条件概率的乘法公式
- 格式:docx
- 大小:3.43 KB
- 文档页数:2
第四节一、条件概率 二、乘法公式条件概率三、全概率公式与贝叶斯公式一、条件概率在许多问题中,我们往往会遇到事件 B 已经出 现的条件下求事件A的概率. 这时由于有了附加条 件, 因此称这种概率为事件B发生的条件下,事件 A的条件概率,记作 P(A|B) 同理P(B|A)表示:事件A发生的条件下,事件 B发生的概率例1 一个家庭中有两个小孩,已知两个小孩其中一个 是女孩,问两个小孩都是女孩的概率是多少? (假定生男生女是等可能的) 解 由题意,样本空间为Ω = { (男,男), (男,女), (女,男), (女,女) }A 表示事件“至少有一个是女孩”, B 表示事件“两个都是女孩”,则有 A={ (男,女), (女,男), (女,女) } B = { (女,女) } 由于事件A已经发生,所以这时试验的所有可能结果 只有三种,而事件B包含的基本事件只占其中的一 1 种, 所以有 P ( B A) =3(1)在这个例子中,若不知道事件A已经发生的信息,那 么事件B 发生的概率为 这里1 P( B) = 4 P( B)≠ P( B A)其原因在于事件 A的发生改变了样本空间,使它由原 来的Ω 缩减为Ω A = A,而 P( B A)是在新的样本空间 Ω A 中由古典概率的计算公式而得到的.上例中计算 P(B|A)的方法并不普遍适用.如果回 到原来的样本空间Ω 中考虑,显然有3 P( A) = 4从而即1 P ( AB) = 4 1 1 P ( B A) = = 4 3 3 4 P ( AB) P( B A ) = P ( A)(2)关系式(2)不仅对上述特例成立,对一般的古典概 型和几何概型问题,也可以证明它是成立的.定义1 设A, B是两个事件,且P( A) > 0,称P ( AB) P( B A ) = P ( A)(3)事件A发生的条件下事件B 发生的条件概率 性质: 设A是一事件,且P(A)>0,则 (1) 对任一事件B,0≤P(B|A)≤1; (2) P(Ω| A) =1 ; 1 1 非负性 非负性 2 2 规范性 规范性 3 3 可列可加性 可列可加性(3) 设B1, B2 ,··· 两两互不相容,则 P[(B1∪B2∪ ···)| A] = P(B1|A)+P(B2|A) + ···(4) P (φ A) = 0.(5) P(B1 ∪ B2 A) = P(B1 A) + P(B2 A) − P(B1 B2 A);(6) P ( B A) = 1 − P ( B A).条件概率的计算根据具体的情况,可选用下列两种方法之一来计算 条件概率P(B|A) (1)在缩减后 ΩA 的样本空间中计算; (2)在原来的样本空间Ω 中,直接由定义计算.条件概率 P(B|A)的样本空间ΩABAB样本空间ΩP( AB) P( B A ) = P( A)缩减的样本空间(即事件A)P( B | A)例2 一袋中有10 个球,其中3个黑球,7个白球, 依次从袋中不放回取两球. ( 1 )已知第一次取出的是黑球,求第二次取出的 仍是黑球的概率; ( 2 )已知第二次取出的是黑球,求第一次取出的 也是黑球的概率. 解 记 Ai = { 第 i 次取到黑球 } ( i = 1, 2) (1)可以在缩减的样本空间 ΩA 上计算。
概率公式大全概率公式大全(上篇)概率公式在概率论中起着非常重要的作用,它们用于描述随机事件的发生概率以及事件之间的关系。
本文将介绍一些常见的概率公式,帮助读者更好地理解和应用概率论。
1. 基本概率公式1) 事件的概率公式:在概率论中,事件的概率通常用P(A)表示,其中A表示一个事件。
事件A的概率可以用下述公式计算:P(A) = N(A) / N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间S 中的总次数。
2) 样本空间的概率公式:当样本空间S的每个样本点发生的概率相同且为1/N(S)时,我们可以使用下述公式计算事件A的概率:P(A) = N(A) / N(S)这个公式在实际问题中应用广泛,是基本的概率公式之一。
2. 条件概率公式1) 条件概率的定义:在事件B发生的条件下,事件A发生的概率称为A在B 条件下的条件概率,用P(A|B)表示。
条件概率的计算公式如下:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A与事件B同时发生的概率。
2) 乘法公式:乘法公式是条件概率的推广形式,用于计算两个事件同时发生的概率。
根据乘法公式,我们可以得到:P(A ∩ B) = P(A|B) * P(B)这个公式在计算复杂事件的概率时非常有用。
3. 全概率公式全概率公式用于计算一个事件发生的总概率,它假设事件发生的样本空间可以划分为若干个互斥事件。
全概率公式如下:P(A) = Σi P(A|Bi) * P(Bi)其中,Bi表示样本空间S的一个划分,P(A|Bi)表示在Bi条件下事件A发生的概率。
这个公式可以在一些复杂问题中计算事件发生的概率,非常实用。
4. 贝叶斯公式贝叶斯公式是条件概率公式的逆运算,用于通过已知的条件概率反推出相反的条件概率。
根据贝叶斯公式,可以得到:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)和P(B)分别表示事件A和事件B的概率。
全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有:P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足1.B1,B2....两两互斥,即B i ∩ B j = ∅,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....;2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件AB1,AB2,...AB n分解成了n部分,即A=AB1+AB2+...+AB n, 每一B i发生都可能导致A发生相应的概率是P(A|B i),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(AB n)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|B n)P(PB n)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
条件概率公式条件概率:设A、B是两个事件,在A事件发生的条件下,B事件发生的概率,其中P(A)>0。
说明A事件发生的概率大于0,表示A事件是必然发生的。
记为:P(B|A)=P(AB)/P(A) 。
注意事件A作为条件,分母必定是条件概率,所以A事件的概率必定在分母上,分子P(AB)表示事件A与B相交的概率,记作P(A∩B)。
举例说明:将一枚硬币抛两次,观察正反面,正面记H,反面记T.样本空间Ω=(HH, HT,TH,TT)设事件A:至少一次为正面,即事件A=(HH,HT,TH)设事件B:两次为同一面,即事件B=(HH,TT)求事件A发生条件下,事件B发生的概率?即求P(B|A)。
(例子来自浙大版概率与统计第四版)从已知条件可知,总样本Ω为4个,A事件有3个,B事件有2个。
所以可以直接求出A的概率与B的概率。
即P(A)=3/4 ,A事件与B事件相交事件只有一个即HH。
即P(AB)=1/4.有公式1可知P(B|A)=P(AB)/P(A)=(1/4)/(3/4)=1/3.1.2 乘法公式:把式1条件概率公式P(B|A)=P(AB)/P(A)把P(AB)相交概率移到式子左边,把P(B|A)条件概率移动式子右边。
即得到乘法公式。
如式P(AB)=P(B|A) P(A)。
全概率公式:在条件概率中引入(A∩B)积事件的概念。
积事件概率表示相交事件的概率只有在A与B事件同事发生情况下才会发生。
P(A∩B)表示A和B相交的概率。
而在全概率公式中将引入∪和事件概念. 有个小窍门,其实可以把积事件理解为数字电路的与门、把和事件理解为数字电路的或门。
比如样本空间S,可以划分样本B1,B2...B6组成,即S=(B1∪B2∪ (6)。
条件概率的乘法公式
在概率论和统计学中,条件概率的乘法公式是一项重要的工具,用于计算两个事件同时发生的概率。
它基于条件概率的概念,指出当一个事件依赖于另一个事件时,两个事件同时发生的概率等于第一个事件发生的概率乘以第二个事件在第一个事件发生的条件下发生的概率。
条件概率是指在给定另一个事件发生的条件下,某一事件发生的概率。
用数学符号表示为P(A|B),表示事件B已经发生的情况下,事件A发生的概率。
条件概率的乘法公式可以用以下公式表示:
P(A∩B) = P(A|B) * P(B)
其中,P(A∩B)表示事件A和B同时发生的概率,P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(B)表示事件B发生的概率。
条件概率的乘法公式在实际应用中有着广泛的应用,在许多领域中都可以看到它的身影。
下面将通过几个例子来展示条件概率的乘法公式的应用。
例子1:假设有一批产品,其中20%是次品。
现在从中随机抽取两个产品,求两个产品都是次品的概率。
解答:我们可以将事件A定义为第一个产品是次品,事件B定义为第二个产品是次品。
根据题意,P(A) = 0.2,即第一个产品是次品
的概率为0.2。
而在第一个产品是次品的条件下,第二个产品也是次品的概率为P(B|A) = 0.2。
则根据条件概率的乘法公式,两个产品都是次品的概率为P(A∩B) = P(A|B) * P(B) = 0.2 * 0.2 = 0.04。
例子2:某市场调查显示,在购买某品牌手机的用户中,80%的人对其性能非常满意。
另外,根据另一项调查,不满意该品牌手机性能的人中有30%的人会考虑更换其他品牌手机。
现在从该品牌手机用户中随机选取一个人,求他对该品牌手机性能不满意且考虑更换其他品牌手机的概率。
解答:我们可以将事件A定义为对该品牌手机性能不满意,事件B 定义为考虑更换其他品牌手机。
根据题意,P(A) = 1 - 0.8 = 0.2,即对该品牌手机性能不满意的概率为0.2。
而在对该品牌手机性能不满意的条件下,考虑更换其他品牌手机的概率为P(B|A) = 0.3。
则根据条件概率的乘法公式,对该品牌手机性能不满意且考虑更换其他品牌手机的概率为P(A∩B) = P(A|B) * P(B) = 0.2 * 0.3 = 0.06。
通过以上两个例子,我们可以看到条件概率的乘法公式在计算同时发生多个事件的概率时具有重要的作用。
无论是在商业、科学还是日常生活中,条件概率的乘法公式都能帮助我们更好地理解和计算事件的概率。
因此,掌握和应用条件概率的乘法公式对于我们的决策和判断都具有重要意义。