1.4乘法公式与全概率公式
- 格式:ppt
- 大小:547.01 KB
- 文档页数:31
考查很隐晦却很重要的概率运算五大公式来源:文都图书概率论与数理统计在考研数学中占22%,约34分,在396经济联考中占14分,事件概率计算的五大公式是数一、数三,396考纲中都有要求的内容,所以比较基础也比较重要。
今天,我们和大家谈谈概率计算的五大公式。
五大公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。
1、减法公式,P(A-B)=P(A)-P(AB)。
此公式来自事件关系中的差事件,再结合概率的可列可加性总结出的公式。
2、加法公式,P(A+B)=P(A)+P(B)-P(AB)。
此公式来自于事件关系中的和事件,同样结合概率的可列可加性总结出来。
学生还应掌握三个事件相加的加法公式。
以上两个公式,在应用当中,有时要结合文氏图来解释会更清楚明白,同时这两个公式在考试中,更多的会出现在填空题当中。
所以记住公式的形式是基本要求。
3、乘法公式,是由条件概率公式变形得到,考试中较多的出现在计算题中。
在复习过程中,部分同学分不清楚什么时候用条件概率来求,什么时候用积事件概率来求。
比如“第一次抽到红球,第二次抽到黑球”时,因为第一次抽到红球也是未知事件,所以要考虑它的概率,这时候用积事件概率来求;如果“在第一次抽到红球已知的情况下,第二次抽到黑球的概率”,这时候因为已知抽到了红球,它已经是一个确定的事实,所以这时候不用考虑抽红球的概率,直接用条件概率,求第二次取到黑球的概率即可。
4、全概率公式5、贝叶斯公式以上两个公式是五大公式极为重要的两个公式。
结合起来学习比较容易理解。
首先,这两个公式首先背景是相同的,即,完成一件事情在逻辑或时间上是需要两个步骤的,通常把第一个步骤称为原因。
其次,如果是“由因求果”的问题用全概率公式;是“由果求因”的问题用贝叶斯公式。
例如;买零件,一个零件是由A、B、C三个厂家生产的,分别次品率是a%,b%,c%,现在求买到次品的概率时,就要用全概率公式;若已知买到次品了,问是A厂生产的概率,这就要用贝叶斯公式了。
概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。
2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。
§14_条件概率与概率的三个基本公式条件概率和概率的三个基本公式是概率论中非常重要的概念和公式。
条件概率指的是在一些条件下事件发生的概率,而概率则是指事件发生的可能性。
三个基本公式分别是全概率公式、贝叶斯公式和乘法规则。
下面将详细介绍这三个公式。
一、全概率公式:全概率公式是概率论中最基本也是最重要的公式之一、它用于计算一个事件在多个互斥且完备的情况下发生的概率。
它的数学表示如下:P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+...+P(A,Bn)P(Bn)其中,P(A)表示事件A发生的概率,B1,B2,...Bn是一组互斥且完备的事件,P(Bi)表示事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率。
这个公式的直观理解是将事件A分解成多个情况下事件A发生的概率之和。
二、贝叶斯公式:贝叶斯公式是由英国数学家贝叶斯提出的。
它是用于更新事件发生概率的一种方法。
贝叶斯公式的数学表示如下:P(B,A)=P(A,B)P(B)/P(A)其中,P(B,A)表示在事件A已经发生的条件下事件B发生的概率,P(A,B)表示在事件B已经发生的条件下事件A发生的概率,P(B)表示事件B发生的概率,P(A)表示事件A发生的概率。
贝叶斯公式的直观理解是根据已知的信息来更新我们对事件发生概率的估计。
三、乘法规则:乘法规则是概率论中计算一个复合事件发生概率的一个基本公式。
它是由条件概率推导而来的。
乘法规则的数学表示如下:P(A∩B)=P(A,B)P(B)=P(B,A)P(A)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。
乘法规则的直观理解是用事件B发生的概率乘以在事件B发生的条件下事件A发生的概率来计算事件A与事件B同时发生的概率。
乘法公式、全概率公式和贝叶斯公式在概率论和统计学中是非常重要的概念。
它们常常被用来解决复杂的概率问题,对于我们理解和应用概率有着重要的指导意义。
1. 乘法公式乘法公式是概率论中最基本的公式之一,它描述了两个事件同时发生的概率。
乘法公式的一般形式为 P(A and B) = P(A) * P(B|A),其中P(A and B) 表示事件 A 和事件 B 同时发生的概率,P(A) 为事件 A 发生的概率,P(B|A) 表示在事件 A 发生的条件下,事件 B 发生的概率。
乘法公式的应用非常广泛,比如在生活中,我们经常需要计算多个事件同时发生的概率。
举个简单的例子,假设有一副扑克牌,从中抽取两张牌,求第一张是红桃的概率和第二张也是红桃的概率。
这就是一个典型的乘法公式的应用问题。
2. 全概率公式全概率公式是在条件概率的基础上发展而来的,它用于计算一个事件的概率,当这个事件可以被划分为几个相互独立的事件的并集时,全概率公式能够很好地解决这类问题。
全概率公式的一般形式为P(B) = Σ [P(Ai) * P(B|Ai)],其中 Ai 是样本空间的一个划分,P(B) 是事件 B 的概率,P(Ai) 是事件 Ai 的概率,P(B|Ai) 是在事件 Ai 发生的条件下,事件 B 发生的概率。
全概率公式的应用场景非常多,比如在市场营销中,我们经常需要根据不同的市场情况来预测产品的销售情况,全概率公式可以帮助我们很好地处理这类问题。
3. 贝叶斯公式贝叶斯公式是一种用于计算条件概率的重要公式,它能够在得到相关先验信息的情况下,根据新的证据来更新我们对事件的概率。
贝叶斯公式的一般形式为 P(A|B) = [P(B|A) * P(A)] / P(B),其中 P(A|B) 表示在事件 B 发生的条件下,事件 A 发生的概率,P(B|A) 表示在事件 A 发生的条件下,事件 B 发生的概率,P(A) 和 P(B) 分别表示事件 A 和事件 B 的先验概率。