北京师范大学株洲附属学校2020-2021年度第一学期期中考试 高一年级 无答案
- 格式:doc
- 大小:98.50 KB
- 文档页数:5
北京师范大学第一附属中学2021年高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 六名学生从左至右站成一排照相留念,其中学生甲和学生乙必须相邻.在此前提下,学生甲站在最左侧且学生丙站在最右侧的概率是()A. B. C. D.参考答案:C2. 已知函数的定义域为,值域为,则函数的对应法则可以为()A. B. C. D.参考答案:C3. 设a、b、c均为正数,且,则A B C D参考答案:A4. 三个数0.67,70.6,log0.67的大小关系为( )A.B.0.67<70.6<log0.67C.D.参考答案:D【考点】对数值大小的比较.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵三个数0<0.67<1<70.6,log0.67<0,∴log0.67<0.67<70.6,∴故选:D.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.5. 已知角满足,,且,,则的值为()A. B. C. D.参考答案:D【分析】根据角度范围先计算和,再通过展开得到答案. 【详解】,,故答案选D【点睛】本题考查了三角函数恒等变换,将是解题的关键.6. 设函数的定义域是(2,4),则函数的定义域是()A. (2,4)B. (2,8)C. (8,32)D.参考答案:A7. (5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表则函数y=f(x)在区间上的零点至少有()A.2个B.3个C.4个D.5个参考答案:B考点:函数的零点.专题:函数的性质及应用.分析:根据根的存在定理,判断函数值的符号,然后判断函数零点个数即可.解答:解:依题意,∵f(2)>0,f(3)<0,f(4)>0,f(5)<0,∴根据根的存在性定理可知,在区间(2,3)和(3,4)及(4,5)内至少含有一个零点,故函数在区间上的零点至少有3个,故选B.点评:本题主要考查函数零点个数的判断,用二分法判断函数的零点的方法,比较基础.8. 已知函数的图象经过三点,,,则的值等于()A.0 B.1 C. D.25参考答案:D解析:由已知,设所以,,,所以,选D9. 函数f(x)=x2﹣2ax+a在区间(﹣∞,1)上有最小值,则a的取值范围是()A.a<1 B.a≤1C.a>1 D.a≥1参考答案:A【考点】二次函数在闭区间上的最值.【分析】因为f(x)为二次函数且开口向上,函数的对称轴为x=a.若a≥1,则函数在区间(﹣∞,1)上是减函数,因为是开区间,所以没有最小值,所以可知a<1,此时x=a时有最小值,故可得结论【解答】解:由题意,f(x)=(x﹣a)2﹣a2+a∴函数的对称轴为x=a .若a≥1,则函数在区间(﹣∞,1)上是减函数,因为是开区间,所以没有最小值所以a <1,此时x=a时有最小值故选A.10. 设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A.B.C.D.3参考答案:C【考点】函数y=Asin(ωx+φ)的图象变换.【分析】求出图象平移后的函数表达式,与原函数对应,求出ω的最小值.【解答】解:将y=sin (ωx+)+2的图象向右平移个单位后为=,所以有=2kπ,即,又因为ω>0,所以k≥1,故≥,故选C二、 填空题:本大题共7小题,每小题4分,共28分11. (5分)函数的定义域为 .参考答案:(1,2]考点: 函数的定义域及其求法. 专题: 计算题.分析: 由题意可得,解得1<x≤2,即可得定义域.解答: 解:由题意可得,解得1<x≤2,故函数的定义域为:(1,2],故答案为:(1,2]点评: 本题考查函数的定义域,使式中的式子有意义即可,属基础题.12. 已知函数,定义:使为整数的数叫作企盼数,则在区间内这样的企盼数共有 个.参考答案:2略13. 给出下列命题:①存在实数,使得成立;②存在实数,使得成立;③是偶函数;④是函数的一条对称轴;⑤若是第一象限角,且,则.其中正确命题的序号有 .参考答案:③④14. 已知集合A=,B=,若,则实数的取值范围是参考答案:15. 等比数列{a n }满足,,则______.参考答案:42 由题意可得所以,解得(舍),而,填42.16. 已知,则 .参考答案: -117.均为锐角,,则___________.参考答案:略三、解答题:本大题共5小题,共72分。
北京市北京师范大学附属中学2024-2025学年高三上学期10月期中考试数学试题一、单选题1.已知集合{20},{10}M x x N x x =+≥=-<∣∣,则M N = ()A .{21}x x -≤<∣B .{21}x x -<≤∣C .{2}xx ≥-∣D .{1}xx <∣2.设ln 2a =,cos 2b =,0.22c =,则()A .b c a <<B .c b a <<C .b a c<<D .a b c <<3.设x ∈R ,则“sin 1x =”是“cos 0x =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.将y =cos 26x π⎛⎫+ ⎪⎝⎭的图象向右平移6π个单位长度,所得图象的函数解析式为()A .sin 2y x =B .cos 2y x =C .cos 23y x π⎛⎫=+ ⎪⎝⎭D .cos 26y x π⎛⎫=- ⎪⎝⎭5.已知函数()21xf x =-,则不等式()f x x ≤的解集为()A .(],2-∞B .[]0,1C .[)1,+∞D .[]1,26.设函数()e ln x f x x =-的极值点为0x ,且0x M ∈,则M 可以是()A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .()1,2D .()2,47.在ABC V 中,90,4,3C AC BC =︒==,点P 是AB 的中点,则CB CP ⋅=()A .94B .4C .92D .68.已知{}n a 是递增的等比数列,其前n 项和为*(N )n S n ∈,满足26a =,326S =,若2024n n S a +>,则n 的最小值是()A .6B .7C .9D .109.设R c ∈,函数(),0,22,0.x x c x f x c x -≥⎧=⎨-<⎩若()f x 恰有一个零点,则c 的取值范围是()A .()0,1B .{}[)01,+∞ C .10,2⎛⎫ ⎪⎝⎭D .{}10,2⎡⎫+∞⎪⎢⎣⎭10.北宋科学家沈括在《梦溪笔谈》中记载了“隙积术”,提出长方台形垛积的一般求和公式.如图,由大小相同的小球堆成的一个长方台形垛积的第一层有ab 个小球,第二层有(1)(1)a b ++个小球,第三层有(2)(2)a b ++个小球……依此类推,最底层有cd 个小球,共有n 层,由“隙积术”可得这些小球的总个数为[(2)(2)()]6n b d a d b c c a ++++-.若由小球堆成的某个长方台形垛积共8层,小球总个数为240,则该垛积的第一层的小球个数为()A .2B .3C .4D .5二、填空题11.若复数4i1iz =-,则复数z 的模z =.12.已知{}n a 为等差数列,n S 为其前n 项和.若16a =,260a a +=,则8S =.13.在ABC V 中,222a cb +=+.则B ∠的值是;cos y A C =+的最大值是.14.设函数()()()11,1,lg 1.x a x x f x x a x ⎧-++<=⎨-≥⎩①当0a =时,((10))f f =;②若()f x 恰有2个零点,则a 的取值范围是.15.已知函数()222f x x x t =-+,()e xg x t =-.给出下列四个结论:①当0t =时,函数()()y f x g x =有最小值;②t ∃∈R ,使得函数()()y f x g x =在区间[)1,+∞上单调递增;③t ∃∈R ,使得函数()()y f x g x =+没有最小值;④t ∃∈R ,使得方程()()0f x g x +=有两个根且两根之和小于2.其中所有正确结论的序号是.三、解答题16.如图,在ABC V 中,2π3A ∠=,AC ,CD 平分ACB ∠交AB 于点D ,CD =(1)求ADC ∠的值;(2)求BC 的长度;(3)求BCD △的面积.17.已知函数π()sin()0,0,02f x A x A ωϕωϕ⎛⎫=+>><< ⎪⎝⎭的最小正周期为π.(1)若2A =,(0)1f =,求ϕ的值;(2)从条件①、条件②、条件③这三个条件中选择两个作为已知,确定()f x 的解析式,并求函数()()2cos 2h x f x x =-的单调递增区间.条件①:()f x 的最大值为2;条件②:()f x 的图象关于点5π,012⎛⎫⎪⎝⎭中心对称;条件③:()f x 的图象经过点π12⎛ ⎝.注:如果选择多组条件分别解答,按第一个解答计分.18.为研究中国工业机器人产量和销量的变化规律,收集得到了20152023-年工业机器人的产量和销量数据,如下表所示.年份201520162017201820192020202120222023产量万台 3.37.213.114.818.723.736.644.343.0销量万台6.98.713.815.414.015.627.129.731.6记20152023-年工业机器人产量的中位数为a ,销量的中位数为b .定义产销率为“100%=⨯销量产销率产量”.(1)从20152023-年中随机取1年,求工业机器人的产销率大于100%的概率;(2)从20202318-年这6年中随机取2年,这2年中有X 年工业机器人的产量不小于a ,有Y 年工业机器人的销量不小于b .记Z X Y =+,求Z 的分布列和数学期望()E Z ;(3)从哪年开始的连续5年中随机取1年,工业机器人的产销率超过70%的概率最小.结论不要求证明19.已知椭圆2222:1x y E a b+=过点()2,1P -和()Q .(1)求椭圆E 的方程;(2)过点()0,2G 作直线l 交椭圆E 于不同的两点,A B ,直线PA 交y 轴于点M ,直线PB 交y 轴于点N .若2GM GN ⋅=,求直线l 的方程.20.已知函数()ln ()x a f x x-=.(1)若1a =,求函数()f x 的零点:(2)若1a =-,证明:函数()f x 是0,+∞上的减函数;(3)若曲线()y f x =在点()()1,1f 处的切线与直线0x y -=平行,求a 的值.21.已知()12:,,,4n n A a a a n ≥ 为有穷数列.若对任意的{}0,1,,1i n ∈- ,都有11i i a a +-≤(规定0n a a =),则称n A 具有性质P .设()(){},1,22,1,2,,n i j T i j a a j i n i j n =-≤≤-≤-= .(1)判断数列45:1,0.1, 1.2,0.5,:1,2,2.5,1.5,2A A --是否具有性质P ?若具有性质P ,写出对应的集合n T ;(2)若4A 具有性质P ,证明:4T ≠∅;(3)给定正整数n ,对所有具有性质P 的数列n A ,求n T 中元素个数的最小值.。
2022-2022学年师大附中高一上学期期中数学试题(解析版)2022-2022学年师大附中高一上学期期中数学试题一、单选题1.已知集合,则为().A.B.C.D.【答案】C【解析】根据条件解出集合,再根据交集的概念即可求出.【详解】解:集合,又集合所以.故选:C.【点睛】本题考查一元二次方程的解法,考查集合交集的概念和运算,属于基础题.2.下列函数中,在其定义域内既是奇函数又是减函数的是().A.B.C.D.【答案】D【解析】根据初等函数的性质逐个分析选项即可得出答案.【详解】解:A.在上单调递减,在上单调递减,但是在定义域内不是减函数.B.在定义域内为减函数,但不是奇函数.C.是偶函数,也不单调递减.D.是奇函数,且在定义域内单调递减,复合题意.故选:D.【点睛】本题考查函数的奇偶性和单调性,解题的关键是熟练掌握初等函数的性质,属于基础题.3.函数与的图象只可能是下图中的().A.B.C.D.【答案】B【解析】观察选项AC,均单调递增,则,则直线所过定点在1的上方,选项BD,单调递减,则,则直线所过的定点在1的下方且在y轴正半轴上,由此可以判断选项.【详解】解:选项AC中,单调递增,则,过定点在(0,1)点上方,所以A、C不正确.选项BD中,单调递减,则,过定点在(0,1)点下方,所以B正确,D不正确.故选:B.【点睛】本题考查指数函数和一次函数的图像,考查指数函数的性质,属于基础题.4.已知函数的定义域为,若存在闭区间,使得满足:①在内是单调函数;②在上的值域为,则称区间为的“倍增区间”,下列函数存在“倍增区间”的是().A.B.C.D.【答案】B【解析】根据题意,函数存在“倍增区间”,若函数单调递增,则,若函数单调递减,则,根据条件逐个分析选项,求解即可.【详解】解:对于A.:在上单调递增,则根据题意有有两个不同的解,不成立,所以A不正确.对于B:在上单调递增,根据题意有在上有两个不同的解,解得:,符合题意,所以B正确.对于C:,若,函数在单增,则有有两个解,即在上有两个解,不符合,若,仍然无解,所以C不正确.对于D:在上单调递增,则有两个解,不成立,所以D不正确.故选:B.【点睛】本题考查函数新定义题型,考查函数的单调性以及构造函数求解问题,属于中档题.二、填空题5.若幂函数为常数)的图象过点,则的值为_____.【答案】【解析】根据函数所过定点,可以求出函数的解析式,只需代入即可求得的值.【详解】解:因为幂函数为常数)的图象过点,所以,解得:,所以,则.故答案为:.【点睛】本题考查根据图像所过点求幂函数的解析式问题,考查具体函数求值问题,属于基础题.6.设,,则按从小到大排列的顺序是_______.【答案】【解析】因为,,,所以根据函数值的范围即可比较出大小顺序.【详解】解:,,,所以按从小到大排列的顺序是.故答案为:.【点睛】本题考查指对幂大小的比较,中间值法是常用的方法,属于基础图.7.已知集合若则实数的取值范围是_______.【答案】【解析】由得,则可根据子集的定义列出不等式求解即可.【详解】解:则,所以,解得:.故答案为:.【点睛】本题考查子集的定义和运算,考查不等式的解法,属于基础题.8.函数的定义域是__________.【答案】【解析】由,得,所以,所以原函数定义域为,故答案为.9.已知函数,则的值是______.【答案】1【解析】根据条件,先代入,求得的值,再根据函数值代入相应的解析式计算,则可求出结果.【详解】解:函数,所以,则.故答案为:1【点睛】本题考查分段函数求值,比较范围,逐步代入解析式是解题的关键,属于基础题.10.若,则______【答案】1【解析】由求得,,利用对数的运算法则化简即可.【详解】因为,所以,则,故答案为1.【点睛】本题主要考查对数的运算与性质,意在考查灵活应用所学知识解答问题的能力,属于基础题.11.函数的最小值是______.【答案】2【解析】令,对函数进行换元,则原式等价于求的最小值.对二次函数配方即可求函数的最小值.【详解】解:令,则原式等价于求的最小值.,函数图像开口向上,对称轴为,所以当时,y有最小值为2.故答案为:2.【点睛】本题考查求复合型二次函数的最小值,解题的关键是换元后注意范围的变化,属于基础题.12.已知函数是上的偶函数,且在区间上是单调增函数,若,则满足的实数的取值范围是______.【答案】【解析】函数是上的偶函数,且在区间上是单调增函数,可以得出在区间上是单调减函数,又,所以,结合单调性即可求出的解,将整体代入,即可求出某的范围.【详解】解:函数是上的偶函数,且在区间上是单调增函数,所以在区间上是单调减函数,又,所以.的解为:,则的解为:,即.故答案为:.【点睛】本题考查函数的奇偶性,考查函数奇偶性单调性的综合应用,考查整体代换和转化的思想,解题的关键是时刻注意函数的定义域,属于基础题.13.若函数在区间上有,则的单调减区间是_______.【答案】【解析】由题意当时,,又,得.则根据复合函数的单调性即可求出的单调减区间.【详解】解:因为,所以,又,所以.根据复合函数单调性法则:的单调减区间为的单调增区间,又,所以的单调减区间为.故答案为:.【点睛】本题考查对数函数的取值范围,考查求复合函数的单调区间,解题的关键是注意函数的定义域,属于基础题.14.设函数,则使得成立的实数的取值范围是_______.【答案】或.【解析】观察函数,可知函数为偶函数,且在区间上单调递增,则根据函数的奇偶性和单调性,若成立,则,求解即可得出的取值范围.【详解】解:函数为偶函数,且在区间上单调递增,所以若成立,则,变形为:解得:或.故答案为:或.【点睛】本题考查函数奇偶性和单调性的综合应用,涉及不等式的解法,属于基础题.三、解答题15.计算(1)(2)【答案】(1);(2).【解析】(1)根据指数的运算性质化简即可.(2)根据对数的运算性质化简即可求出答案.【详解】解:(1)=.(2)=.【点睛】本题考查指数函数,对数函数的运算性质,解题的关键是牢记公式并且灵活运用,属于基础题.16.已知全集,集合(1)求;(2)设实数,集合,若求a的取值范围.【答案】(1);(2)或.【解析】(1)求出集合B,根据并集的定义和运算求出即可.(2),又,所以,则根据交接为空集列出不等关系求解即可.【详解】解:(1)=,又集合,所以.(2)集合,又,所以.,,则或,解得:或.【点睛】本题考查并集的概念和运算,考查根据交集为空求解,涉及到指数函数的运算,属于基础题.17.已知函数(1)求函数的定义域(2)求不等式成立时,实数的取值范围.【答案】(1);(2).【解析】(1)函数的定义域为和定义域的交集,求出函数和的定义域,再求交集即可求出结果.(2)等价于,解不等式,再结合定义域即可求出实数的取值范围.【详解】解:(1)的定义域为,的定义域为.所以函数的定义域为.(2)不等式,等价于,即:,解得:.又定义域为,所以实数的取值范围为.【点睛】本题考查求函数定义域的方法,考查求解对数不等式,属于基础题.18.已知定义在上的函数的图像关于原点对称(1)求实数的值;(2)求的值域.【答案】(1);(2).【解析】(1)定义在上的函数的图像关于原点对称,所以为奇函数,代入即可求出m的值.(2)由(1)可求,结合指数函数的性质即可求值域.【详解】解:(1)定义在上的函数的图像关于原点对称,所以为奇函数,则有,所以.证明,当时,,关于原点对称,所以成立.(2),由于,所以,所以.所以的值域为.【点睛】本题考查了函数奇偶性的应用,同时考查了指数函数值域的求解,属于中档题.19.某城市的街道是相互垂直或平行的,如果按照街道垂直和平行的方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.如图,学校在点处,商店在点,小明家在点处,某日放学后,小明沿道路从学校匀速步行到商店,已知小明的速度是每分钟1个单位长度,设步行分钟时,小明与家的距离为个单位长度.(1)求关于的解析式;(2)做出中函数的图象,并求小明离家的距离不大于7个单位长度的总时长.【答案】(1);(2).【解析】(1)根据题意,从A到B直线行走,起始点的横坐标为1,所以步行分钟后,横坐标为,不变,则根据距离的新定义可求出关于的解析式.(2)根据解析式做出图像,由图像解方程即可求出结果.【详解】解:(1)步行分钟时,小明仍在AB之间,所以小明的坐标为,则小明与家的距离为.所以关于的解析式为:.(2)图像如图:.当故当小明离家的距离不大于7个单位长度时,.【点睛】本题考查函数与解析式新定义题型,考查根据解析式做出函数图像,解题的关键是对新定义一定要理解深刻,属于中档题.20.设M为满足下列条件的函数构成的集合,存在实数,使得.(1)判断是否为M中的元素,并说明理由;(2)设,求实数a的取值范围;(3)已知的图象与的图象交于点,,证明:是中的元素,并求出此时的值(用表示).【答案】(1)是;(2)[3﹣,3+];(3)某0=,证明见解析【解析】根据集合M的定义,可根据函数的解析式f(某0+1)=f(某0)+f(1)构造方程,若方程有根,说明函数符合集合M的定义,若方程无根,说明函数不符合集合M的定义;(2)设h(某)=∈M,则存在实数某,使h(某+1)=h(某)+h (1)成立,解出a的取值范围即可;(3)利用f(某0+1)=f(某0)+f(1)和y=2e某(某>)的图象与y=为图象有交点,即对应方程有根,与求出的值进行比较即可解出某0.【详解】解:(1)设g(某)为M中的元素,则存在实数某0,使得f(某0+1)=f(某0)+f(1);即(某+1)2=某2+1,∴某=0,故g(某)=某2是M中的元素.(2)设h(某)=∈M,则存在实数某,使h(某+1)=h(某)+h (1)成立;即lg=lg+lg;∴=;∴(a﹣2)某2+2a某+2a﹣2=0,当a=2时,某=﹣;当a≠2时,则△=4a2﹣4(a﹣2)(2a﹣2)≥0;解得a2﹣6a+4≤0,∴3﹣≤a≤3+且a≠2;∴实数a的取值范围为:[3﹣,3+].(3)设m(某)=ln(3某﹣1)﹣某2∈M,则m(某0+1)=m(某0)+m(1);∴ln[3(某0+1)﹣1]﹣(某0+1)2=ln(3某0﹣1)﹣某02+ln2﹣1;∴ln=2某0;∴=;∴=2;由于y=2e某(某>)的图象与y=为图象交于点(t,2et),所以2et=;令t=2某0,则2==;即存在某0=,使得则m(某0+1)=m(某0)+m(1);故m(某)=ln(3某﹣1)﹣某2是M中的元素,此时某0=.【点睛】本题主要利用元素满足恒等式进行求解,根据指数和对数的性质进行化简,考查了逻辑思维能力和分析解决问题的能力,属于中档题.。
2023北京北师大二附中高一(上)期中数学一、单选题(共10小题,每题4分,共40分)1. 已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B = ( )A. {}1,0- B. {}1,2- C. {}0,3 D. {}1,3-2. 命题“x ∀∈R ,2230x x -+>”的否定为( )A. x ∀∈R ,2230x x -+< B. x ∀∈R ,2230x x -+≤C. x ∃∈R ,2230x x -+< D. x ∃∈R ,2230x x -+≤3. 已知0a b <<,则下列不等式中成立的是( )A.11a b< B. a b< C. 0ab < D.2ab b >4. 函数1111y x x=-+-的奇偶性是( )A. 奇函数 B. 偶函数C. 非奇非偶函数D. 既奇函数,又是偶函数5. 函数()35f x x x =--的零点所在的区间是( )A. ()0,1 B. ()1,2C. ()2,3 D. ()3,46. “14m <”是“一元二次方程20x x m ++=”有实数解的A. 充分非必要条件 B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件7. 下图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )是A. B.C. D.8. 函数()221xf x x =+的图象大致为( )A. B.C. D.9. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A. f (﹣x 1)>f (﹣x 2)B. f (﹣x 1)=f (﹣x 2)C. f (﹣x 1)<f (﹣x 2)D. f (﹣x 1)与f (﹣x 2)大小不确定10. 已知函数()12f x m x x =-+有三个零点,则实数m 的取值范围为( )A. 1m > B. 01m <<C 12m << D. 1m <-.二、填空题(共5小题,每题5分,共25分)11. 函数()f x =______.12. 函数2122x x y ++=值域是________.13. 若正实数,x y 满足:31x y +=,则xy 的最大值为________.14. 已知函数()221,111,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,则()()1f f -=______;若关于x 的方程()f x k =恰有两个不同的解,则实数k 的取值范围是______.15. 若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.三、解答题(共6小题,共85分)16. 已知全集U =R ,集合{}2230A x x x =--<,{}04B x x =<<.(1)求()U A B ⋂ð;(2)设非空集合{}23,D x a x a a =<<+∈R ,若U D A ⊆ð,求实数a 的取值范围.17. 已知函数()211f x x =+,[]2,5x ∈.(1)判断函数()f x 的单调性,并用定义证明你的结论;(2)求不等式()()121f m f m +<-的解集.18. 已知2y x x =-,且()1,1x ∈-.(1)求实数y 的取值集合M ;(2)设不等式()()20x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围.19. 近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且的210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润多少?20. 已知函数()f x 为二次函数,()f x 的图象过点()0,2,对称轴为12x =-,函数()f x 在R 上最小值为74.(1)求()f x 的解析式;(2)当[]2,x m m ∈-,R m ∈时,求函数()f x 的最小值(用m 表示);(3)若函数()()1F x f x ax =--在()0,3上只有一个零点,求a 的取值范围.21. 设整数集合{}12100,,,A a a a =⋯,其中121001···205a a a ≤<<<≤ ,且对于任意(),1100i j i j ≤≤≤,若i j A +∈,则.i j a a A +∈(1)请写出一个满足条件的集合A ;(2)证明:任意{}101,102,,200,x x A ∈⋯∉;(3)若100205a =,求满足条件集合A 的个数.是的2023北京北师大二附中高一(上)期中数学一、单选题(共10小题,每题4分,共40分)1. 已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B = ( )A. {}1,0- B. {}1,2- C. {}0,3 D. {}1,3-【答案】D 【解析】【分析】根据交集的定义可求A B ⋂.【详解】因为{21,}B xx k k ==-∈N ∣,故B 中的元素为大于或等于1-的奇数,故{}1,3A B =- ,故选:D.2. 命题“x ∀∈R ,2230x x -+>”的否定为( )A. x ∀∈R ,2230x x -+< B. x ∀∈R ,2230x x -+≤C. x ∃∈R ,2230x x -+< D. x ∃∈R ,2230x x -+≤【答案】D 【解析】【分析】根据题意,由全称命题的否定是特称命题,即可得到结果.【详解】因为命题“x ∀∈R ,2230x x -+>”,则其否定为“x ∃∈R ,2230x x -+≤”故选:D3. 已知0a b <<,则下列不等式中成立的是( )A.11a b< B. a b< C. 0ab < D.2ab b >【答案】D 【解析】【分析】根据不等式基本性质,逐一分析四个不等式关系是否恒成立,可得答案.【详解】解:0a b <<Q , 0ab ∴>,故C 错误;的两边同除ab 得:11a b>,故A 错误;a b ∴>,故B 错误;两边同乘b 得:2ab b >,故D 正确;故选D .【点睛】本题以命题的真假判断与应用为载体,考查了不等式恒成立,不等式的基本性质等知识点,难度中档.4. 函数1111y x x=-+-奇偶性是( )A. 奇函数 B. 偶函数C. 非奇非偶函数D. 既是奇函数,又是偶函数【答案】A 【解析】【分析】利用函数的奇偶性定义判定即可.【详解】由函数解析式可知{}1,R x x x ≠±∈,即定义域关于原点对称,又()()()11111111f x f x f x x x x x=-⇒-=-=-+--+,所以函数1111y x x=-+-是奇函数.故选:A5. 函数()35f x x x =--的零点所在的区间是( )A. ()0,1B. ()1,2C. ()2,3D. ()3,4【答案】B 【解析】【分析】利用转化法,结合数形结合思想进行判断即可.【详解】()33505f x x x x x =--=⇒=+函数3y x =和函数5y x =+在同一直角坐标系内图象如下图所示:的一方面()()()()()05,15,21,319,455f f f f f =-=-===,()()120f f <另一方面根据数形结合思想可以判断两个函数图象的交点只有一个,故选:B 6. “14m <”是“一元二次方程20x x m ++=”有实数解的A. 充分非必要条件 B. 充分必要条件C. 必要非充分条件 D. 非充分非必要条件【答案】A 【解析】【详解】试题分析:方程20x x m ++=有解,则11404m m ∆=-≥⇒≤.14m <是14m ≤的充分不必要条件.故A 正确.考点:充分必要条件7. 下图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )A. B.C. D.【答案】C【解析】【分析】根据图象中有一段为水平线段(表示离家的距离一直不变),逐项判断此时对应选项是否满足.【详解】图象显示有一段时间吴老师离家距离是个定值,故他所走的路程是一段以家为圆心的圆弧,所以A、B、D三个选项均不符合,只有选项C符合题意.故选:C .8. 函数()221xf x x =+的图象大致为( )A. B.C. D.【答案】D 【解析】【分析】根据函数的奇偶性判断所给函数的奇偶性,再通过函数值的正负即可判断.【详解】函数()221x f x x =+,则()()()()222211x x f x f x x x --==-=-+-+,即函数为奇函数,则A 、B 错误,当0x >时,()2201xf x x =>+.故D 正确故选:D9. 设f (x )是R 上的偶函数,且在(0,+∞)上是减函数,若x 1<0且x 1+x 2>0,则( )A. f (﹣x 1)>f (﹣x 2)B. f (﹣x 1)=f (﹣x 2)C. f (﹣x 1)<f (﹣x 2)D. f (﹣x 1)与f (﹣x 2)大小不确定【答案】A 【解析】【分析】由条件可得()f x 在(),0∞-上是增函数,根据条件可得120x x >>-,所以()()12f x f x >-,从而得出答案.【详解】()f x 是R 上的偶函数,且在()0,∞+上是减函数故()f x 在(),0∞-上是增函数因为10x <且120x x +>,故120x x >>-;所以有()()12f x f x >-,又因为()()11f x f x ->所以有()()12f x f x ->-故选:A .10. 已知函数()12f x m x x =-+有三个零点,则实数m 的取值范围为( )A. 1m > B. 01m <<C 12m << D. 1m <-【答案】A 【解析】【分析】利用常变量分离法,结合数形给思想进行判断即可.【详解】令()11220f x m x m x x x =⇒=-=++,显然有0x ≠且2x ≠-且0m ≠,于是有()()()()()2,0122,,22,0x x x x x x x x m ∞⎧+>⎪=+=⎨-+∈--⋃-⎪⎩,设()()()()()()2,022,,22,0x x x g x x x x x x ∞⎧+>⎪=+=⎨-+∈--⋃-⎪⎩,它的图象如下图所示:因此要想函数()12f x m x x =-+有三个零点,只需0111m m <<⇒>,故选:A【点睛】方法点睛:解决函数零点个数问题一般的方法就是让函数值为零,然后进行常变量分离,利用数形结合思想进行求解.二、填空题(共5小题,每题5分,共25分)11. 函数()f x =______.【答案】(),1-∞.【解析】【分析】利用二次根式的意义计算即可.【详解】由题意可知101x x ->⇒<,即函数的定义域为(),1-∞.故答案为:(),1-∞12. 函数2122x x y ++=的值域是________.【答案】(0,1]【解析】【分析】根据二次函数的性质求解2()22f x x x =++的范围可得函数2122x x y ++=的值域【详解】解:由22()22(1)1f x x x x =++=++,可得()f x 的最小值为1,2122y x x ∴=++的值域为(0,1].故答案为:(0,1].【点睛】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,1011、最值法,12、构造法,13、比例法.要根据题意选择.13. 若正实数,x y 满足:31x y +=,则xy 的最大值为________.【答案】112【解析】【分析】运用基本不等式得出31x y +=≥,化简求得112xy ≤即可.【详解】 正实数,x y 满足:31x y +=,31x y +=≥∴112xy ≤,当且仅当12x =,16y =时等号成立.故答案为112【点睛】本题考查了运用基本不等式求解二元式子的最值问题,关键是判断、变形得出不等式的条件,属于容易题.14. 已知函数()221,111,1x x x f x x x⎧-+≤⎪=⎨->⎪⎩,则()()1f f -=______;若关于x 的方程()f x k =恰有两个不同的解,则实数k 的取值范围是______.【答案】 ①. 34-②. ()0,1【解析】【分析】利用分段函数代入解析式求函数值即可得第一空,利用函数的单调性结合图象得第二空.【详解】易知()()()()314144f ff f -=⇒-==-,又1x ≤时,()22211y x x x =-+=-单调递减,且min 0y =,110x x >⇒>时,11y x=-单调递减,且10y -<<,作出函数()y f x =的图象如下:所以方程()f x k =有两个不同解即函数()y f x =与y k =有两个不同交点,显然()0,1k ∈.故答案为:34-;()0,115. 若使集合{}2()(6)(4)0,A k x kx k x x Z =---≥∈中元素个数最少,则实数k 的取值范围是 ________.【答案】()3,2--【解析】【分析】首先讨论k 的取值,解不等式;再由集合A 的元素个数最少,推出只有0k <满足,若集合A 的元素个数最少,由0k <,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,只需求6k k +的最大值即可,再由集合A 中x ∈Z ,只需654k k-<+<-即可求解.【详解】由题知集合A 内的不等式为2(6)(4)0,kx k x x Z ---≥∈,故当0k =时,可得{}4A x Z x =∈<;当0k >时, 2(6)(4)0kx k x ---≥可转化为24060x kx k -≥⎧⎨--≥⎩ 或24060x kx k -≤⎧⎨--≤⎩,因为64k k <+,所以不等式的解集为{4x x ≤或6x k k ⎫≥+⎬⎭,所以A ={4x Z x ∈≤或6x k k ⎫≥+⎬⎭当0k <时,由64k k +<,所以不等式的解集为64x k x k ⎧⎫+≤≤⎨⎬⎩⎭,所以A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭,此时集合A 的元素个数为有限个.综上所述,当0k ≥时,集合A 的元素个数为无限个,当0k <时,集合A 的元素个数为有限个,故当0k <时,集合A 的元素个数最少,且当6k k+ 的值越大,集合A 的元素个数越少,令6()f k k k =+(0k <),则26()1f k k'=-,令()0f k '= 解得k =,所以()f k 在(,-∞内单调递增,在()内单调递减,所以max ()(f k f ==-又因为x ∈Z ,54-<-<-,所以当654k k-<+<-,即32k -<<-时,集合A =64x Z k x k ⎧⎫∈+≤≤⎨⎬⎩⎭中元素的个数最少,故32k -<<-故答案为:()3,2--【点睛】本题主要考查集合的运算和解不等式,综合性比较强.三、解答题(共6小题,共85分)16. 已知全集U =R ,集合{}2230A x x x =--<,{}04B x x =<<.(1)求()U A B ⋂ð;(2)设非空集合{}23,D x a x a a =<<+∈R ,若U D A ⊆ð,求实数a 的取值范围.【答案】(1){}34x x ≤< (2)][()3,23,--⋃+∞【解析】【分析】(1)利用一元二次不等式解法化简集合A ,然后利用补集和交集运算求解即可;(2)根据集合关系列不等式组求解即可.【小问1详解】因为{}2230A x x x =--<,所以{}13A x x =-<<,所以{}13U A x x x =≤-≥或ð,因为{}04B x x =<<,所以(){}34U A B x x ⋂=≤<ð.【小问2详解】因为{}13U A x x x =≤-≥或ð,由题意得23231a a a <+⎧⎨+≤-⎩或233a a a <+⎧⎨≥⎩,解得32a -<≤-或3a ≥.所以实数a 的取值范围是][()3,23,--⋃+∞.17. 已知函数()211f x x =+,[]2,5x ∈.(1)判断函数()f x 的单调性,并用定义证明你的结论;(2)求不等式()()121f m f m +<-的解集.【答案】(1)()f x 在[]2,5x ∈单调递减,证明见解析 (2)322mm ⎧⎫≤<⎨⎬⎩⎭【解析】【分析】(1)根据函数单调性的定义即可作差求解,(2)由函数的单调性即可求解.【小问1详解】()f x 在[]2,5x ∈单调递减,证明如下:设1225x x ≤<≤,则()()()()()()21211222221212111111x x x x f x f x x x x x -+-=-=++++,由于1225x x ≤<≤,所以()()222121120,0,110x x x x x x ->+>++>,因此()()120f x f x ->,故()()12f x f x >,所以()f x 在[]2,5x ∈单调递减,【小问2详解】由(1)知()f x 在[]2,5x ∈单调递减,所以由()()121f m f m +<-得51212m m ≥+>-≥,解得322m ≤<,故不等式解集为322mm ⎧⎫≤<⎨⎬⎩⎭18. 已知2y x x =-,且()1,1x ∈-.(1)求实数y 的取值集合M ;(2)设不等式()()20x a x a -+-<的解集为N ,若x ∈N 是x M ∈的必要条件,求a 的取值范围.【答案】18. 124M y y ⎧⎫=-≤<⎨⎬⎩⎭19. 14a <-或94a >【解析】【分析】(1)根据二次函数的性质即可求解集合M .(2)x ∈N 是x M ∈的必要条件,即M N ⊆,对a 分类讨论,解出不等式()(2)0x a x a -+-<的解集,可得a 的取值范围.【小问1详解】221124y x x x ⎛⎫=-=-- ⎪⎝⎭,的故函数在11,2⎛⎫- ⎪⎝⎭单调递减,在1,12⎛⎫ ⎪⎝⎭,故当12x =时取最小值min 14y =-,当=1x -时,2y =,当1x =时,0y =,故124y -≤<,所以124M y y ⎧⎫=-≤<⎨⎬⎩⎭,【小问2详解】x ∈N 是x M ∈的必要条件,即M N ⊆.当1a >时,2a a >-,此时(2,)N a a =-,所以1242a a ⎧-<-⎪⎨⎪≥⎩,解得94a >;当1a =时,N 为空集,不适合题意,所以1a =舍去; 当1a <时,2a a <-,此时(,2)N a a =-,所以1422a a ⎧<-⎪⎨⎪-≥⎩,解得14a <-综上可得a 取值范围是14a <-或94a >19. 近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);的(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩; (2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【解析】【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【小问1详解】依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000(9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.【小问2详解】由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()(920092009000W x x x =-++≤-+=,当且仅当10000x x=,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.20. 已知函数()f x 为二次函数,()f x 的图象过点()0,2,对称轴为12x =-,函数()f x在R 上最小值为74.(1)求()f x 的解析式;(2)当[]2,x m m ∈-,R m ∈时,求函数()f x 的最小值(用m 表示);(3)若函数()()1F x f x ax =--在()0,3上只有一个零点,求a 的取值范围.【答案】(1)217()()24f x x =++(2)2min2171(),242713(),422373(),242m m f x m m m ⎧++<-⎪⎪⎪=-≤≤⎨⎪⎪-+>⎪⎩(3)13[,3{})3+∞⋃.【解析】【分析】(1)设出函数的解析式,结合函数的对称轴以及函数最值,求出函数的解析式即可;(2)通过讨论m 的范围,求出函数的单调区间,求出函数的最小值即可;(3)根据一元二次方程根的分布,结合零点存在性定理得到关于a 的不等式,解出即可.【小问1详解】设函数2()()f x a x h k =-+,由对称轴为12x =-,函数()f x 在R 上最小值为74可得得217()(24f x a x =++,将(0,2)代入()f x 得:1a =,故217()()24f x x =++;【小问2详解】()f x 的对称轴为12x=-,12m ≤-时,()f x 在[2m -,]m 递减,2min 17()()(24f x f m m ==++,1322m -<<时,()f x 在[2m -,12-递减,在1(2-,]m 递增,故min 17()()24f x f =-=,32m ≥时,()f x 在[2m -,]m 递增,故2min 37()(2)(24f x f m m =-=-+;综上,2min2171(),242713(),422373(),242m m f x m m m ⎧++<-⎪⎪⎪=-≤≤⎨⎪⎪-+>⎪⎩;【小问3详解】2217()()1()1(1)124F x f x ax x ax x a x =--=++--=+-+在(0,3)上只有一个零点,当Δ0=时,即()2140a ∆=--=,解得3a =或1a =-当1a =-时,2210x x ++=,=1x -不满足题意,舍去,当3a =时,2210x x -+=,1x =满足题意,当0∆>时,当()(0)30F F ⋅<,解得133a >,此时()F x 在(0,3)上只有一个零点,由于(0)1F =,当()31330F a =-=时,此时133a =,此时210()103F x x x =+=-,解得13x =或3x =(舍去),满足条件,综上可得133a ≥,综上:a 的取值范围是13[,3{})3+∞⋃.21. 设整数集合{}12100,,,A a a a =⋯,其中121001···205a a a ≤<<<≤ ,且对于任意(),1100i j i j ≤≤≤,若i j A +∈,则.i j a a A +∈(1)请写出一个满足条件的集合A ;(2)证明:任意{}101,102,,200,x x A ∈⋯∉;(3)若100205a =,求满足条件的集合A 的个数.【答案】(1){1,2,3,,100}A = (2)证明见解析 (3)16个【解析】【分析】(1)根据题目条件,令n a n =,即可写出一个集合{1,2,3,,100}A = ;(2)由反证法即可证明;(3)因为任意的{}101,102,,200,x x A ∈⋯∉,所以集合{201,202,,205}A 中至多5个元素.设100100m a b -=≤,先通过判断集合A 中前100m -个元素的最大值可以推出(1100)i a i i m =-≤≤,故集合A 的个数与集合{201,202,203,204}的子集个数相同,即可求出.【详解】(1)答案不唯一. 如{1,2,3,,100}A = ; (2)假设存在一个0{101,102,,200}x ∈ 使得0x A ∈, 令0100x s =+,其中s ∈N 且100s ≤≤1,由题意,得100s a a A +∈,由s a 为正整数,得100100s a a a +>,这与100a 为集合A 中的最大元素矛盾,所以任意{101,102,,200}x ∈ ,x A ∉.(3)设集合{201,202,,205}A 中有(15)m m ≤≤个元素,100m a b -=,由题意,得12100200m a a a -<<< ≤,10011002100200m m a a a -+-+<<<< ,由(2)知,100100m a b -=≤.假设100b m >-,则1000b m -+>.因为10010010055100b m m -+-+=<-≤,由题设条件,得100100m b m a a A --++∈,因为100100100100200m b m a a --+++=≤,所以由(2)可得100100100m b m a a --++≤,这与100m a -为A 中不超过100的最大元素矛盾,所以100100m a m --≤,第21页/共21页又因为121001m a a a -<<< ≤,i a ∈N ,所以(1100)i a i i m =-≤≤. 任给集合{201,202,203,204}的1m -元子集B ,令0{1,2,,100}{205}A m B =- , 以下证明集合0A 符合题意:对于任意,i j 00)(1i j ≤≤≤1,则200i j +≤.若0i j A +∈,则有m i j +≤100-,所以i a i =,j a j =,从而0i j a a i j A +=+∈.故集合0A 符合题意,所以满足条件的集合A 的个数与集合{201,202,203,204}的子集个数相同,故满足条件的集合A 有4216=个.【点睛】本题主要考查数列中的推理,以及反证法的应用,解题关键是利用题目中的递进关系,找到破解方法,意在考查学生的逻辑推理能力和分析转化能力,属于难题.。
北师大附属实验中学2023-2024学年度第一学期期中试卷高一年级语文班级姓名学号成绩考生须知1.本试卷共12页,共9道大题,34道小题;答题纸共3页。
满分150分。
考试时间150分钟。
2.在试卷和答题卡上准确填写班级、姓名、学号。
3.试卷答案一律填写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。
命题人:邢永利审题人:汪文龙Ⅰ卷模块检测(50分)一、现代汉语基础知识(本大题共4小题,每小题2分,共8分)1.下列句中加点字的读音全都正确....的一项是()(1)请将你的脂.膏,不息地流向人间。
(《红烛》)(2)我的指关节铆钉一样揳.入巨石的罅隙。
(《峨日朵雪峰之侧》)(3)即使我们能摈.弃憎恨、傲慢和恐惧,我也不知,怎能接近于你的欢愉。
(《致云雀》)(4)要不是敌人的冷炮在间.歇地盲目地轰响着,我真以为我们是去赶集的呢!(《百合花》)A.zhǐqìbìng jiànB.zhīxiēbìng jiānC.zhīxiēbìn jiànD.zhǐqìbìn jiān2.下列句中没有错别字.....的一项是()A.恰同学少年,风华正茂;书生义气,挥斥方遒。
(《沁园春·长沙》)B.它那强烈的明灯,在晨曦中逐渐暗淡,以至难以分辩。
(《致云雀》)C.这媳妇长得很好看,高高的鼻梁,弯弯的眉,额前一溜篷松松的刘海。
(《百合花》)D.香雪站住了,月光好像也黯淡下来,脚下的枕木变成一片模糊。
(《哦,香雪》)3.对下列句中加点词语的解释,不正确...的一项是()A.曾记否,到中流击水,浪遏.飞舟。
(《沁园春·长沙》)遏:阻止。
B.鹰击长空,鱼翔浅底,万类霜天..竞自由。
(《沁园春·长沙》)霜天:霜雪降临的冬日。
C.我只好硬了头皮,讪讪..地向她开口借被子了。
北京师大二附中2024—2025学年高一年级第一学期数学期中测试题本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,只收答题纸,不收试卷.一、单选题1.下列说法不正确的是( ) A.B.C.D.2.已知集合,则集合中元素的个数是( )A.1B.3C.5D.93.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件4.“运动改造大脑”,为了增强身体素质,某班学生积极参加学校组织的体育特色课堂,课堂分为球类项目A 、径赛项目B 、其他健身项目C .该班有25名同学选择球类项目A ,20名同学选择径赛项目B ,18名同学选择其他健身项目C ;其中有6名同学同时选择A 和名同学同时选择A 和C ,3名同学同时选择B 和.若全班同学每人至少选择一类项目且没有同学同时选择三类项目,则这个班同学人数是( )A.51B.50C.49D.485.用二分法求函数的零点,经过若干次运算后函数的零点在区间内,当(为精确度)时,函数零点的近似值与真实零点的误差的取值范围为( )A. B. C. D.6.已知关于的不等式的解集为,则实数的取值范围是( )A.B.C.D.7.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具*0∈N 0∈N 0.1∉Z 2∈Q{}0,1,2A ={},B x yx A y A =-∈∈∣x 8x,4B C (),a b a b ε-<ε02a bx +=0,4ε⎡⎫⎪⎢⎣⎭0,2ε⎡⎫⎪⎢⎣⎭[)0,ε[)0,2εx 210mx mx +->∅m ()(),40,∞∞--⋃+[)4,0-][(),40,∞∞--⋃+[]4,0-()f x R 12,x x ∈R ()()121222f x f x x x f ++⎛⎫=⎪⎝⎭()f x P ()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩()2f x x =()21f x x =-有性质的函数的个数为( )A.0B.1C.2D.38.已知“非空集合的元素都是集合的元素”是假命题,给出下列四个命题:①中的元素不都是的元素;②的元素都不是的元素;③存在且;④存在且;这四个命题中,真命题的个数为( )A.1个B.2个C.3个D.4个9.已知函数,则的定义域为( )A. B. C. D.10.已知函数,若存在区间,使得函数在上的值域为,则实数的取值范围是()A. B.C. D.二、填空题11.下列集合:①;②;③;④;⑤;⑥方程的实数解组成的集合.其中,是空集的所有序号为__________.12.若集合只含一个元素,则__________.13.若二次函数图象关于对称,且,则实数的取值范围是__________.14.若关于的不等式的解集中只有一个元素,则实数的取值集合为__________.15.若关于的方程的两个实数根是,则的最小值是__________.三、解答题16.设集合中的三个元素分别为,集合中的三个元素分别为.已知,求的值.17.已知集合,其中至少有一个集合不是空集,求实数的取值范围.P M P M P M P x P ∈x M ∈x M ∈x P ∉()f x =()()1212g x f x x =-+-3,2∞⎡⎫+⎪⎢⎣⎭()3,22,2∞⎡⎫⋃+⎪⎢⎣⎭()3,22,4∞⎡⎫⋃+⎪⎢⎣⎭()(),22,∞∞-⋃+()f x m =+[](),1a b b a >≥-()f x [],a b []2,2a b m 178m >-102m <≤2m ≤-1728m -<≤-{}0{}21,0,M xx n x n ==+<∈R ∣{}∅∅(){}0,0210x+={}2210M xax x =++=∣a =()y f x =2x =()()()01f a f f <<a x 212kx x k ≤++≤k m 2260m am a -++=,x y 22(1)(1)x y -+-A ,0,1a -B 1,,1c b a b++A B =,,a b c {}(){}{}22224430,10,220A xx ax a B x x a x a C x x ax a =+-+==+-+==+-=∣∣∣a18.已知关于的不等式.(1)若,求不等式的解集;(2)若不等式的解集为,求实数的范围.19.已知函数,且.(1)求实数的值;(2)判断函数在上的单调性,并证明;(3)求函数在上的最值.20.定义在区间上的函数满足,且对任意的都有.(1)证明:对任意的都有;(2)求的值;(3)计算.21.已知函数.(1)若函数在上单调递增,求实数的取值范围;(2)若存在实数使得关于的方程恰有三个不相等的实数根,求实数的取值范围.答案一、单选题1.A2.C3.B4.B5.B6.D7.C8.B9.C10.D二、填空题11.②④⑥12.0或113.14.15.8x ()221x x a a -->∈R 1a =R a ()2a f x x x =-()922f =a ()f x ()1,∞+()f x []2,3[]0,1()f x ()()010f f ==[]12,0,1x x ∈()()12122x x f f x f x +⎛⎫≤+ ⎪⎝⎭[]0,1x ∈()0f x ≥34f ⎛⎫ ⎪⎝⎭202411112422k ff f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()2f x x x a x a =-+∈R ()f x R a []0,4a ∈x ()()0f x tf a -=t ()(),04,∞∞-⋃+三、解答题16.因为,所以,解得,所以的值分别为.17.当三个集合全是空集时,所对应的三个方程都没有实数解,即解此不等式组,得.所以所求实数的取值范围为.18.(1)时,原不等式为,整理,得,对于方程,因为,所以它有两个不等的实数根,解得结合函数的图象得不等式的解集为或.(2)原不等式可化为,由于不等式解集为,结合函数图象可知,方程无实数根,所以,所以的范围是.19.(1)因为,且,所以,所以.(2)函数在上单调递增.证明如下:1,0AB a b =≠+10,1,1c b a a b+==-=+1,2,2a b c ==-=,,a b c 1,2,2-()2122223Δ164430,Δ(1)40,Δ480.a a a a a a ⎧=--+<⎪=--<⎨⎪=+<⎩312a -<<-a [)3,1,2∞∞⎛⎤--⋃-+ ⎥⎝⎦1a =2211x x -->2220x x -->2220x x --=Δ120=>1211x x ==+222y x x =--{1x x <-∣1x >+2210x x a --->R 221y x x a =---2210x x a ---=()Δ441840a a =++=+<a {2}aa <-∣()2a f x x x =-()922f =9422a -=1a =-()f x ()1,∞+由(1)可得,,任取,不妨设,则因为且,所以,所以,即,所以在上单调递增.(3)由(2)知,函数在上单调递增,则当时,有最小值;当时,有最大值.20.(1)任取,则有,即,于是,所以,对任意的都有.(2)由,得,于是,但由(1)的结果知,所以,()12f x x x=+()12,1,x x ∞∈+12x x <()()2121211122f x f x x x x x ⎛⎫-=+-+ ⎪⎝⎭()2121112x x x x ⎛⎫=-+- ⎪⎝⎭()1221122x x x x x x -=-+()211212x x x x ⎛⎫=-- ⎪⎝⎭()()21121221x x x x x x --=()12,1,x x ∞∈+12x x <2112120,210,0x x x x x x ->->>()()210f x f x ->()()21f x f x >()f x ()1,∞+()f x []2,32x =()f x ()922f =3x =()f x ()1933f =[]120,1x x x ==∈()()22x f f x f x ⎛⎫≤+ ⎪⎝⎭()()2f x f x ≤()0f x ≥[]0,1x ∈()0f x ≥()()010f f ==()()01010002f f f +⎛⎫≤+=+=⎪⎝⎭102f ⎛⎫≤ ⎪⎝⎭102f ⎛⎫≥⎪⎝⎭102f ⎛⎫= ⎪⎝⎭由,则,于是,由(1)的结果知,所以.(3)由,得,于是,但由(1)的结果知,所以,继续求下去,可得,因此,.21.(1).由在上是增函数,则即,则范围为.(2)当时,在上是增函数,则关于的方程不可能有三个不等的实数根.当时,由,得时,对称轴,则在为增函数,此时的值域为;时,对称轴,则在为增函数,此时的值域为,在为减函数,此时的值域为;()10,102f f ⎛⎫== ⎪⎝⎭()1112100022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭304f ⎛⎫≤ ⎪⎝⎭304f ⎛⎫≥⎪⎝⎭304f ⎛⎫= ⎪⎝⎭()100,02f f ⎛⎫== ⎪⎝⎭()1012000022f f f ⎛⎫+ ⎪⎛⎫≤+=+= ⎪ ⎪⎝⎭ ⎪⎝⎭104f ⎛⎫≤ ⎪⎝⎭104f ⎛⎫≥⎪⎝⎭211042f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭10,1,2,3,,20242k f k ⎛⎫== ⎪⎝⎭2024111102422k f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()222,22,x a x x a f x x x a x x a x x a ⎧+-≥⎪=-+=⎨-++<⎪⎩()f x R 2,22,2a a a a -⎧≥-⎪⎪⎨+⎪≤⎪⎩22a -≤≤a 22a -≤≤22a -≤≤()f x R x ()()0f x tf a -=(]2,4a ∈()()()222,2,x a x x a f x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩x a ≥()()22f x x a x =+-22a x -=()f x [),x a ∞∈+()f x ())[),2,f a a ∞∞⎡+=+⎣x a <()()22f x x a x =-++22a x +=()f x 2,2a x ∞+⎛⎤∈- ⎥⎝⎦()f x 2(2),4a ∞⎛⎤+- ⎥⎝⎦()f x 2,2a x ∞+⎡⎫∈+⎪⎢⎣⎭()f x 2(2)2,4a a ⎛⎤+ ⎥⎝⎦由存在,方程有三个不相等的实根,则,即存在,使得即可,令,只要使即可,而在上是增函数,,故实数的取值范围为.综上所述,实数的取值范围为.(]2,4a ∈()()2f x tf a ta ==2(2)22,4a ta a ⎛⎫+∈ ⎪⎝⎭(]2,4a ∈2(2)1,8a t a ⎛⎫+∈ ⎪⎝⎭()2(2)8a g a a +=()max ()t g a <()g a (]2,4a ∈()max 9()48g a g ==t 91,8⎛⎫⎪⎝⎭t 91,8⎛⎫⎪⎝⎭。
北京市部分地区2020-2021学年高一第一学期期中英语试卷分类汇编-书面表达北师大珠海分校附属外国语学校2020-2021学年第一学期期中考试高一年级英语第四部分写作(满分20分)假定你是高一新生李华,你班外教布朗先生,为了更好地了解你班同学,要求每名同学做一下自我介绍,请你用英语给他写一封书信,介绍自己。
内容包括:1. 姓名和年龄;2. 性别和爱好;3. 你的梦想。
注意:1. 词数80左右;2. 可以适当增加细节,使行文连贯。
___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ______________________________________北京市丰台区2020-2021学年度第一学期高一英语期中考试联考第二节:短文写作(共15分)43. 根据题目所提出的具体要求,在答题纸上写出一篇连贯完整的短文。
北京市北京师范大学附属实验中学2024届高一物理第一学期期中考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:(1-6题为单选题7-12为多选,每题4分,漏选得2分,错选和不选得零分)1、如图所示,为甲、乙两物体在同一直线上运动的位置坐标x 随时间t 变化的图像,已知甲对应的是图像中的直线,乙对应的是图像中的曲线,则下列说法正确的是()A .甲做匀减速直线运动B .乙做变速直线运动C .10~t 时间内两物体平均速度大小相等D .20~t 时间内甲的平均速度大小小于乙的平均速度大小2、如图所示,A 为长木板,在水平面以速度1v 向右运动,物块B 在木板A 的上面以速度2v 向右运动,下列判断正确的是( )A .若是12v v =,A 、B 之间无滑动摩擦力B .若是12v v >,A 受到了B 所施加向右的滑动摩擦力C .若是12v v <,B 受到了A 所施加向右的滑动摩擦力D .若是12v v >,B 受到了A 所施加的向左的滑动摩擦力3、甲、乙、丙三个物体同时同地出发做直线运动,它们的位移一时间图象如图所示,在20s 内它们的平均速度和平均速率的大小关系是( )A .平均速度大小相等,平均速率v v v >=甲乙丙B .平均速度大小相等,平均速率v v v >>甲乙丙C .平均速度v v v >>甲乙丙,平均速率相等D .平均速度和平均速率大小均相等4、科技活动小组,设计如图的实验装置来研究力的分解,托盘A 固定在细杆上,细杆放在固定的圆孔中,下端有滚轮,细杆只能在竖直方向上移动,在与托盘连接的滚轮正下面的底座上也固定一个滚轮,轻质劈放在两滚轮之间,劈背的宽度为a ,侧面的长度为102a l =,劈尖上固定的细线通过滑轮悬挂总质量为m 的钩码,调整托盘上所放砝码的质量M ,可以使劈在任何位置时都不发生移动。
2020-2021学年上学期高一期中数学试题及答案第I卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1•设全集为R,集合A = {x∖0<x<2}, B = {xlx≥l),则An(QB)=( )A.{xlθ<x≤l)B. {xlθ<x<l)C. {xll≤x<2}D. {xlθ<J<2)【答案】B【解析】由题意可得C R B = {x∣x<l}, 结合交集的泄义可得An (C R B) = {O<X<1},故本题选择B选项.2.已知幕函数/(X)过点(2,丄),则/⑴在其定义域内( )4A.为偶函数B.为奇函数C.有最大值D.有最小值【答案】A【解析】设幕函数为fM = x∖代入点(2,1),即2u=l, Λf∕ = -2,4 4f(x) = χ-2,定义域为(-00,0)U(O,+OO),为偶函数且/(x) = x^2∈(0,+oo),故选A.3.幕函数f(x) = (m2-2m + ∖)x2m~l在(0,乜)上为增函数,则实数加的值为( )A. 0B. 1C. 1 或2D. 2【答案】D【解析】因为函数/(X)是幕函数,所以加2_2加+ 1 =],解得加=0或Hl = 2, 因为函数/(X)在(0,-KC)上为增函数,所以2∕w-l>0,即w>∣, I n = 2, 故选D・4.函数f(x) =Ig(X2-I)V-X2 +x + 2的定义域为(A. (-∞厂2) U(I,+∞) B ・(一2,1) C. (-∞,-l)U(2,+∞)D. (1,2)【答案】Dx 2-l>O 【解析】?^l<x<2, A 函数的左义域为(1,2)・【答案】Cα-lvθ OVaVl,得 ≥β≤"<l,故选 C.22(α-l)-2d ≥ IOg (I 2下而各组函数中是同一函数的是(^(Λ) = √X +1 √x -l【答案】A【解析】函数y = 4-2?与V = -X √Σ27的定义域均为(-O 0],且 y = √=2√ =^J-2x ∙ y/7 = -Xy∣-2x ‘所以两函数对应法则相同,故A 正确:函数V = (√7)2的左义域为[O, +S),函数V=IxI 的左义域为R , 所以两函数不是同一函数,故B 错误;2函数/(x) = X 的定义域为R ,函数g (X)=—的左义域为{x∣x≠O}t 所以两函数不是同一函数,故C 错误;5.若函数/U)=在R 上单调递减,则实数d 的取值范用是(-x fc +x+2>0【解析】若函数∕ω =(G-I)X-2α, X<2y = J-2χ3 与 y = -x√-2x(G-I)X -2G , x<2函数^(X) = √7+T.√7^T 的上义域为[i,4∙s),所以两函数不是同一函数,故D 错误,【解析]V fM 与gd)都是偶函数,∙∙J(χ)∙g(χ)也是偶函数, 由此可排除A 、D, 又由 X→-H>o 时,/(x)∙^(x)→→0 ,可排除 B, 故选C.8・IOg W 2 = «, IOg Jπ3 = ⅛,则加2网的值为( )A. 6B ・ 7 C. 12 D ・ 18【答案】C【解析】Tlog 川2 = α, log fπ3 = Z?, ∙∙∙"{=2, =3,Irr a ^ = 〃严〃/ = (Hi o )2Hi h =22×3 = 12,故选 C.9.若函数/(x) = log l (-x 2+4x + 5)在区间(3∕n -2√π + 2)内单调递增.则实数加的取值范围 为()函数/(x) = √2√^T的泄义域为[芈2 ,+oθ)U(-°°,-故选A.7.函数/(x) = log 2g(x) = -x 2+2 ,则函数f(x)∙g(x)的图象大致()【答案】C【答案】C【解析】解不等式-χ2+4x+5>0,即4x-5v0,解得一1VXV5, 内层函数W =→2+4.V + 5在区间(72)上单调递增,在区间(2,5)上单调递减, 而外层函数y = Iog 1 "在左义域上为减函数,2由复合函数法可知,函数fW = IOg I (→∙2÷4x + 5)的单调递增区间为(2,5), 2由于函数f(x) = IOg I (-X 2+ 4Λ∙+5)在区间(3m- 2, m + 2)上单调递增,-2≥24所以,3ιn -2<m + 2 9 解得一 Smv2,3//? + 2 ≤ 5 4因此,实数加的取值范围是[-,2),故选C.【答案】Br的+3 = 4 U-IOgM = 4【解析】因为/(α)=4,所以< C 或(C a≤0a>0故选B.11.已知定义在R 上的奇函数/(X)满足/(x+2) = -∕(x),当时[0,1] , /(x) = 2x -l,则()A. /⑹ nV*)B. /⑹ vf(¥)v/(_7)22X^, +310.设函数fM = ↑t IIl-IOg2 九4 B. [亍4 C. l-,2)弋,若/(¢/) = 4,则实数d 的值为( x>0A.B.D.1 16a≤0 a>0C. /(-7) < /(y) < /(6)D. /(y) < /(6) < /(-7)【答案】B【解析】由题意得,因为/(x+2) = -∕(x),则/(x+4) = ∕(x), 所以函数/S)表示以4为周期的周期函数, 又因为/⑴ 为奇函数,所以/(-X) =-/U),所以/(6) = /(4 + 2) = /(2) = -/(O) = 0, /(-7) = /(-8 + 1) = /(1) = 1,12.已知函数/(Λ-) = Iog 1 (?-av-«)对任意两个不相等的实数Λ-p x 2∈(-σ□,-l),都满3 2足不等式"" >0,则实数G 的取值范围是()A- I -I ^) B- (^-Il c∙ hl 41D ∙ [7》【答案】C瞬析嘶 詈严2>。
2023-2024学年北京市首都师大附中高一(上)期中数学试卷一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选出符合题目要求的一项)1.设集合A ={﹣1,0,1,2,3},B ={x |x 2﹣3x <0},则A ∩B =( ) A .{﹣1}B .{1,2}C .{1,2,3}D .{﹣1,0,1,2}2.下列各组函数表示同一函数的是( ) A .f(x)=√x 2,g(x)=(√x)2B .f (x )=1,g (x )=x 0C .f (x )={x ,x ≥0−x ,x <0,g (x )=|x |D .f (x )=x +1,g(x)=x 2−1x−13.已知函数f(x)={x 2−1,x ≤11x−1,x >1,则f (f (﹣2))=( )A .8B .12C .−34D .−1094.“x <3”是“|x ﹣1|<2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件5.“∃x ∈N ,x ﹣1<0”的否定为( ) A .∃x ∈N ,x ﹣1≥0 B .∃x ∉N ,x ﹣1≥0 C .∀x ∉N ,x ﹣1≥0D .∀x ∈N ,x ﹣1≥06.对于实数a ,b ,c ,下列说法正确的是( ) A .若a >b ,则1a<1bB .若a >b ,则ac 2>bc 2C .若a >0>b ,则ab <a 2D .若c >a >b ,则ac−a>b c−b7.已知函数f(x)=1ax 2+bx+c的部分图象如图所示,则a +b +c =( )A .﹣6B .6C .﹣3D .38.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),都有f(x 2)−f(x 1)x 2−x 1<0,且f (3)=0,则不等式xf (x )>0的解集是( ) A .(﹣3,0)B .(﹣3,0)∪(3,+∞)C .(﹣∞,﹣3)∪(0,3)D .(﹣∞,﹣3)∪(3,+∞)9.命题“∀x ∈[1,2],2ax +11x ≥0”为真命题的一个充分不必要条件是( ) A .a ≥﹣1B .a ≥﹣2C .a ≥﹣3D .a ≥﹣410.对实数a 和b ,定义运算“◎”:a ◎b ={a ,(a −b ≤1)b ,(a −b >1),设函数f (x )=(x 2﹣2)◎(x ﹣x 2),x ∈R .若函数y =f (x )﹣c 的图像与x 轴恰有3个公共点,则实数c 的取值范围是( ) A .(﹣2,﹣1] B .(−∞,−2]∪(−1,−34) C .(−34,+∞)D .(﹣1,+∞)二、填空题(本大题共5小题,每小题4分,共20分) 11.函数f (x )=√9−x 2x的定义域为 .12.已知函数f (x )是定义在(﹣∞,+∞)上的偶函数.当x ∈(﹣∞,0)时,f (x )=x ﹣x 4,则当x ∈(0,+∞)时,f (x )= .13.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而汽车每小时耗油(6+x 2360)升,司机的工资是每小时24元.则这次行车的总费用最低为 元.14.若关于x 的不等式ax ﹣b >0的解集为{x |x <1},则关于x 的不等式ax+b x−2>0的解集为 .15.下列四个命题:①若a >b >0,a >m >0,则b−m a−m<b a<b+m a+m;②函数f(x)=x +4x+1的最小值是3;③已知x >0,y >0,且x +y =1,则1x+1y 的最小值是4;④已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为2√6−3. 其中所有正确命题的序号是 .三、解答题(本大题共5小题,共50分.解答应写出文字说明,演算步骤或证明过程)16.(8分)设集合A ={x |﹣2≤x ≤5},B ={x |m ﹣1≤x ≤2m +1}. (1)若m =3,求∁R (A ∪B ); (2)若B ⊆A ,求m 的取值范围.17.(8分)已知函数f (x )=x 2﹣(a +b )x +2a .(1)若关于x 的不等式f (x )<0的解集为{x |1<x <2},求a ,b 的值; (2)当b =2时,解关于x 的不等式f (x )>0. 18.(12分)已知函数f(x)=ax+b 4−x 2是定义在(﹣2,2)上的奇函数,且f(1)=23.(1)求实数a 和b 的值;(2)判断函数f (x )在(﹣2,2)上的单调性,并证明你的结论; (3)若f (t 2﹣1)+f (1﹣t )<0,求t 的取值范围.19.(10分)已知函数f (x )的定义域为R ,并且满足下列条件:①f (﹣1)=1;②对任意x ,y ∈R ,都有f (x +y )=f (x )+f (y );③当x >0时,f (x )<0. (Ⅰ)求f (0),f (2)的值; (Ⅱ)证明:f (x )为奇函数;(Ⅲ)解关于x 的不等式f (x 2+2x )﹣f (2﹣x )>﹣2.20.(12分)对于函数f (x ),若存在实数x 0,使得f (x 0)=x 0成立,则称x 0为f (x )的“不动点”. (Ⅰ)设函数f(x)=3x+2x+2,求f (x )的不动点;(Ⅱ)设函数f (x )=ax 2+(b +1)x +b ﹣2(a ≠0),若对于任意的实数b ,函数f (x )恒有两相异的不动点,求实数a 的取值范围;(Ⅲ)设函数f (x )定义在(﹣∞,+∞)上.证明:若f (f (x ))存在唯一的不动点,则f (x )也存在唯一的不动点.2023-2024学年北京市首都师大附中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分。
北师大株洲附属学校2020-2021年度第一学期期中考试高一英语试题卷卷面分值:150分考试时间:120分钟第一部分听力技能(共两节, 满分30分)略第二部分阅读理解(共两节, 满分40分)第一节 (共15小题,每小题2分,共30分)阅读下列短文,从每题所给的四个选项中,选出最佳选项,并在答题卡上将该选项涂黑。
AHow do you film something that isn’t real? Like, for example, a dragon. Movie-maker have used all sorts of tricks to create free-breathing creatures,each more amazing than the last.Puppets and PerspectiveThe earliest, and simplest, film dragons were just big puppets. Filmmakers realized that they could get away with much smaller puppets if the actor just stood way behind the dragon. On film, the dragon looked HUGE but really it was just closer to the camera.Stop-MotionIf puppets aren’t your thing, try stop -motion animation. Movie cameras are just fast cameras that snap 24 pictures a second, then play them back at the same speed. To make a clay dragon seem to move, all you have to do is take a picture, move your clay dragon a tiny bit,and take another. Be sure you have plenty of time, though-you’ll need 1440 pictures for every minute of film!Computer AnimationPuppets and clay models are kid games, compared to the tricks you can do with computers. To make films with real actors battling fantastical beasts, live actors are filmed first, just pretending to battle a dragon. Then, using powerful computer programs, artists make animation gets better and better, so do the dragons.21.W hat were the earliest and simplest dragons?A.They were fire-breathing creatures.B.They were big puppets.C.They were huge cameras.D.They were flame-breathing monsters.22. Ho many pictures can a movie camera snap every second?A. 1440B. 50C. 42D. 2423. Which is the best to make dragons look real?A.Computer Animation B.Stop-MotionC.Puppets and Perspective D.Clay modelsBHow do you usually spend your spare time? Many people choose to be couch potatoes, but not Luo Han, a 9-year-old from Changsha, Hunan. Luo Han completes at least two hours of outdoor activities every day and has raised a weave of discussion online. Although he is in primary school, he has already mastered sports like kayaking and paddling. His aptitude for outdoor sports is due to his father Luo Ge, who actively encourages him to enjoy nature, rather than focusing only on his learning.After noticing that Luo Han did not go out for enough exercise after school, his father took him to do outdoor activities every day.“Exercise can ease brain fog and improve memory. Many students feel stressed about school work, so outdoor activities can help us keep our moods uplifted and improve our learning efficiency,”said Liu Yu, 18, a university freshman.However, some have also expressed their concerns.“Two hours isn’t too much for a 9-year-old, but it might be difficult for high school students to guarantee the time when school becomes more demanding,” said Huang Xi, 16, from Liyang High School of Jiangsu Province.Ms. Zhu, who has a daughter in middle school, also agreed that two hours is too much for the majority of parents, especially on weekdays. “When I am off duty, I need to do housework. After my daughter finishes her homework, she prefers to watch TV. Neither of us would think of going outside for exercise.” Zhu said.Other parents are concerned about the safety of outdoor activities. Zhang Zhijin has a son in high school. “Sometimes, teenagers can do crazy and risky things. We worry about accidents.” Zhang said.24.What news about Luo Han has caused online discussion?A.His talent for outdoor sports.B.The way he gets along with his father.C.Daily time he spends on outdoor activities.D.The way he deals with learning and outdoor sports25. What did Liu Yu think of students doing outdoor activities?A. It can help them learn better.B. It is more helpful to those under stress.2C. It helps them build character.D. It often leads to poor school performance.26. What is the meaning of the underlined word in the passage?A. Easy.B. Difficult.C. Efficient.D. Risky.27. What does Ms Zhu’s example tell us?A. There is too much school work for high school students.B. Most parents can’t afford to spend two hours outdoors on weekdays.C. Most parents are worried about the safety of outdoor activities.D. Parents should care more bout their children’s learning.CJulie is only eleven years old, but she is famous all over the world because of her photos with wild animals. She became famous by accident.Her parents came to Africa with Julie many years ago when she was only five. They worked for a group called Save the Children, which helps poor children around the world. Julie soon made many new friends there. She became the best friend of a local boy called Kanu.One day Julie and Kanu were playing together. She was showing him how to use a camera. Then Kanu wanted to take a photo of Julie with an interesting tree behind her.he couldn’t fit her and the tree in the photo, so he told her to stand closer to the tree. He took a photo of Julie standing under the tree. Nothing happened until they got the photo developed. When they looked at the photo, they saw soomething hanging down from the tree. At first, they thought it was a snake. Then they realized it was a leopard’s tail in the photo. Julie was only about a metre away from it.Julie decided to go back to the tree see if the leopard was still there. She wanted to get a better photo of her and the leopard. She and Kanu went in the middle of the day, because they knew that big cats are often sleeping at that time of the day. As it so happened, the leopard was still there and was asleep, so they were able to get a good photo of Julie and the sleeping leopard together.After they got the photo of Julie with the leopard sleeping in the tree, they showed it to Kanu’s father, who owned the local newspaper. He put the photo of Julie and the leopard in the Sunday paper. When people saw the photo, they wrote letters to the newspaper asking to see more, so Julie started to take more photos with lions, snakes and many other kinds of wild animals. Soon a lot of magazines started to buy the photos from her. Julie and her parents donated a lot of the money from these photos to Save the Children.It is strange that being famous can start from an accident.28. What did Julie expect to see in the first photo?A. A snakeB. A leopardC. Herself and an interesting treeD. A leopard's tail29. Why did Julie and Kanu think it safe to go back and get another photo?A. Because big cats are often asleep in the middle of the day.B. Because Julie was standing under the tree.C. Because the leopard was not there.D. Because they are professional.30.Who got the photo into the newspaper?A. Kanu's fatherB. Julie's fatherC. KanuD. Julie's parents31.What's the best title of this passage?A. A famous photoB. Julie and a leopard.C. Famous by accident. D A famous accidentDIn 1997, the Net Book Agreement in the UK ended. The Agreement existed between UK bookshops and Publishers, and fixed minimum prices for all books. With the end of the Agreement, books began to be discounted, and now they are much more affordable for British people. One of the reasons for British libraries having fewer visitors is that books can now be so cheap to buy. Sales of books in the UK are always relatively healthy.The UK has always been famous for its stories of magic. Shakespeare wrote fantastical plays: The Tempest and A Midsummer Night’s Dream, for example. There was also a lot of fantasy in the work of H.G. Wells, who published The Time Machine in 1895. Everyone’s heard of J.K. Rowling and the humorous, deceased in 2015, Terry Pratchett. You might also have heard of Philip Pullmans His Dark Materials trilogy too, as the first book was made into the film The Golden Compass, starring Nicole Kidman.The UK is known for its “detective fiction” and“murder mysteries”. A couple of the most famous British authors of this kind are of course Sir Arthur Conan Doyle who started the Sherlock Holmes stories in 1887, and Agatha Christie, who created the detectives Hercule Poirot and Miss Marple. And there are many contemporary popular British authors of crime fiction: P.D. James, Ian Rankin Colin Dexter.Leading contemporary British novelist Will Selfal, author of eleven literary novels. says the novel is dying. But I don't think there's any need to call in Sherlock Holmes to look into this particular death just yet. Are bookshops dying out because of websites like Amazon? Not really. The2British are bibliophiles and love to read in bookshops, particularly when there is a coffee bar within the store. So, are libraries completely disappearing in the UK? Well, nearly 500 libraries have closed down in the last five years. But that isn't just because of reader demand, it's also down to government cuts in public spending and the library is adapting: most now offer computer access and training as well as books for reading. Finally, 62 per cent of British parents read their children bedtime stories and none of us can see that tradition hanging soon. So long live the book!32. Why don’t British people use libraries as much as they used toA. Because there are no coffee bars in librariesB. Because people don't read as much as in the pastC Because books are cheaper than they used to beD. Because the government cuts in public spending33. Which author below ever wrote fantasy according to the passage?A. Will SelfalB. H.G. WellsC. PD JameD. Agatha Christie.34. What's the third paragraph mainly about?A. Some murder mysteries in the UKB. Some famous detectives in the UKC. Some popular books in the UKD. Some famous authors of crime fiction35. What does the author of the article think will happen to books in the future?A. They will become unpopular.B. They will become more popular.C. They will be replaced by computersD. They will stay popular.第二节根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。