t ===°, (3)存在 11t = ······················································································ 12分 22t = ···················································································· 14分。
二年级数学试题(1)1.二年级学生参加了“阳光生态园社会实践”活动。
摘/的有9人, 摘/的人数和摘/的人数同样多, 摘这两种蔬菜的一共有多少人?午餐时间到了, 餐厅有9张餐桌, 每张餐桌有4个座位, 34名同学够坐吗?2.下课后, 小明与小芳一起做手工, 小芳折了8只纸鹤, 小明折的与小芳一样多, 他们一共折了多少只纸鹤?3.动物园里举行运动会比赛, 小猴子运了9颗草莓, 小松鼠运的与小猴子一样多, 一共运了多少颗?4、(1)买6本故事书和1本科学世界一共要花多少钱?(2)买5本连环画和1本科学世界, 50元钱够吗?你还能提出其他数学问题并解答吗?5.将正确答案的序号填在()里(1)下面可以用来计量物体长度的单位是()①米②角③分④时(2)教学楼大约高15()①米②厘米③分④元(3)一节课40()①米②分③元④时6.两个小组浇树。
第一小组有7个同学, 每人浇了9棵树, 第一小组一共浇了多少棵树?第二小组比第一小组多浇了7棵树, 第二小组一共浇了多少棵树?7、(1)小布玩一次过山车和一次旋转木马, 共需多少钱?(2)8个小朋友玩一次旋转木马, 他们一共花了多少钱?(3)你还能提出其他用乘法解决的问题并解答吗?(1)吃饭时每人需要一双筷子, 4个人需要()根筷子(2)刘奶奶家养了两种不同的鸡, 一种有3只, 另一种有6只。
还养了3种不同的鸭子, 每种有6只。
(3)刘奶奶家养了多少只鸡?(4)刘奶奶家养了多少只鸭子?你还能提出其他数学问题并解答吗?(1)比较下面两道题, 选择合适的方法解答。
有4排桌子, 每排5张, 一共有多少张?(2)有2排桌子, 一排5张, 另一排4张, 一共有多少张?每组画4个, 画5组 加法算式:乘法算式 : 或者一捆电线长100米, 一班先用去20米, 又用去38米, 一共用去了多少米? 二班需要40米, 剩下的电线够不够?小明今年13岁, 爸爸比小明大28岁, 爸爸今年多少岁? 妈妈比爸爸小3岁, 妈妈今年多少岁?一班有33人参加学校运动会, 二班参加的人数比一班多4人。
历年高考数学试题及答案word 以下是历年高考数学试题及答案的格式示例:
一、选择题(每题4分,共40分)
1. 若函数f(x)=x^2+2x+1,则f(-1)的值为()
A. 0
B. 1
C. 2
D. 3
答案:B
2. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值为()
A. 5
B. 7
C. 9
D. 11
答案:A
二、填空题(每题4分,共20分)
3. 函数y=x^3-3x在区间(-1,1)上的单调性为()。
答案:单调递减
4. 已知向量a=(1,2),b=(2,-1),则|a+b|的值为()。
答案:√5
三、解答题(共40分)
5. 已知函数f(x)=x^2-4x+3,求函数的零点。
答案:函数的零点为x=1和x=3。
6. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标。
答案:直线l与x轴的交点坐标为(-1/2, 0)。
结束语:以上为历年高考数学试题及答案的示例,希望对同学们的复
习有所帮助。
在实际考试中,题目的难度和类型可能会有所不同,但
解题的基本方法和思路是相通的。
建议同学们在复习过程中多做练习,掌握各种题型的解题技巧,提高解题速度和准确率。
同时,也要注意
培养良好的考试心态,保持冷静和自信,相信自己能够取得理想的成绩。
山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()D.A.﹣7 B.7C.﹣考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.B.﹣=2﹣=2D.﹣=2C.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC 的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+=﹣.拓广应用:计算+++…+.考点:作图—应用与设计作图;规律型:图形的变化类.专题:规律型.分析:探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.解答:解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1﹣,两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+…+1﹣,=n﹣(+++…+),=n﹣(﹣),=n﹣+.点评:本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D 出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.考点:四边形综合题.分析:(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出=.求出DF.由AP=DF.求出t.(2)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG=AC•BD,求出CG.据S梯=(AP+DF)•CG.S△EFD=EF•QD.得出y与t之间的函数关系式;形APFD(3)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG,求出CG,由S四边形APFE:S=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,菱形ABCDPM再由勾股定理求出PE.解答:解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10﹣t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG=AC•BD,即10•CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)•CG=(10﹣t+t)•=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF•QD=×t×t=t2.∴y=(t+48)﹣t2=﹣t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则﹣t2+t+48=×96,即5t2﹣8t﹣48=0,解这个方程,得t1=4,t2=﹣(舍去)过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ﹣MQ==.PM=BD﹣BN﹣DQ==.在Rt△PME中,PE===(cm).点评:本题主要考查了四边形的综合知识,解题的关键是根据三角形相似比求出相关线段.。
潍坊市初中学业水平考试数学试题一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.实数0.5的算术平方根等于( ).A.2B.2C.22 D.21 答案:C .考点:算术平方根。
点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.答案:A .考点:轴对称图形与中心对称图形的特征。
点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。
. 3.,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.A.810865⨯ B.91065.8⨯ C.101065.8⨯ D.1110865.0⨯答案:C .考点: 科学记数法的表示。
点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).答案:B .考点:根据实物原型画出三视图。
点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数答案:D .考点:统计量数的含义.点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑.与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度. 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).答案:C .考点:变量间的关系,函数及其图象.点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。
《高等数学》一.选择题1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( )A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y2. 函数f(x)在点x 0极限存在是函数在该点连续的( )A )、必要条件B )、充分条件C )、充要条件D )、无关条件3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ).A)、()()()2221,21)(x x x x e e x g e e x f ---=-=B)、(())()ln ,ln f x x g x x ==-C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2tan,sec csc )(xx g x x x f =+= 4. 下列各式正确的是( )A )、2l n 2x xx dx C =+⎰ B )、s i n c o s t d t t C =-+⎰C )、2a r c t a n 1dxdx x x =+⎰ D )、211()dx C x x-=-+⎰ 5. 下列等式不正确的是( ).A )、()()x f dx x f dx d b a =⎥⎦⎤⎢⎣⎡⎰ B )、()()()[]()x b x b f dt x f dx d x b a '=⎥⎦⎤⎢⎣⎡⎰ C )、()()x f dx x f dx d x a =⎥⎦⎤⎢⎣⎡⎰ D )、()()x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ 6. 0ln(1)limxx t dt x→+=⎰( )A )、0B )、1C )、2D )、47. 设bx x f sin )(=,则=''⎰dx x f x )(( )A )、C bx bx b x +-sin cos B )、C bx bx b x+-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin8. 10()()bx xa e f e dx f t dt =⎰⎰,则( )A )、1,0==b aB )、e b a ==,0C )、10,1==b aD )、e b a ==,19. 23(sin )x x dx ππ-=⎰( )A )、0B )、π2C )、1D )、22π10. =++⎰-dx x x x )1(ln 2112( )A )、0B )、π2C )、1D )、22π11. 若1)1(+=x xxf ,则dx x f ⎰10)(为( )A )、0B )、1C )、2ln 1-D )、2ln12. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( ).A )、不定积分B )、一个原函数C )、全体原函数D )、在[]b a ,上的定积分13. 设1sin 2y x x =-,则dxdy=( ) A )、11c o s2y - B )、11c o s2x - C )、22c o sy- D )、22c o sx-14. )1ln(1lim 20x e x xx +-+→=( )A 21-B 2C 1D -115. 函数x x y +=在区间]4,0[上的最小值为( )A 4;B 0 ;C 1;D 3二.填空题1. =+++∞→2)12(lim xx x x ______.2. 2-=⎰3. 若⎰+=C e dx e x f xx 11)(,则⎰=dx x f )(4. =+⎰dt t dx d x 26215. 曲线3y x =在 处有拐点 三.判断题 1. xxy +-=11ln是奇函数. ( ) 2. 设()f x 在开区间(),a b 上连续,则()f x 在(),a b 上存在最大值、最小值.( ) 3. 若函数()f x 在0x 处极限存在,则()f x 在0x 处连续. ( ) 4. 0sin 2xdx π=⎰. ( )5. 罗尔中值定理中的条件是充分的,但非必要条件.( )四.解答题1. 求.cos 12tan lim20xxx -→ 2. 求nxmxx sin sin limπ→,其中n m ,为自然数.3. 证明方程01423=+-x x 在(0,1)内至少有一个实根.4. 求cos(23)x dx -⎰.5. 求⎰+dx xx 321.6. 设21sin ,0()1,0x x f x x x x ⎧<⎪=⎨⎪+≥⎩,求()f x '7.求定积分4⎰8. 设)(x f 在[]1,0上具有二阶连续导数,若2)(=πf ,⎰=''+π5sin )]()([xdx x f x f ,求)0(f ..9. 求由直线0,1,0===y x x 和曲线x e y =所围成的平面图形绕x 轴一周旋转而成的旋转体体积《高等数学》答案一.选择题1. C2. A3. D4. B5. A6. A7. C8. D9. A 10. A 11. D 12. B 13. D14. A15. B 二.填空题 1. 21e 2. 2π 3. C x+1 4. 412x x + 5. (0,0) 三.判断题 1. T 2. F 3. F 4. T 5. T 四.解答题 1. 82. 令,π-=x t nmn nt m mt nx mx n m t x -→→-=++=)1()sin()sin(lim sin sin lim 0πππ3. 根据零点存在定理.4.1cos(23)cos(23)(23)31sin(23)3x dx x d x x C-=---=--+⎰⎰5. 令t x =6,则dt t dx t x 566,==原式⎰⎰⎰++-=+=+=dt )t111t (6dt t 1t 6dt t t t 62435 C t 1ln t 2t 62+⎪⎭⎫⎝⎛++-= C x x x +++⋅-⋅=6631ln 6636. 222sin 2cos ,0()1,00x x x x f x x x ⎧-+<⎪⎪⎪'=>⎨⎪=⎪⎪⎩不存在,7. 42ln3-8. 解:⎰⎰⎰''--=-=ππππ0sin )()0()()cos ()(sin )(xdx x f f f x d x f xdx x f所以3)0(=f9. V=())1(2121)2(212102102102210-====⎰⎰⎰e e x d e dx e dx exx xxπππππ 《高等数学》试题2一.选择题1. 当0→x 时,下列函数不是无穷小量的是 ( )A )、x y =B )、0=yC )、)1ln(+=x yD )、x e y =2. 设12)(-=x x f ,则当0→x 时,)(x f 是x 的( )。
数学分析题库(1—22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y 。
证明:.inf sup B A =证 由(1)可得B A inf sup ≤.为了证B A inf sup =,用反证法。
若B A inf sup ,设B y A x A B ∈∈∃=-,,sup inf 0ε,使得0ε≥-x y 。
2.设A ,B 是非空数集,记B A S ⋃=,证明:(1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf =证(1)若A ,B 中有一集合无上界,不妨设A 无上界,则S 也是无上界数集,于是+∞=+∞=S A sup ,sup ,结论成立。
若A ,B 都是有上界数集,且A B sup sup ≤,现设法证明:sup sup A S =(ⅰ)S x ∈∀,无论A x ∈或B x ∈,有;sup A x ≤ (ⅱ)000,,sup ,x A x A εε∀∃∈->>于是,0S x ∈0sup .x A >同理可证(2). 3。
按N -ε定义证明352325lim 22=--+∞→n n n n 证 35232522---+n n n)23(3432-+=n n≤2234n n⋅ (n>4) n32=, 取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=4,132max εN ,当n>N 时,35232522---+n n n 〈ε。
注 扩大分式是采用扩大分子或缩小分母的方法.这里先限定n>4,扩大之后的分式nn G 32)(=仍是无穷小数列。
4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列。
答 a a n n ≠∞→lim 的正面陈述:0ε∃〉0,+∈∀N N ,n '∃≥N ,使得|a a n -'|≥0ε数列{n a }发散⇔R a ∈∀,a a n n ≠∞→lim .(1)a n a n ∀=.2,0ε∃=41,+∈∀N N ,只要取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+='N a n ,21max ,便可使||2a n -'≥||2a n -'≥||212a a -⎪⎭⎫ ⎝⎛+≥41,于是{2n }为发散数列。
初中数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 103. 计算下列算式的结果:\( \frac{2}{3} + \frac{3}{4} \)A. \( \frac{17}{12} \)B. \( \frac{29}{12} \)C. \( \frac{25}{12} \)D. \( \frac{23}{12} \)4. 如果一个角的补角是130°,那么这个角的度数是:A. 50°B. 130°C. 40°D. 60°5. 一个数的绝对值是5,那么这个数可以是:A. 5或-5B. 5或0C. -5或0D. 5或106. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 2C. x = 3D. x = 47. 一个三角形的两个内角分别是45°和45°,那么第三个内角是:A. 45°B. 90°C. 135°D. 180°8. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 09. 一个数的立方是-27,那么这个数是:A. 3B. -3C. 9D. -910. 以下哪个选项是不等式3x > 9的解集?A. x > 3B. x < 3C. x > -3D. x < -3二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是______。
2. 如果一个角是直角的一半,那么这个角的度数是______。
3. 一个数的立方根是2,那么这个数是______。
4. 一个数的绝对值是它本身,那么这个数是______。
5. 一个数的相反数是它自己,那么这个数是______。
数学第七册第一单元练习(A)卷
一、填空:
1、亿以内的计数单位有,每相邻两个计数单位间的进率是。
2、10个一万是;10个是一千万;个十万是一千万。
3、405010是一个位数,它的最高位是位,表示;这个数读作。
4、三亿零四万写作,它由组成。
5、十五万五千零三写作;四舍五入到万位约是。
二、判断题:
1、个位、十位、白位、千位……等都是计数单位。
()
2、最小的一位数是0。
()
3、7030004读作:七千零三十万零四。
()
4、比最小的五位数少1的数是9999。
()
三、选择题:
1、最小的六位数是()。
[A、111111 B、1000000 C、10000000]
2、一个七位数它的最高位是()。
[A、万级B、百万C、百万位]
3、145910四舍五入到万位约是()。
[A、15 B、15万C、14万D、14]
4、三十万五千写作()。
[A、305000 B、3000005000 C、35000]
四、比较下面各数的大小
40160()52160 92705()102700
49357()49537 810300()809800
五、按照从小到大的顺序排列下面各数。
50500 500500 55000 60005
六、把下面各数写成用“万”作单位的数。
70000 170000 1700000 1070000 10070000 10700000
七、把下面各数省略万位后面的尾数,求出它们的近似数。
706400 550996 320710 30224937 897481 997310
八、应用题:
1、每页原稿纸有15行,每行有20个方格,5页稿纸共多少个方格?
2、5页原稿纸共有方格1500个,每页稿纸有15行,平均每行有几个方格?。