高等数学 3幂级数收敛域和函数
- 格式:ppt
- 大小:252.00 KB
- 文档页数:46
求幂级数的收敛域和函数幂级数是一类特殊的无穷级数,形如:$$\sum_{n=0}^{\infty}a_nx^n$$其中$a_n$为一定的常数,$x$为变量。
幂级数在数学中有着广泛的应用,如解微分方程、计算函数值等等。
我们通常研究一个幂级数的收敛性和收敛域。
收敛性指的是该级数在某些特定变量下是否收敛,收敛域则是指使得该级数收敛的变量范围。
1. 收敛域对于一个幂级数$\sum\limits_{n=0}^{\infty}a_nx^n$,令$r$为级数的收敛半径。
则幂级数可以满足以下任意一种情况:(1)当$|x| < r$时,幂级数绝对收敛;经过证明可知,收敛半径$r$满足以下公式:$$r = \lim_{n \to \infty}\frac{1}{\sqrt[n]{|a_n|}}$$其中,如果$\lim\limits_{n \to \infty}\frac{1}{\sqrt[n]{|a_n|}} = \infty$,则$r = \infty$;如果$\lim\limits_{n \to \infty}\frac{1}{\sqrt[n]{|a_n|}} = 0$,则$r = 0$;如果$\lim\limits_{n \to \infty}\frac{1}{\sqrt[n]{|a_n|}}$存在,则$r$等于该极限值。
当$x$在幂级数的收敛域内时,和函数$f(x)$就是幂级数的和。
在收敛域外,则是幂级数的延拓函数。
通常情况下,求幂级数的和函数需要多次对幂级数求导和积分。
而对于三种特殊情况,我们可以通过基本初等函数来求解。
根据幂级数的定义,当$n=0$时,幂级数的和为$1$,即$e^0=1$。
然后,对该幂级数求导、积分,可以证明它在整个实数轴上收敛。
这两个级数是很常见的三角函数展开式。
可以用欧拉公式和幂级数展开式证明它们的收敛性和收敛域。
其中$\alpha$为实数,$\binom{\alpha}{n} =\frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}$。
高数幂级数知识点高数幂级数是高等数学中一个重要的概念,通过幂级数可以对一些函数进行近似展开,并得到它们的一些性质以及在某个点附近的近似值。
一、高数幂级数的定义高数幂级数由一列项数不同的幂函数相加而成,通常形式如下: f(x) = a0 + a1(x -x0) + a2(x - x0)^2 + a3(x - x0)^3 + ... 其中,a0,a1,a2,a3等为常数,称为系数;x0为展开点,x为自变量。
二、高数幂级数的收敛域幂级数并不在所有点都收敛,而是在一定范围内收敛。
收敛域由展开点x0和幂级数的收敛半径r决定。
收敛半径可以通过柯西-阿达玛公式计算得到: R = 1 / lim sup |an|^(1/n) 其中,an为系数,n为项数。
当n趋向于无穷大时,计算结果即为收敛半径。
三、高数幂级数的求和公式当幂级数收敛时,我们可以通过求和公式计算幂级数的和。
常见的求和公式有以下几种: 1. 几何级数:当|q| < 1时,幂级数a + aq +aq^2 + aq^3 + ...收敛,且和为A = a / (1 - q)。
2. 指数级数:e^x = 1 + x / 1! + x^2 / 2! + x^3 / 3!+ ...,这是由指数函数的泰勒级数展开得到的幂级数。
3. 三角函数级数:sin(x) = x - x^3 / 3! + x^5 / 5! -x^7 / 7! + ...,cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...,这是由三角函数的泰勒级数展开得到的幂级数。
四、高数幂级数的应用高数幂级数在数学及其他学科中有着广泛的应用,包括但不限于以下几个方面: 1. 近似计算:通过幂级数可以对一些复杂的函数进行近似展开,从而得到它们在某个点附近的近似值。
这在计算机科学、物理学等领域中非常重要。
2. 函数性质研究:通过幂级数可以研究函数的性质,如判定函数的奇偶性、周期性等。
专升本高等数学知识点总结高等数学作为专升本考试的一门重要科目,需要掌握的知识点相对较多。
下面是对高等数学知识点的详细总结。
一、函数与极限1.函数概念与性质:定义域、值域、奇偶性、周期性、单调性等。
2.函数的常用性质:函数的画像、函数的基本性质、函数的运算、函数的反函数、函数的复合、函数的比较等。
3.极限的概念:极限的定义、左极限、右极限、无穷极限、函数极限等。
4.极限的性质:极限的唯一性、夹逼准则、极限的四则运算、函数极限法则等。
5.无穷小与无穷大:无穷小的定义和性质、无穷大的定义和性质。
二、导数与微分1.导数的定义:函数在一点的导数、导数的几何意义、函数的可导性等。
2.导数的计算:基本函数的导数、基本运算法则、复合函数的导数、隐函数的导数等。
3.高阶导数:导数的高阶导数、高阶导数的计算等。
4.微分:微分的定义、微分的计算、微分形式不变性等。
5.高阶导数与高阶微分的关系:高阶导数与高阶微分的计算、高阶微分的含义等。
三、积分与不定积分1.定积分的概念与性质:积分的定义、黎曼和、定积分的计算、积分中值定理等。
2.不定积分的概念与性质:不定积分的定义、不定积分的计算、定积分与不定积分之间的关系等。
3.基本积分公式:幂函数的积分、三角函数的积分、反函数的积分、特殊函数的积分等。
4.定积分的应用:曲边梯形的面积、旋转体的体积、定积分的几何应用等。
四、级数与幂级数1.数列与级数:数列的概念与性质、收敛与发散、常见数列的性质等。
2.级数的概念与性质:级数的概念、部分和、级数的性质、级数收敛性的判别法等。
3.幂级数的概念与性质:幂级数的收敛域、幂级数的性质、幂级数的运算等。
4.泰勒展开与幂级数展开:泰勒展开的定义、泰勒级数、幂级数展开的计算等。
五、多元函数与方程1.多元函数的概念与性质:多元函数的定义、多元函数的极限、多元函数的连续性等。
2.偏导数与全微分:偏导数的定义、全微分的定义、全微分近似计算等。
3.导数与梯度:偏导数与方向导数、梯度的定义和性质、梯度的运算等。
求幂级数收敛域的典型例题摘要:I.引言- 介绍幂级数收敛域的概念- 说明幂级数收敛域在数学中的重要性II.幂级数收敛域的求解方法- 定义法- 比较审敛法- 根值法- 积分法III.典型例题- 例题1:求幂级数收敛域- 例题2:求幂级数的收敛区间- 例题3:判断幂级数的收敛性IV.结论- 总结求幂级数收敛域的方法和技巧- 强调在实际应用中注意的问题正文:I.引言幂级数是数学中一种重要的级数形式,它在许多领域都有着广泛的应用。
幂级数收敛域是幂级数研究中的一个重要概念,它反映了幂级数在哪些区域内可以收敛。
求幂级数收敛域是幂级数研究中的一个基本问题,也是数学中的一个经典问题。
II.幂级数收敛域的求解方法求幂级数收敛域的方法有很多种,下面介绍几种常用的方法:定义法:定义法是求幂级数收敛域的基本方法。
定义法的基本思想是先定义一个函数,然后根据函数的性质来求幂级数的收敛域。
比较审敛法:比较审敛法是一种常用的求幂级数收敛域的方法。
它的基本思想是将幂级数与一个已知的收敛级数进行比较,从而求出幂级数的收敛域。
根值法:根值法是一种求幂级数收敛域的方法。
它的基本思想是先求出幂级数的根,然后根据根的性质来求幂级数的收敛域。
积分法:积分法是一种求幂级数收敛域的方法。
它的基本思想是将幂级数转化为一个积分,然后根据积分的性质来求幂级数的收敛域。
III.典型例题下面给出几个求幂级数收敛域的典型例题:例题1:求幂级数收敛域设幂级数$f(x) = sum_{n=1}^{infty} a_n x^n$,其中$a_n > 0$,求幂级数$f(x)$ 的收敛域。
例题2:求幂级数的收敛区间设幂级数$f(x) = sum_{n=1}^{infty} a_n x^n$,其中$a_n > 0$,求幂级数$f(x)$ 的收敛区间。
例题3:判断幂级数的收敛性设幂级数$f(x) = sum_{n=1}^{infty} a_n x^n$,其中$a_n > 0$,判断幂级数$f(x)$ 的收敛性。
幂级数收敛域的方法
幂级数是一种重要的数学工具,其收敛性是研究幂级数的关键问题。
本文将介绍几种判定幂级数收敛域的方法。
首先是比值判别法。
通过计算幂级数相邻两项的比值的极限值,可以判断幂级数的收敛半径和收敛区间。
如果该极限值小于1,则收敛半径为正无穷,即该幂级数在整个实数域内收敛;如果该极限值大于1,则收敛半径为0,即该幂级数在原点处收敛;如果该极限值等于1,则需要进一步研究幂级数的边界收敛性。
其次是根值判别法。
通过计算幂级数的每一项的根值的极限值,可以判断幂级数的收敛半径和收敛区间。
同样,如果该极限值小于1,则收敛半径为正无穷;如果该极限值大于1,则收敛半径为0;如果该极限值等于1,则需要进一步研究幂级数的边界收敛性。
还有一种常用的方法是幂级数的积分判别法。
通过对幂级数逐项积分,可以得到一个新的幂级数,如果该新幂级数收敛,则原幂级数在积分区间内收敛;反之,如果该新幂级数发散,则原幂级数在积分区间内发散。
最后,还可以利用幂级数的特殊函数形式,如正弦函数、余弦函数、指数函数等,来判断幂级数的收敛域。
这需要结合幂级数的特殊性质和基本公式来进行推导。
综上所述,比值判别法、根值判别法、积分判别法和特殊函数形式法是判断幂级数收敛域的主要方法。
在实际应用中,需要根据具体问题选择适当的方法。
请双面打印/复印(节约纸张)高等数学主讲: 张小向第六章 无穷级数第一节 数项级数 第二节 反常积分判敛法 第三节 幂级数 第四节 傅里叶级数第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数§6.3 幂级数 一. 函数项级数的基本概念 u1(x), u2(x), …, un(x), … ——定义在数集 A上的函数序列 Σ u (x) = u1(x) + u2(x) + …+ un(x) + … n=1 n ——定义在数集 A上的函数项级数 un(x) —— 通项 Sn(x) = k=1uk(x) —— 部分和 Σn ∞n=1 nΣ u (x) = u1(x) + u2(x) + …+ un(x) + …∞∞——定义在数集 A上的函数项级数 收敛(发散)点x0∈D: n=1un(x0) 收敛(发散) Σ Σ 收敛(发散)域: n=1un(x) 的收敛(发散)点的全体 和函数 S(x) = n=1un(x) Σ 其定义域为 n=1un(x) 的收敛域 Σ 余项 Rn(x) = S(x) − Sn(x) = k=n+1uk(x) Σ∞ ∞ ∞ ∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例1. 几何级数 n=1xn−1 = 1 + x + x2 +…+ xn +… Σ 是定义在实数集∞ ∞∞例1. 几何级数n=1 xn−1 的收敛域为(−1, 1). Σ 当 x ∈ (−1, 1)时, Sn(x) = 1− xn , 1− x∞上的函数项级数.当|x| < 1时, n=1|xn−1| 收敛, Σ 故 n=1xn−1 (绝对)收敛. Σ 当|x| ≥ 1时, lim n→∞ 综上所述,n=1 ∞ ∞xn−1≠ 0, 故 n=1 Σxn−1发散.∞lim xn = 0, n→∞ lim Sn(x) = n→∞ 所以 n=1xn−1 = Σ 1 . 1− xΣ xn−1 的收敛域为 (−1, 1).1 , x ∈ (−1, 1). 1− x272365083@1请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例2. x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + … 是定义在实数集 上的函数项级数. Sn(x) = xn,例3. 求下列级数的收敛域. ∞ xn (1) n=1 . Σ n! 解: 因为∀x ∈ lim n→∞ 所以 n=1 Σ∞, xn = lim |x| = 0. n! n→∞ n+1lim 当|x| < 1时, lim Sn(x) = n→∞ xn = 0, n→∞ lim 当 x = 1时, lim Sn(x) = n→∞ 1 = 1, n→∞ 当 x < −1 或 x > 1时, lim Sn(x)不存在. n→∞ 综上所述, 该级数的收敛域为(−1, 1], 0, x ∈ (−1, 1); 且和函数 S(x) = 1, x = 1.xn+1 (n+1)!∞ xn xn Σ 收敛, 因而 n=1 收敛. n! n! n ∞ x 可见 n=1 的收敛域为 . Σ n!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数. n2 n |x| lim lim 解: n→∞ n x 2 = n→∞ n = |x|. n √n2 ∞ xn ∞ xn Σ 当|x| < 1时, n=1 2 收敛, 因而 n=1 2 收敛; Σ n n n ∞ xn lim 当|x| > 1时, n→∞ x 2 ≠ 0, 因而 n=1 2 发散. Σ n n ∞ xn ∞ 1 当|x| = 1 时, n=1 2 = n=1 2 收敛, 因而… Σ Σ n n ∞ xn 可见 n=1 2 的收敛域为[−1, 1]. Σ n(2) n=1 Σ∞xn(3)∞ (x−1)n Σ n n=1 2 n=x−1 + 2 +… 2 ⋅2 2|x−1| (x−1)n = lim n|x−1| nn n→∞ 2(n+1) 2 . 2(x−1)2n+1 lim n+1 解: n→∞ (x−1)2(n+1)∞ (x−1)n |x−1| 当 2 < 1 时, n=1 2nn 绝对收敛; Σ ∞ (x−1)n |x−1| 当 2 > 1 时, n=1 2nn 发散. Σ ∞ (x−1)n ∞ (−1)n 当 x = −1 时, n=1 2nn = n=1 n 收敛. Σ Σ当 x = 3 时, n=1 2nn = n=1 − 发散. Σ Σ n∞(x−1)n∞1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数n+1 lim n+1 解: n→∞ (x−1)2(n+1)∞(x−1)n |x−1| 2 nn = 2 .(x−1)n (x−1)n(4) n=1 n Σ 解: lim n→∞∞ (−1)n1 n . 1+x当 2|x−1| |x−1|< 1 时, n=1 2nn Σ∞绝对收敛;un+1(x) 1 1 lim n un(x) = n→∞ n + 1 |1 + x| = |1 + x| .当 2> 1 时, n=1 2nn 发散. Σ∞当 |1+x| > 1 时, 该级数绝对收敛; 当 |1+x| < 1 时, 该级数发散. 收敛. 当 x = 0 时, n=1 n Σ∞ ∞当 x = −1 时, n=1 2nn = n=1 n Σ Σ∞(x−1)n∞(−1)n(−1)n∞ (−1)n 1 n = n=1 n 收敛. Σ 1+x ∞ 1 1 n = n=1 − 发散. Σ n 1+x当 x = 3 时, n=1 2nn = n=1 − 发散. Σ Σ n 可见 n=1 2nn 的收敛域为[−1, 3). Σ∞(x−1)n∞1当 x = −2 时, Σ n n=1(−1)n(x−1)n可见该级数的收敛域为(−∞, −2) ∪ [0, +∞).272365083@2请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数二. 函数项级数的一致收敛性y 1S1(x), S2(x), …, Sn(x), … ——定义在数集 A上的函数序列 S(x) ——定义在数集 A上的函数 若∀ε > 0, ∃N∈ , 当 n > N 时, |Sn(x) − S(x)| < ε (∀x ∈ A), 则称{Sn(x)}在A上一致收敛于S(x). 若 n=1un(x) 的部分和序列 {Sn(x)} 在数集 A上 Σ 一致收敛, 则称该级数在A上一致收敛.∞lim xn = 0 (0 < x <1) n→∞∀ε > 0, ∃N∈ , s.t. n > N ⇒ |xn−0| < ε y=x y = x2 y = x3 y = x4 y = x5 y = x6εO x1 x2 x3 x4 x5 1 x…第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例4. 设0 < a < 1, 证明级数x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …例5. 证明级数x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …在[0, a]上一致收敛. 证明: 该级数的部分和为 Sn(x) = 在[0, a]上的和为 S(x) ≡ 0. xn, ,在(0, 1)上不一致收敛. 证明: 该级数的部分和为 Sn(x) = xn, 在(0, 1)上的和为 S(x) ≡ 0.N+1 取ε = 1/2, ∀N ∈ , ∃x = ______ ∈ (0, 1), 3/4 虽然 n = N + 1 > N, 但是 |xn − 0| = xn = 3/4 > ε ,max{[logaε ]+1, 1} 对∀ε > 0, ∃N = ________________∈当 n > N 时, |xn − 0| = xn ≤ an < aN ≤ ε (∀x ∈ [0, a]), 可见Sn(x)在[0, a]上一致收敛于S(x).可见Sn(x)在(0, 1)上不一致收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理1 (Cauchy一致收敛准则). Σ u (x)在A上一致收敛 n=1 n ⇔ ∀ε > 0, ∃N∈n+p k=n+1 k ∞定理2 (Weierstrass判别法, M判别法). 设函数项级数 n=1un(x) (x ∈ A) 与正项级数 Σ ,有n=1 n ∞, 当 n > N时, ∀p∈Σ a 满足下列条件+;∞∞Σ u (x) = |Sn+p(x) − Sn(x)| < ε (∀x ∈ A). ⇓ Weierstrass判别法维尔斯特拉斯 [德]1815~1897(1) |un(x)| ≤ an , ∀x∈A, ∀n∈ (2) n=1an 收敛, Σ 则 n=1un(x)在A上一致收敛. Σn=1 n ∞乾隆1736-1796 嘉庆1796-1821 道光1821-1851 咸丰1851-1862 同治1862-1875 光绪1875-1908 宣统1908-1911Σ u (x)的优级数∞272365083@3请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数证明: ∀ε > 0, ∃N∈n+p, 当 n > N时, ∀p∈,有例6. 设0 < a < b, 证明级数n=1 (1+|x|)nΣ u (x) = |Sn+p(x) − Sn(x)| k=n+1 k = |un+1(x) + un+2(x) + … + un+p(x)| ≤ |un+1(x)| + |un+2(x)| + … + |un+p(x)| ≤ an+1 + an+2 + … + an+p < ε (∀x ∈ A). Σ 由Cauchy一致收敛准则可知 n=1 un(x)在 A上一致收敛.∞Σ∞x在A = {x ∈x| a ≤ |x| ≤ b}上一致收敛.|x| b证明: (1+|x|)n = (1+|x|)n ≤ (1+a)n 对于 ∀n∈+以及 ∀x∈A都成立.∞又因为正项级数 n=1 (1+a)n 收敛, Σ 由Weierstrass判别法可知 n=1 (1+|x|)n Σ 在A = {x ∈ | a ≤ |x| ≤ b}上一致收敛.∞bx第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数三. 一致收敛级数的性质回忆定理3. (1) un(x)在[a, b]上连续(∀n∈∞ ∞+)例2中的级数(2) n=1un(x) 在 [a, b]上一致收敛 Σ (3) n=1un(x) = S(x) Σ S(x)在[a, b]上连续.⇒x + (x2 − x) + (x3 − x2) + … + (xn − xn−1) + …的收敛域为(−1, 1], 其和函数 0, x ∈ (−1, 1); S(x) = 1, x = 1. S(x)在(−1, 1]上不连续, 尽管该级数中的每一 项在(−1, 1]上都连续. 由例5可知该级数在(−1, 1]上不一致收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理4 (逐项积分). (1) un(x)在[a, b]上连续(∀n∈ 条 件∞ ∞例7. 设S(x) = n=1 Σ+)∞π cosnx , 求 ∫ 0 S(x)dx. n2(2) n=1un(x) 在 [a, b]上一致收敛 Σ (3) n=1un(x) = S(x) Σ ① S(x)在[a, b]上可积; ② ∀x0, x∈[a, b], Σ ∫ x0 S(t)dt = n=1 (∫ x0 un(t)dt).x ∞ x⇒解:结 论cosnx 1 ≤ 2 (∀x∈[0, π], ∀n∈ +) n2 n ⇒ ∞ 1 Σ 2 收敛 n=1 n ∞ cosnx 在 [0, π] 上一致收敛 Σ n=1 n2 ⇒ cosnx ∈ C[0, π] (∀n∈ +) n2 ∞ π π cosnx ∫ 0 S(x)dx = n=1 ∫ 0 n2 dx Σ ∞ π sinnx = n=1 ∫ 0 n3 dx = 0. Σ272365083@4请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理5 (逐项求导).1 (1) un(x) ∈ C[a, b] (∀n∈+)条 件(2) n=1un(x) 在[a, b]上收敛于S(x) ⇒ Σ (3) n=1un(x) 在[a, b]上一致收敛 Σ ′1 ① S(x) ∈ C[a, b] ;∞∞结 论② S′(x) = n=1un(x). Σ ′∞sinnx 1 例8. un(x) = n3 ∈ C(−∞, +∞) (∀n∈ +) sinnx 1 ≤ n3 ∞ sinnx n3 ⇒ n=1 3 (绝对)收敛 Σ n ⇒ ∞ 1 收敛 Σ n=1 n3 sinnx ′ 1 ≤ n2 ∞ sinnx ′ n3 ⇒ n=1 n3 一致收敛 Σ ∞ 1 收敛 Σ n=1 n2 ∞ sinnx 1 Σ n3 的和函数 S(x) ∈ C(−∞, +∞) , n=1 ∞ cosnx ∞ sinnx ′ = n=1 2 . Σ 而且S′(x) = n=1 n3 Σ n第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数四. 幂级数的概念与性质 1. 幂级数的概念 Σ a (x − x0∞2. 幂级数的收敛性 lim 设 n=0anx0n 收敛, 则 n→∞ anx0n = 0, Σ 故 ∃M > 0, s.t. ∀n∈ |anx0n| < M. , x0•∞x − x0的幂级数 )nn=0 nO x • •= a0 + a1(x − x0) + a2(x − x0)2 + … 其中 x0, an ∈ (n = 0, 1, 2, …) x0 = 0时, 对应的形式为 Σ a xn = a0 + a1x + a2x2 + … n=0 n∞若 |x| < |x0|, 令q = |x/x0|, 则 q < 1, |cnxn| = |cnx0n|⋅qn < M⋅qn. Σ 而 n=0M⋅qn 收敛, 所以 n=0|cnxn| 收敛. Σ∞ ∞ ∞xΣ 故对所有满足|x| < |x0|的x, n=0 cnxn 绝对收敛.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数定理6 (Abel定理). (1) 若n=0 anxn 在x = x0 ≠ 0 处收敛, Σ 则对所有满足|x| < |x0|的x, Σ c xn n=0 n (2)∞ ∞ ∞定理7. 若存在非零实数x1, x2使幂级数n=0 anxn Σ 在x1处收敛, 在x2处发散, 则存在R > 0, 使得 (1) 当|x| < R 时, n=0anxn 绝对收敛; Σ (2) 当|x| > R 时, n=0anxn 发散. Σ −R 收敛半径 x1 R x2 O • • • x (−R, R) ——收敛区间∞ ∞∞绝对收敛. 在x = x0 ≠ 0 处发散,阿贝尔[挪威] 1802~1829 顺治1644-1662 康熙1662-1723 雍正1723-1736 乾隆1736-1796 嘉庆1796-1821 道光1821-1851 咸丰1851-1862 同治1862-1875 光绪1875-1908 宣统1908-1911若n=0 anxn Σ∞则对所有满足|x| > |x0|的x,n=0 nΣ c xn 发散.272365083@5请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注: 若 n=0 anxn 仅在 x = 0处收敛, Σ 则规定 n=0anxn 的收敛半径 R = 0; Σ 若 n=0anxn 在整个实数轴上收敛, Σ 则规定 n=1anxn 的收敛半径 R = +∞. Σ∞ ∞ ∞∞定理8. 若幂级数 n=0anxn 中an ≠ 0 (∀n∈ Σan n→∞∞), 且n+1 lim a = ρ 或 lim √|an| = ρ. n→∞ n则该幂级数的收敛半径 +∞, R = 1/ρ, 0, 当ρ = 0时; 当0 < ρ < +∞时; 当ρ = +∞时.an+1 注: 教材上证明了 lim a = ρ 的情形, n→∞ nlim 这里证明 n→∞ √|an| = ρ 的情形.n第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数lim 证明: (1) 若 n→∞ √|an| = ρ = 0, 则∀x ∈n n→∞ ∞,有(2) 若0 < ρ < +∞, 则∀x ∈n n→∞,有lim √|anxn| = ρ |x| = 0,∞nlim √|anxn| = ρ |x|.故n=0 |anxn| 收敛, 因而 n=0anxn 收敛. Σ Σ 可见, 此时R = +∞. (2) 若0 < ρ < +∞, 则∀x ∈n n→∞由正项级数的根值判别法知: ∞ ∞ Σ Σ |x| < 1/ρ 时 n=0 |anxn| 收敛, 因而 n=0anxn 收敛; Σ |x| > 1/ρ 时, lim anxn ≠ 0, 因而 n=0anxn 发散. n→∞ 可见, 此时R = 1/ρ . (3) 若ρ = +∞, 则∀x ≠ 0, lim √|anxn| = +∞. n→∞n ∞ ∞,有lim √|anxn| = ρ |x|.由正项级数的根值判别法知: ∞ Σ |x| < 1/ρ 时 n=0 |anxn| 收敛,Σ 因而 lim anxn ≠ 0, 故 n=0anxn 发散. 可见, … n→∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例9. (1) n=1 n! 的收敛半径为_________. Σ +∞an+1 1 ρ = lim a = lim 1 n→∞ n→∞ (n+1)! n! n∞xn例9. (3) n=1 2nn 的收敛半径为_________. Σ 21 n+1 ρ = lim a = lim n+1 1 (n+1) 2nn n→∞ n→∞ 2 n a∞(x−1)n= limn→∞ ∞1 = 0. n+1= limn→∞n 1 =−. 2(n+1) 2(2) n=1 n2 的收敛半径为_________. Σ 1an+1 n lim ρ = lim a = n→∞ (n+1)2 = 1. n→∞ n2xn注① 幂级数在收敛区间端点的收敛性要看具 体情况. 如例9(3), 收敛区间为(−1, 3). 在收敛区间的端点处,∞Σ n=1 2nn∞(x−1)n=条件收敛 (−1)n , x = −1; Σ n=1 n 可见, … ∞ 1 Σ −, x = 3, 发散 n=1 n272365083@6请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注② 缺项幂级数 不满足定理8中的“∀an ≠ 0 (∀n∈ 例10. n=1 Σ∞)”.例10. n=1 Σ(n!)2x2n−1 的偶次项系数全为零. (2n)! [(n+1)!]2 ⋅(2n)! 2 u (x) lim n+1 = lim |x| n→∞ un(x) n→∞ [2(n+1)]!⋅(n!)2n→∞. (2n)! u (x) |x|2 lim n+1 = . n→∞ un(x) 4 当|x| < 2时, 该级数绝对收敛;∞ (n!)2x2n−1当|x| > 2时, 该级数发散. 所以该级数的收敛半径为R = 2, 收敛区间为(−2, 2). [(n+1)!]2 (n!)2 1 = 得R = 4, 注: 若直接由 lim n→∞ [2(n+1)]! (2n)! 4 则出错!= lim(n+1)2 |x|2 |x|2 = . (2n+2)⋅(2n+1) 4当|x| < 2时, 该级数绝对收敛; 当|x| > 2时, 该级数发散.第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例10. n=1 Σ∞(n!)2x2n−1 . (2n)!3. 幂级数的代数运算设 n=0anxn 与 n=0bnxn 的收敛半径分别为R1, R2, Σ Σ(2n)!!∞ ∞该级数的收敛半径为R = 2, 收敛区间为(−2, 2).1 Σ 当x = ±2时, 该级数 = ± − n=1 (2n−1)!! . 2∞和函数分别为S1(x), S2(x), R = min{R1, R2}, 则当|x| < R时, 有 S1(x) ± S2(x) =n=0 anxn ±n=0 bnxn = n=0(an±bn)xn, Σ Σ Σ S1(x)⋅S2(x) = ( n=0anxn)⋅( n=0bnxn) Σ Σ = n=0 (a0bn + a1bn−1 + … + anb0)xn. Σ∞ ∞ ∞ ∞ ∞ ∞lim 因为 (2n−1)!! > 1, 故 n→∞ (2n−1)!! ≠ 0. Σ 因而级数 ± − n=1 (2n−1)!! 发散. 2 所以该幂级数的收敛域为(−2, 2).1∞(2n)!!(2n)!!(2n)!!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数4. 幂级数的分析性质 定理9. 设幂级数 n=0anxn 的收敛半径为R, Σ 0 < r < R, 则n=0 anxn Σ∞ ∞定理10. 设幂级数 n=0anxn 的收敛半径R > 0, Σ 和函数为S(x), 则 (1) S(x)在收敛域上连续. (2) 对于任意的 x ∈ (−R, R), 有 Σ S′(x) = n=0(anxn)′ = n=1nanxn−1, Σ∞ ∞∞在[−r, r]上一致收敛.∞证明: 由条件可知 n=0|anrn| 收敛. Σ 对于任意的 x ∈ [−r, r], n ∈ |anxn| ≤ |anrn|. Σ 由M判别法可知 n=0anxn 在 [−r, r] 上一 致收敛.∞,有Σ n ∫ 0 S(t)dt = n=0 ∫ 0 an tndt = n=0 n+1xn+1. Σx x∞∞a(3) n=1nanxn−1 和 n=0 n+1xn+1 的收敛半 Σ Σ n 径的仍为R.∞∞a272365083@7请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例11. 求 n=0(−1)n Σ∞xn+1 n+1的和函数S(x).例12. 对于任意的x ∈ (−1,1), 有 f(x) = 1−x = 1 + x + x2 + … + xn + … (1) f ′(x) = f ″(x) =x解: 首先, 容易求得该幂级数的收敛域为(−1, 1]. 根据定理10(1), S(x)在(−1, 1]上连续.1 , x ∈ (−1, 1), Σ = 又因为 n=0 1+x ∞ x x dt Σ 所以 ln(1+x) = ∫ 0 1+t = n=0∫ 0 (−1)ntndt ∞ xn+1 = n=0(−1)n Σ , x ∈ (−1, 1). n+1∞1(−1)nxn1 = 1 + 2x + … + nxn−1 + … (2) (1−x)2 2 = 2+6x +…+ n(n−1)xn−2 + … (3) (1−x)3 1 x2 xn+1∫ 0 1−t = ln 1−x = x + + … + + … (4) n+1 2 注① 在(4)中令x = 1/2得, ln2 = n=0 (n+1)2n+1 . Σ∞dt而S(1) = lim S(x) = lim ln(1+x) = ln(1+1), 可见 S(x) = ln(1+x), x ∈ (−1, 1].x→1− x→1−1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数注② x = −1时, n=0 n+1 = n=0 n+1 收敛, Σ Σ x = 1时, n=0 n+1 = n=0 n+1 收敛, Σ Σ 故 n=0 n+1 的收敛域为 [−1,1), Σ 其和函数S(x)在−1处右连续, 而 ln1 也在−1处右连续, 因而 1−x ∞ (−1)n+1 lim = S(−1) = x→−1+S(x) Σ n=0 n+1 1 = x→−1+ ln 1−x = −ln2. lim∞ ∞∞xn+1∞(−1)n+1例13. 求 n=1(−1)n+1n(n+1)xn 的和函数. Σ 解: ρ = lim n+1 = lim (n+1)(n+2) = 1. n(n+1) n→∞ an n→∞ x = ±1时, lim (−1)n+1n(n+1)xn ≠ 0.n→∞∞xn+1∞1axn+1可见, 该级数的收敛域为(−1, 1). 设 n=1 (−1)n+1n(n+1)xn = S(x), x ∈ (−1, 1), Σ 则 ∫ 0 S(t)dt = n=1 ∫ 0 (−1)n+1n(n+1)tndt Σx x ∞ ∞ ∞= n=1 (−1)n+1nxn+1 = x2g(x), Σ第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数设 n=1 (−1)n+1n(n+1)xn = S(x), x ∈ (−1, 1), Σ 则 ∫ 0 S(t)dt = n=1 ∫ 0 (−1)n+1n(n+1)tndt Σx x ∞ ∞∞= n=1 (−1)n+1nxn+1 = x2g(x), Σ 其中g(x) = n=1 (−1)n+1nxn−1, x ∈ (−1, 1). Σ Σ ∫ 0 g(t)dt = n=1 ∫ 0 (−1)n+1ntn−1dt = n=1 (−1)n+1xn Σx x ∞ ∞ ∞x2 故 ∫ S(t)dt = x2g(x) = (1+x)2 . x2 ′ 2x , 即 由此可得 S(x) = (1+x)2 = (1+x)3x 0 n=1Σ (−1)n+1n(n+1)xn =∞2x , x ∈ (−1, 1). (1+x)3 2 27n+1 ∞ 1 Σ (−1) n(n+1) = S(−) = 8 . 注: 取x = 1/2 得 n=1 2n= 1+x . 上式两边对x求导得 g(x) = (1+x)2 .1x272365083@8请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例14. 求 n=1 2n−1 x2n−1 的和函数S(x). Σ(−1)n lim 解: n→∞ 2n+1 x2n+1 (−1)n−1 2n−1 = lim 2n−1 x2 2n−1 x n→∞ 2n+1∞(−1)n−1又因为S(0), 所以 S(x) = ∫ 0 S′(t)dt + S(0) = ∫0x x= x2. 可见该级数当|x| < 1时收敛, |x| > 1时发散,x = ±1时, 用Leibniz判别法可知该级数收敛,1 dt = arctanx, x ∈ (−1, 1). 1+t2结合 S(x) 和 arctanx 在[−1, 1]内的连续性得 S(x) = arctanx, x ∈ [−1, 1].(−1) Σ 注: 取x = 1得 − = arctan1 = S(1) = n=1 2n−1 . 4 π∞n−1所以该级数的收敛域为[−1, 1]. 根据定理10, S′(x) = n=1(−1)n−1x2n−2 = 1+x2 , Σ x ∈ (−1, 1).∞1第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例15. 求 n=1 2n x2n−2 的和函数S(x), 并求 Σn=1∞2n−1Σ 2n 的值.2 2n−1 2n−2 = lim 2n+1 2 x x n→∞ 4n−2 2n∞S(x) = n=1 2n x2n−2 =n=1 n x2n−1 Σ Σ 2 = =∞2n−1∞1′2n−1x ∞ x2 n−1 ′ x 1 ′ x ′ Σ( ) = 2⋅ = 2 n=1 2 1 − x2/2 2 − x2 2 + x2 , (2 − x2)2∞lim n+1 解: n→∞ 2n+1 x2n可见该级数当|x| < √2时收敛, |x| > √2时发散,−= x2/2.∞−− − 其中 x ∈ (−√2, √2). 由此可得 n=1 2n = S(1) = 3. Σ2n−1− |x| = √2时, Σ 2n−1 x2n−2 = Σ 2n−1 发散. n=1 2n n=1 2 − − 所以该级数的收敛域为(−√2, √2).∞第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数回忆yy = 1−x2+x4−x6+x8 y = 1−x2+x4五. 函数展开为幂级数 1. 引例 (1) 1+x2 = 1 − x2 + … + (−1)nx2n + o(x2n). (2) n=0 (−1)nx2n = 1 − x2 + x4 − x6 + … Σ 的收敛半径为1, 收敛区间为(−1, 1), Σ (−1)nx2n = 1+x2 n=0∞ ∞11y=1 y= 1 1+x2 1−x2−1O1y=xy= 1−x2+x4−x61(|x| < 1).1 = 1−x2+x4−x6+x8−x10+…+(−1)nx2n + o(x2n). 1+x2272365083@9请双面打印/复印(节约纸张)第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数2. 函数在一点处的泰勒级数 设 f(x)在 x0 的某邻域N(x0)内有任意阶导数, 则称幂级数f (n)(x ) Σ n! 0 (x−x0)n n=0∞f(x) 在 x0 = 0 处的泰勒级数 n=0 Σ f(x) ~ n=0 Σ∞∞f (n)(0) n x n!称为 f(x)的麦克劳林(Maclaurin)级数, 记为f (n)(0) n x. n!为 f(x) 在 x0 处的 泰勒(Taylor)级数, 记为 f(x) ~ n=0 Σ∞泰勒[英] 1685~1731 康熙1662-1723 雍正1723-1736 乾隆1736-1796 泰勒[英] 1685~1731 麦克劳林[英] 1698~1746f (n)(x0) (x−x0)n. n!康熙1662-1723 雍正1723-1736 乾隆1736-1796第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数2. 函数可展为幂级数的条件 定理11. 设 f(x)在x0的某邻域N(x0)内有任意阶 导数, 则 f(x) 在 x0 处的泰勒级数在 N(x0)内收敛并以 f(x)为和函数 ⇔ f(x)在 x0 处的泰勒公式的余项满足n→∞3. 函数展开成幂级数的方法 (1) 直接法(将f(x)展成(x − x0)的幂级数) ① 求f (n)(x0), n = 0, 1, 2, … ② 求 n=0 Σ ③ 检验∞f (n)(x0) (x−x0)n的收敛半径R n! f (n+1)(ξ)lim Rn(x) = 0 (∀x∈ N(x0)).nlim Rn(x) = n→∞ (n+1)! (x−x0)n+1 = 0 lim n→∞ ④ 写出f(x)在x0处的幂级数展开式 f(x) = n=0 Σ∞证明的关键: Rn(x) = f(x) − k=0 Σf (n)(x0) (x−x0)k. n!f (n)(x0) (x−x0)n (指出x的范围) n!第六章 无穷级数§6.3 幂级数第六章 无穷级数§6.3 幂级数例16. 将f(x) = ex展开为x的幂级数. 解: f (n)(0) = 1 (n = 0, 1, 2, …), Rn(x) = (n+1)! xn+1 (0 ≤ θ ≤ 1).e|x| 因为 |Rn(x)| ≤ (n+1)! |x|n+1, ∀x∈ eθ x例17. 将f(x) = cosx展开为x的幂级数. 解: f(0) = 1, f ′(0) = 0, f ′′(0) = −1, …, f (2k)(0) = (−1)k, f (2k+1)(0) = 0, (k ∈ ,x) n+1 x (0 ≤ θ ≤ 1). (n+1)! |x|n+1 因为|Rn(x)| ≤ , ∀x∈ , (n+1)!),Rn(x) =f(n+1)(θ所以 lim Rn(x) = 0 (∀x∈ ),n→∞由此可得 ex = n=0 Σ∞xn (∀x∈ n!所以 lim Rn(x) = 0 (∀x∈ ),n→∞).cosx = 1− (∀x∈ ).x2 x4 x6 x2n + − +…+ (−1)n +… 2! 4! 6! (2n)!272365083@10第六章无穷级数(2)间接法:①代换法, ②逐项求导, ③逐项积分, ④代数运算.例18. 因为§6.3 幂级数(∀x ∈).cos x = 1−+ …+ (−1)n +…x 22! x 2n(2n )! 所以cos2x = …−sin x = −x + +…+ (−1)n +1+…x 2n +1(2n +1)!x 33!sin x = x −+…+ (−1)n+…x 2n +1(2n +1)!x 33! 例19. 将f (x ) = ln(1+x )展开为x 的幂级数. 第六章无穷级数∞n =1(−1)n −1nΣ= ln2. 解: 其和函数S (x ) ∈C(−1, 1],11+x = Σ(−1)n −1x n −1(|x | < 1). ∞n =1逐项积分得ln(1+x ) = Σx n(|x | < 1). (−1)n −1n∞n =1 又因为Σ的收敛域为(−1, 1],∞n =1 x n (−1)n −1n再由ln(1+x ) ∈C(−1, 1]可得ln(1+x ) = Σx n (−1 <x ≤1).(−1)n −1n∞n=1 注:令x = 1得§6.3 幂级数第六章无穷级数例20. 将f (x ) = (1+x )α展开为x 的幂级数(α为解: 先求得f (x )的Maclaurin 级数:其收敛半径R = 1. 则(1+x )S ′(x ) = αS (x ), S (0) = 1. 由此可得S (x ) = (1+x )α, 即常数).(∗)1+αx+α(α−1) 2!x 2+…+ α…(α−n +1) n !xn+ …设其和函数为S (x ), x ∈(−1, 1), (1+x )α= 1+αx +α(α−1) 2!x 2+…+α…(α−n +1)n !x n +…§6.3 幂级数二项式级数但在区间(−1, 1)的端点处是否成立要对α讨论.第六章无穷级数(1+x )α= 1+αx +α(α−1) 2!x 2+…+α…(α−n +1)n !x n +…可以证明, 当α≤−1时, 的收敛域为(−1, 1);当−1< α< 0时, (∗)的收敛域为(−1, 1]; 当α> 0时, (∗)的收敛域为[−1, 1]. 因此, …(∗)1+αx +α(α−1) 2!x 2+…+α…(α−n +1) n !xn+ …§6.3 幂级数例21. 求下例函数在指定点处的泰勒展式.(|x +4| < 7),(|x +4| < 3). (1) f (x ) = xx 2−2x −3, x 0= −4. 第六章无穷级数解: f (x ) = x x 2−2x −3 = −( + ), 1 4 1 x + 1 3 x −31 x −3= −−1 7 1 1−(x +4)/7 (|x +4| < 3),1 x +1= −−1 3 1 1−(x +4)/3 = −−Σ( )n1 3 x +43 ∞n =0 = −−Σ( )n1 7 x +47 ∞n =0 f (x ) = −[ ]1 4 −−Σ( )n 1 3 x +43 ∞n =0 −−Σ( )n 37 x +47∞n =0 = −−Σ( + )(x +4)n 1 4 ∞n =0 1 3n +1 3 7n +1§6.3 幂级数(2) f (x ) = sin x , x 0= π/6.解: sin x = sin[(x −−)+−]π6π6 = −cos(x −−)+ sin(x −−), π6 1 2√3 2 π6 cos(x −−) = 1 −(x −−)2+…+ (x −−)2n+…π6 π6 π6 1 2! (−1)n(2n )! sin(x −−) = (x −−) −(x −−)3+…π6π6 π6 1 3!(−1)n(2n +1)! π6 + (x −−)2n +1+…sin x = −+ (x −−) −(x −−)2+…1 2 √32π6 π6 π6π612⋅2! + (x −−)2n+ (x −−)2n +1+ …(−1)n 2⋅(2n )! (−1)n √3 2⋅(2n +1)! 第六章无穷级数§6.3 幂级数(∀x ∈).解:(3) f (x ) =故∀x ∈(−1, 1),第六章无穷级数e x1−x , x 0= 0. e x= Σ∞n =0 x nn !, 1 1−x= Σx n , ∞n =0 e x1−x= ( Σ)⋅( Σx n )∞n =0 x n n ! ∞n =0 1 1!= 1 + (1+ )x + (1+ + )x2+ (1+ + + )x3+ …1 1! 1 2!1 1! 1 2! 1 3!§6.3 幂级数∀x ∈.∀x ∈(−1, 1).第六章无穷级数求收敛半径直接R = 1/ρ已知等式化为正项级数, 讨论敛散性代换法, 逐项求导/积分, 代数运算间接函数展开为幂级数幂级数求和(ρ= lim|a n +1/a n |, 公式lim|a n |1/n ) Σ|…| 求表达式S (z ) = lim S n (z ) f (n )(x 0)/n !, 检验R n (x )代换法, 逐项求导/积分, 代数运算间接1+αx + Σ⎯⎯⎯⎯⎯x n = (1+x )α, x ∈(−1, 1). α…(α−n +1)n !∞n =2 小结§6.3 幂级数Σx n = , Σ(−x )n = , x ∈(−1, 1). ∞n =11 1−x ∞n =1 1 1+x Σ⎯=e x , Σ= sin x , x ∈. ∞n =0 x n n ! ∞n =0 (−1)n x 2n +1(2n +1)!。
函数项级数、幂级数一、 函数项级数概念121()()()(),n n n u x u x u x u x ∞==++++∑0I x ∈定义区间前n 项部分和函数1()()n n k k S x u x ==∑和函数1()()n n S x u x ∞==∑,x ∈收敛域二、 幂级数及其收敛域0n nn a x ∞=∑收敛域/发散域图:注:条件收敛的点只可能出现在分界点上!概念:R :幂级数收敛半径收敛区间:),(R R -收敛域:⋃-),(R R 收敛端点如何求收敛半径?定理(Cauchy-Hadamard)若0n nn a x ∞=∑所有系数满足),1,0(,0 =≠n a n,1lim +∞→=n n n a a R ∑∞=0n n nx a 的收敛半径为R ,则∑∞=-00)(n n n x x a 的收敛域为⋃<-R x x ||0收敛端点。
1. 求n n x n n 202)!(!)2(∑∞=收敛半径。
2. 求∑∞=-+112)]13[ln(n n n x 的收敛域。
三、 和函数性质定理幂级数n n nx a ∑∞=0的和函数)(x S 在收敛域上连续;在收敛区间内可“逐项求导”和“逐项积分”,运算前后收敛半径相同,但收敛域可能改变。
逐项求导——1100)()()(-∞=∞=∞=∑∑∑='='='n n n n n n nn n x a n x a x a x S ,),(R R x -∈ 逐项积分——10000001d d d )(+∞=∞=∞=∑∑⎰⎰∑⎰+===n n n n x n n x n n n x x n a x x a x x a x x S ,),(R R x -∈● 注意点:n n n x a ∑∞=0,11-∞=∑n n n x a n 和101+∞=∑+n n n x n a 收敛半径相同,但端点处的敛散性可能改变。
逐项求导是特别注意0次项的求导!● 利用几何级数结论做题——xx n n -=∑∞=110,)1,1(-∈x 步骤:先求收敛半径,收敛域;在收敛区间内,利用和函数性质:逐项求导/逐项积分等求和函数。
幂级数的收敛半径与收敛域幂级数是数学中重要的概念,它在各个领域有广泛的应用。
对于任意给定的幂级数,我们关心的一个重要问题是它的收敛性质。
特别是,我们想要知道幂级数的收敛半径以及收敛域。
1. 幂级数的定义与基本性质幂级数是指形如$\sum_{n=0}^{\infty}a_nx^n$的无穷级数,其中$a_n$是常数项,$x$是变量。
对于给定的$x$值,我们可以将幂级数看作一个函数$f(x)=\sum_{n=0}^{\infty}a_nx^n$,这个函数在某些$x$值上有收敛性。
幂级数有一些基本的性质:(1)收敛性:幂级数在某些$x$值上收敛,即级数$\sum_{n=0}^{\infty}a_nx^n$存在有限的和。
(2)发散性:幂级数在某些$x$值上发散,即级数$\sum_{n=0}^{\infty}a_nx^n$无限地增大或者震荡。
(3)绝对收敛性:幂级数在某些$x$值上绝对收敛,即级数$\sum_{n=0}^{\infty}|a_nx^n|$存在有限的和。
(4)条件收敛性:幂级数在某些$x$值上条件收敛,即幂级数收敛但不绝对收敛。
2. 幂级数的收敛半径幂级数的收敛半径是一个重要的指标,用于描述幂级数的收敛性。
对于幂级数$\sum_{n=0}^{\infty}a_nx^n$,定义收敛半径$R$如下: $$R = \frac{1}{{\limsup\limits_{n \to \infty} \sqrt[n]{|a_n|}}}$$其中$\limsup\limits_{n \to \infty} \sqrt[n]{|a_n|}$表示$a_n$的平方根序列的上极限。
根据收敛半径的定义,我们可以得到以下结论:(1)当$R=0$时,幂级数在除了$x=0$之外的任何$x$值上都发散。
(2)当$R=\infty$时,幂级数在整个实数轴上都绝对收敛。
(3)当$0<R<\infty$时,幂级数在以$x=0$为中心、半径为$R$的区间内绝对收敛,而在离开这个区间的地方发散。