多波多分量地震勘探的现状与发展趋势(图文)
- 格式:docx
- 大小:11.15 KB
- 文档页数:2
地震勘探技术进步与开展趋势一、三维地震技术80年代以来,三维地震技术的广泛应用推动了整个油气工业的开展,其应用效果是有目共睹的,人们普遍认为,三维地震是增加储量、提高产量和钻井成功率的有效方法。
三维地震技术经过二十余年的应用日趋成熟和完善,无论是装备、采集技术、处理技术和解释技术都有长足的进展。
近年来,全世界三维地震工作量猛增,随着三维勘探本钱的不断降低,三维取代二维已成定局。
三维地震技术已成为当今世界油气勘探的主导技术之一。
1、地震装备技术地震装备技术的开展是地震勘探技术开展的根底。
自从90年代以来,24位多道地震仪取得了突破性进展,当前先进的地震仪器的主要技术特点如下:采集道数大幅度增加,一般在千道以上,可达上万道;记录动态围增大;小采样率、宽频带记录;具有现场实时交互的质量监控系统和实时相关功能。
SEG 66届年会上发表的“二千年地震系统〞一文指出了地震仪器的开展趋势:轻型、数千道、高可靠性、每道单价降低、采集数据存储在采集站上由中心站控制、控制方式无线电或电缆任选。
此外,三维地震技术的迅猛开展促进了有关技术的进步,如:高效震源、高精度检波器、GPS定位系统、海底电缆OBC,适于复杂地表的运载设备等。
目前,胜利油田的地震采集装备严重老化,不能适应复杂地表勘探以及高精度勘探的要求,更新装备,提高采集水平和精度是当务之急。
2、采集技术〔1〕覆盖次数普遍提高:80年代初由于受地震仪器道数的限制,三维覆盖次数多以12次为主,90年代初随着多道地震仪器的出现,三维覆盖次数一般为20—30次,一些低信噪比地区的覆盖次数那么高达60 —120次以上。
〔2〕观测系统灵活多样:传统的三维观测系统一般为条带式,近年来由于先进仪器设备的出现,三维观测系统的设计也采用了一些新的技术,如“全三维〞观测系统、棋盘式观测系统、可变面元观测系统、不规那么或蛛网观测系统以及放射状观测系统等。
〔3〕采集速度明显加快:在提高采集速度方面,除了采用多道地震仪外,还采用了扫描编码方法〔可控震源〕,同时用两个以上的振动器以不同的扫描信号产生振动,实现多炮同时采集。
地震预测的现状与未来展望地震是一种地球表面传播的弹性波振动现象,在地壳构造活动过程中不可避免地会产生地震。
地震的发生给人类社会带来了巨大的灾难,因此人们一直致力于对地震的预测和监测工作。
本文将就地震预测的现状与未来展望进行探讨。
地震预测的现状地震预测一直是地球科学领域的热点问题,科研人员通过长期观测、数据统计和模型研究,逐渐积累了一定的经验和知识。
目前,地震预测主要基于以下几种方法:1. 地震监测网络各国建立了完善的地震监测网络,通过地震仪、地磁仪、重力仪等设备对地壳运动进行实时监测。
这些监测数据可以为科学家提供宝贵信息,帮助他们识别潜在的地震危险区域。
2. 地震前兆在地震发生前,通常会出现一些异常现象,如地表变形、电磁场异常、地磁场异常等。
科学家通过观测这些前兆信号,尝试预测地震的发生时间和可能受影响的区域。
3. 数学模型科学家们运用数学方法建立了各种地震动力学模型,通过分析不同因素对地震的影响,试图找出规律性可循的线索,以实现对地震的预测。
4. 人工智能技术近年来,人工智能技术在地震预测领域也有了广泛应用。
机器学习算法可以更快速、准确地处理海量的监测数据,提高地震预警和预测的效率和准确性。
地震预测的挑战和未来展望虽然在地震预测领域取得了一定成果,但仍然存在许多挑战和待解决的问题。
下面将就此展开讨论,并展望未来的发展方向:1. 不确定性问题地震是极为复杂、多变的自然现象,其发生受到许多因素影响,并存在大量随机性。
因此,如何降低地震预测结果中的不确定性仍是一个亟待解决的问题。
2. 前兆信号解读虽然已经观测到了一些地震前兆信号,但科学家们对这些信号的解读仍存在困难。
如何准确理解前兆信号中蕴含的信息,并转化为可靠预警,是一个具有挑战性的课题。
3. 数据量与质量要做出准确可靠的地震预测,需要大量高质量的监测数据作为支撑。
然而,在某些地区缺乏监测设备或数据不足的情况下,如何解决数据匮乏问题成为一个亟需解决的难题。
第一节多分量转换波地震技术简介1.1多分量转换波地震技术同常规纵波地震技术一样,多分量转换波地震也是一门研究地球内部物质弹性与非弹性属性的技术。
其中多分量地震数据的采集、处理与解释是这门技术的主体研究内容。
它是认识地球本体、监测与预报地质灾害以及探查与开发油气资源的一项最为重要的地球物理方法。
不同于目前广泛使用的常规地震勘探,多分量转换波地震勘探开发技术有其自身的一些特点,以三分量转换波地震技术为例,我们可以列表对比说明他们之间的异同点。
1.2多分量转换波地震技术研究的意义多分量转换波地震技术既具有纵波勘探深度大、资料采集相对容易和投资少的特点,又能反映地下介质的横波速度变化。
多分量转换波地震的这一特点,使岩性勘探和油气的直接识别成为可能。
同时由于多分量的数据采集,在记录两个水平分量地震数据的前提下,可以利用横波分裂产生的快慢横波时差反映裂缝发育的主方向和发育密度,使得裂缝裂隙型油气藏的勘探开发成为可能。
如今多分量转换波地震技术以及与这一技术紧密相连的各向异性理论方法研究已成为国内外地震勘探领域的研究热点之一;建立与完善成熟可靠的多分量地震资料采集、处理、解释系统是目前这项技术发展的当务之急。
多分量转换波技术的优点多分量转换波地震勘探同通常采用的单一纵波勘探相比,所能提供的地震属性(如走时、速度、振幅、频率、相位、偏振、波阻抗、吸收、AVO、复分量等)信息将成倍的增加,并能衍生出各种组合参数(如快慢横波差值、走时比值、乘积、几何平均值、求取的弹性系数等)。
利用这些参数估算地层岩性、孔隙度、裂隙、含油气性等将比只用单纯P波的可能性更大,可靠性更高。
通过三分量地震资料的观测,人们利用三分量地震记录上的运动学与动力学特征以及快慢横波的偏振方向指示裂缝带的优势方位;利用分裂时差来推算裂缝与裂隙密度等物理与几何参数。
与纵波速度资料结合,可以做碳烃检测,即区分真假亮点。
利用纵横波速度比、传播时间比、振幅比、泊松比等可以研究岩石孔隙度的变化、孔隙流体性质、裂隙发育区、岩性变化等,这些参数的预测对储层研究具有直接的物理意义。
收稿日期:2005-03-02作者简介:田晓红(1967-),女,吉林长春人,助理工程师,从事勘探战略研究。
文章编号:1000-3754(2005)04-0094-03多波多分量地震勘探的现状与进展田晓红(大庆油田有限责任公司勘探开发研究院,黑龙江大庆 163712)摘要:综述了多波多分量地震勘探技术的现状和发展趋势。
引用较新资料,对多分量地震勘探技术的应用进行了分析,指明多分量地震勘探应在深度域资料处理和各向异性处理方面加大研究力度,注重资料综合分析利用。
关键词:多分量;地震;勘探;现状;进展中图分类号:P63114 文献标识码:A随着油气勘探程度的增加,勘探难度不断加大。
常规的纵波地震勘探技术面临诸多挑战性的地质勘探问题,如对尖灭、小幅度构造、小断层、礁体、古潜山的准确定位,对非构造油气藏的勘探,真假亮点的识别,气囱内部成像,裂缝发育带分析,流体的识别与监测等。
解决这些复杂问题,就地震勘探技术而言,仅仅依靠纵波单一波型的常规三维地震已无法解决,必须采用综合物探技术方法。
多波多分量地震勘探技术是其中最有科学价值和发展前途的勘探地震学前缘学科之一。
1 多波多分量地震勘探的优越性利用多波多分量的走时、振幅、波场特性、速度场以及它们之间的时差、振幅比、纵横波速度比、泊松比、品质因子Q 和各向异性系数(裂隙等的表征),就可以对油气储集体几何形态、岩石物性、流体性质等进行全面的成像与刻画,可以最大限度地消除利用单纯纵波进行储层预测的不唯一性[1-7]。
国内外大量实例表明多分量地震勘探能推动这些复杂目标勘探中诸如此类问题的解决[8-25]。
同样,在油气田开发初期增加转换波信息也可以更好地描述油气藏、刻画油气藏动态[26-37]。
如图1,转换波较好地解决气云下构造成像的质量,图2中横波波阻抗变化大于纵波波阻抗变化,有利于识别储层顶底。
当前,多分量地震在我国海上已经取得初步成功,陆上开展大规模多分量地震勘探试验应用研究具备了一定的技术和物质基础,一直困扰陆上多分量地震勘探的静校正问题、处理软件及方法的完善问题、解释软件及方法的配套问题正在得到逐步的解决。
浅析多分量地震勘探技术的原理与实际应用效果摘要:多分量地震勘探技术是利用地震波的多向性,即横波、纵波、转换波等的采集和分析,以此形成相应的线性图,并通过纵横波的联合反演来分析和判断地下地质结构特征和岩层特性的一种新兴的地震勘探方法,能够相应弥补纵波勘探的不足,是目前国内外地震勘探专家正在努力研究的一个方向。
关键词:多分量技术勘探原理实际应用前景展望一、多分量地震勘探技术概述40年前,地球物理学家开始对多波地震勘探进行研究,特别是在学者证实了裂隙诱导各向异性的特征和横波分裂的存在后,地震波的各向异性就成为了学术界研究的方向和热点,同国外相比我国的地震各向异性的研究起步较晚,在进入到改革开放后才逐步发展起来。
具体到多分量地震勘探技术来讲,近10多年来,主要集中在以下领域的研究拓展:1、多分量地震勘探原理多分量地震波的勘探原理是利用地震产生的横纵波对勘测的区域进行回波信息采集。
大量的多波技术研究仍然是针对转换波采集,激发采用常规纵波震源,接收采用多分量数字检波器,以获得纵(p)波和转换(p-s)波。
地震波在岩层中以球面形式传播,当遇到岩层物性界面的时候就会一部分反射,一部分发生折射进入前方的介质。
反射和折射回来的信号被高灵敏度的多分量数字检波器采集并传送至中央处理器,此时就可以根据地震波在不同介质中的传播特性差异来进行分析,并利用综合解释系统来反演地下地质结构。
针对煤田勘探来讲,由横波速度比纵波速度慢可看出,对于厚度较小的同一岩层,横波从某一岩层顶传播到其岩层底所需的时间比纵波长。
由于煤层厚度一般不大,因此,根据横波来分辨煤层的能力要比纵波强。
理论与试验表明,综合应用纵波和横波资料可获得更准确的反映构造和岩性的参数,2、多分量的数据采集多波多分量地震研究首先要解决的是信息采集技术,其采集的重点是对转换波测量。
目前,在三分量野外数据采集设备的研究和发展方面,已经取得了突破,多道遥测数字地震仪和多分量数字检波器相继问世。
多波多分量综述一.多分量研究的目的和意义随着勘探开发的不断深入,勘探难度不断加大,常规纵波地震勘探技术难以解决诸多复杂地质勘探问题,如对尖灭,小幅度构造,小断层,焦体,古潜山的准确定位,对非构造气藏的勘探,真假亮点的识别,内部成像,裂缝发育带分析,流体识别与监测等。
解决这些复杂问题,仅仅依靠常规纵波地震已无法解决,这需要另外的数据来约束纵波信息的多解性,因此必须采用综合物探技术方法。
多波多分量勘探是最新最有前途的前沿科学之一,能接收更多的地震波信息来解决复杂地质问题。
多波多分量勘探与同常规单一纵波勘探相比所提供的地震属性信息成倍增加并能衍生出各种组合参数,利用这些参数估算地层岩性,孔隙度,裂隙等比单纵波的可能性更大,可靠性更高。
联合纵横波特性有助于更准确确定地下地质情况。
利用多分量的走时,振幅,波场特征,速度场及时差,振幅比,纵横波速度比,泊松比,各向异性就可对油气储集体几何形态,岩石物性,流体性质等进行全面成像和刻画,能最大限度消除单一纵波进行储层预测的不唯一性。
目前多分量综合解释技术为寻找油气藏提供更可靠帮助。
二.多分量发展现状在油气勘探早期人们鲜于使用横波主要原因是:在构造为主要勘探目标时期,纵波即可胜任而且比横波更有优越,横波各向异性理论很复杂影响人们研究热情,横波震源激发与操作难度大,资料中遇到了严重的静校正问题。
尽管如此人们并没有停止对横波的研究。
20世纪30年代人们意识到解决日益复杂的地质问题必须引入横波或转换波。
多分量勘探技术发展经历了三个不同发展阶段:70年代以前,人们试图利用横波的低速来获得比纵波更高的分辨率,但由于接收到的横波频率偏低,且费用高,因此未能取得明显效果。
70年代后期到80年代中期,人们开始利用纵横波资料提取岩性信息,识别真假亮点,该阶段取得了一定的成功,与此同时,各向异性导致横波分裂现象引起人们的关注,因为岩层中的各向异性主要由定向裂隙引起,而裂隙与油气关系甚密,从而导致了80年代中期以来兴起的第二次多波研究浪潮。
地质勘探技术发展趋势和创新方向地质勘探技术是石油、天然气等资源勘探的关键环节,它直接影响着资源的开发利用效率和经济效益。
随着科技的不断进步和发展,地质勘探技术也在不断地创新和发展。
本文将探讨地质勘探技术的发展趋势和创新方向。
(一)大数据和人工智能在地质勘探技术中的应用随着大数据和人工智能的不断发展和成熟,它们已经逐渐应用于地质勘探技术中。
大数据的应用可以帮助地质勘探人员更加全面、准确地了解地下资源的分布和特征,从而减少勘探投入,提高勘探效率。
人工智能的应用则可以通过模拟和预测,帮助勘探人员更好地制定勘探方案和决策,提高勘探成功率。
未来,随着大数据技术和人工智能技术的不断发展和应用,地质勘探技术将实现高度自动化和智能化,提高勘探效率和资源开发利用率。
(二)三维地质建模技术的发展三维地质建模技术是地质勘探技术中的重要工具,它可以准确地描述地下地质情况,为勘探工作提供可靠的基础数据。
随着地质勘探需求的不断增加,传统的地质建模技术已经无法满足勘探工作的需要。
因此,研究人员开始探索新的三维地质建模技术,如基于机器学习和深度学习的建模方法,以加快地质建模的速度和提高建模的准确性。
未来,三维地质建模技术将更加智能化和自动化,成为地质勘探的重要工具。
(三)地震勘探技术的创新地震勘探技术是地质勘探中最常用的技术之一,它可以通过观测地震波在地下的传播情况,推断地下的地质特征和油气等资源的分布情况。
随着科技的不断发展,地震勘探技术也在不断创新。
例如,高精度测震仪的发展,使得地震勘探数据的采集更加精确和准确;数据处理和解释算法的创新,提高了地震数据的解释效果和成像能力。
未来,地震勘探技术的创新主要体现在更高精度的数据采集、更高效准确的数据处理和解释算法的开发等方面,以提高地质勘探的效率和成果。
(四)无人机在地质勘探中的应用无人机技术的快速发展为地质勘探工作提供了全新的解决方案。
无人机可以搭载各种传感器和摄像设备,实现对地下和地上的快速、广泛的勘探。
文章编号:1671-8585(2010)04-0247 -07收稿日期:2010-04-29;改回日期:2010-06-03。
第一作者简介:马昭军(1978)),男,2005年毕业于中国石油大学(北京)地球探测与信息技术专业,获硕士学位,主要从事多波多分量地震资料处理及各向异性研究工作。
基金项目:国家科技攻关项目(2008ZX05000)资助。
多波多分量地震勘探技术研究进展马昭军,唐建明,徐天吉(中国石油化工股份有限公司西南油气分公司勘探开发研究院德阳分院,四川德阳618000)摘要:随着采集设备的发展以及采集技术的提高,多波多分量采集成本大大降低,在当前的油气勘探中的应用呈现上升趋势。
与此同时,其技术和实际应用研究也得到了迅速发展,并逐渐进入工业化生产。
回顾了多波多分量地震勘探的发展历程,总结了国内外多波多分量研究进展。
详细论述了多波多分量应用研究进展,包括多波多分量地震数据采集、数据处理、资料解释和成果综合运用。
分析了多波多分量地震勘探技术在实际应用中存在的问题,展望了今后多波多分量地震勘探的发展趋势。
关键词:多波多分量;数据处理;解释;联合反演;各向异性中图分类号:P631.4文献标识码:A多波多分量地震勘探是进行岩性油气藏和隐蔽油气藏勘探的一种非常有潜力的方法。
利用多波多分量的运动学(走时、速度、结构、相似性等)和动力学(振幅、频率、相位、吸收、衰减、频散、方位各向异性等)特征,以及纵横波之间的时差比、振幅比、速度比,就可以对储层展布、储集参数分布特征、裂缝发育程度、含气性及流体性质等进行全面的刻划,最大限度地消除利用单纯纵波进行地震勘探的非唯一性,提高复杂隐蔽性、非均质气藏勘探开发的成功率。
多波多分量地震勘探技术在石油天然气勘探中的应用始于20世纪70年代,已有近40年历史,经历了横波勘探、九分量地震勘探、多波多分量勘探、海上三维四分量(3D4C)勘探和陆上三维三分量(3D3C)勘探5个发展阶段。
地震监测技术的现状和发展趋势地震是地球上最常发生的自然灾害之一。
它造成的破坏性极大,不仅给人们的生命财产带来了巨大损失,而且还给人们带来了心理上的创伤。
早期的地震研究依靠的是人的感觉和自然现象,而随着科技的不断进步与发展,地震监测技术也得以不断提高,对于预防地震和减少地震造成的伤害有着非常重要的意义。
一、地震监测技术现状当前,地震监测技术主要包括地震震源机制研究、地震震源参数反演、地震前兆和预警、地震波形分析等。
其中,地震波形分析是一种比较常见的技术,可以采用多种设备来监测地震,如地震仪、加速度计、应变计和GPS等。
(一)地震仪地震仪是一种能够监测地震波传播情况的设备,它的原理是通过测量地面的振动来记录地震波的振动情况。
地震仪的准确性与精度取决于它的灵敏度和测量范围。
地震仪可以有效地记录并解析地震波的传播路径、振幅、频率等参数,为地震震源参数反演和地震前兆预警等提供了重要数据。
(二)加速度计加速度计也是一种测量地震振动的设备,它可以用来测量地面振动的加速度,是地震力学研究中不可或缺的设备之一。
加速度计的精度可以达到0.001g,可以测量从微小震动到大地震的振动情况。
(三)GPSGPS技术可以监测地壳变形,通过测算地壳形变率和位移量来预测地震。
GPS技术主要是通过测量卫星信号与地面接收器之间的传播时间差异来确定位置坐标,可以用来监测地壳变形情况。
二、地震监测技术的发展趋势人们对地震的认识和了解已经发展到了一个非常高的水平,不仅可以预测地震,还可以通过各种技术手段来监测地震的震源机制、波形、前兆等。
然而,对于地震的深层参数和地震后果的预测仍有很大的不确定性和局限性。
(一)深层地震参数反演当前,深层地震参数研究仍存在一定的挑战和困难。
地震震源的机制和地震发生的深度等都是需要通过深入研究才能够获得的。
未来的发展方向应当是加强人工智能技术的应用,通过高精度计算来反演地震地下过程中的各种参数。
(二)地震前兆预警地震前兆预警是未来地震监测技术的发展方向之一。
地震震源深度定位研究的现状与展望地震是自然灾害中比较常见的一种,其对人类的生命财产和社会发展造成的危害极大。
地震的震源深度是评估地震危害度和相关灾害预测的重要基础。
本文旨在回顾地震震源深度定位研究的现状与展望,为全面了解地震发生机理与灾害防范提供指导。
1. 地震震源深度定位方法当前,地震震源深度定位方法主要分为以下两大类:理论计算和实测法。
理论计算法是指基于地震波传播的物理规律,利用数值模拟等方法推算地震的震源深度。
目前应用比较广泛的方法包括反射地震学、接收函数或地震剖面分析等。
这些方法所需的数据来源于成像技术获取的地表物理数据,其优点是可控制的数据质量和定量化数据处理,但也存在数据与预测结果的误差。
实测法是指通过实测手段获取地震震源深度。
主要方法包括:高精度地震台网定位法、双台站震相差分定位法、地壳形变和GPS测量等。
这些方法直接依赖于实测数据,具有高精度、实时性强等优点。
当前,国内外地震震源深度研究日益深入。
根据相关文献统计,以意大利为例,目前国际上应用最广泛的定位方法为Mt.ETNA火山周围的地震震源深度研究。
该研究通过搭建多台台站的联网形成地震台网,实现了对地震活动的高时空分辨率监测,确保了地震震源深度测量结果可靠性。
在我国,地震台网也在不断的完善之中。
其中,高精度地震台网定位法已被广泛应用。
定位结果具有精度高的特点,其中最小水平误差可达900米,垂直误差可达1500米。
然而,也存在一些尚待解决的问题。
一是实测定位因数据来源、观测条件等因素的限制,数据质量的不稳定性较大,需要加强数据质量的统一标准。
二是理论计算方法的复杂性与精度、实测方法的监测精度等问题都需要进一步完善。
3. 展望针对现有的问题,采用机器学习、深度学习等技术是近年来地震震源深度定位研究的重点之一。
通过对数据进行深度挖掘,结合人工智能技术的快速计算,可以提高精度,同时也可开展更广泛的实测定位。
例如,机器学习算法加速了定位过程,再结合地震波传播理论,标准化数据并用有效方法解析,此时计算效率和准确度会得到更大程度提高,将有望解决数据质量问题。
探讨多波多分量地震勘探技术进展1 引言随着勘探难度的增加和对岩性勘探要求的日益提高,以纵波勘探技术为依托的传统三维地震勘探已经难以应对勘探过程中遇到的诸多新问题。
在这样的背景下,多波多分量地震勘探技术在近年来得到了迅速的发展。
所谓多波多分量勘探是指利用三分量检波器同时记录地震纵波(P波)、横波(S波)和转换波(P-S 波)信号,并进行相应的资料处理和解释工作。
相比以记录纵波为主的传统勘探方法,该技术能够获取更丰富的波动信息,在描述储层参数和空间展布、预测裂缝发育程度、研究储层含气性等方面表现出明显的优越性。
2 多波多分量地震技术发展历程和应用现状针对多波多分量地震勘探的理论研究最早始于前苏联,而相应的勘探实践则自20世纪70年代以来先后在前苏联、美国、法国等国家展开。
这一时期的勘探主要着力于利用横波速度低于纵波从因此在理论上能实现更高的分辨率这一特点,试图获取分辨率更高的地震资料。
但由于横波在速度低于纵波的同时,其频率也低于纵波在因此传播的过程中衰减严重,采集到的横波地震资料信噪比过低,因此多波多分量勘探在该阶并未取得显著进展。
20世纪70年代末至80年代中期的多波多分量勘探开始转为综合利用纵波、横波的联合勘探,其应用主要集中于求取包括泊松比在内的岩石弹性信息和鉴别含气亮点的真伪等方面。
但由于多波勘探相较于单一的纵波勘探成本过高,且在当时尚有诸多相关基础理论和技术问题未能得到妥善解决,因此多波地震勘探在岩性勘探方面的应用最终被以AVO为基础的纵波岩性勘探所取代。
多波多分量勘探近年来的再次兴起始于20世纪90年代海上多波地震勘探的成功。
海上多波多分量地震勘探先于陆上取得成功的原因主要来自两个方面:(1)一定深度的海床相比于陆地环境噪声更低,采集到的横波资料信噪比较低;(2)海洋地震勘探面临着诸如硬海底、气柱等用传统纵波勘探难以解决的问题,这些问题的提出促进了海上多波勘探的发展。
此外,海底多分量电缆接收系统(OBC)的研制成功为海上多波勘探排除了资料采集方面的障碍。
地震监测技术的现状和发展趋势地震是一种具有灾难性的自然灾害,它不仅能够造成人员伤亡,破坏基础设施,还能够引起其他次生灾害。
因此,在地震管控中,如何对地震进行有效监测是非常重要的。
本文将探讨地震监测技术的现状和发展趋势。
一、地震监测技术的现状地震监测技术的发展有着长期的历史。
最初的地震监测技术是人工地震观测,它需要人员在地震后及时地到达灾区,并且进行各种地震数据的手工记录和处理。
这种技术的主要问题是需要巨大的人力和物力投入,对于突发地震来说会造成很大的误差和滞后。
随着科技的发展和进步,地震监测技术得到了迅猛发展。
根据地震监测技术的基本原理和方法,它可以分为两个方面:一是地震预测,二是地震监测。
在前者的领域中,智能化、网络化地震预警系统成为近年来的研究热点。
地震监测方面则有多种技术应用,如弹性波/走时定位技术、地磁/变形/重力监测技术、通用/分布式传感网技术等。
其中,传感器技术和信息处理技术的提升是地震监测技术能够实现大范围和高密度监测的关键。
由于传感器技术的进步,高密度、高频率的数据监测成为可能。
同时,通过大数据、云计算等技术对数据进行处理和分析,更有效地发掘和预测地震危险性。
二、地震监测技术的发展趋势在未来几年中,地震监测技术的发展将会呈现以下趋势:1. 无人机技术的应用:无人机能够在空中进行便捷的遥感监测,通过高清遥感图像捕捉地表的细微变化和捕捉地震后的影像变化,这将会对地震监测数据的收集和分析产生积极的影响。
2. 机器学习/人工智能的应用:通过对大数据进行机器学习和人工智能等技术的处理,实现对地震的预测分析以及对地震的追踪分析。
这些数据和分析能够更好地提高地震手段的准确度和预测精度。
3. 高精度、远距离无线电波技术的应用:通过采用高精度的无线电波技术,能够对物理量进行非接触性的测量,降低设备的使用难度,提高测量的效率和准确度。
4. 多传感器、多模式、多捷径的地震监测技术应用:利用多传感器、多模式、多捷径的地震数据融合技术,对地震灾害进行全面监测。
多波多分量综述一.多分量研究的目的和意义随着勘探开发的不断深入,勘探难度不断加大,常规纵波地震勘探技术难以解决诸多复杂地质勘探问题,如对尖灭,小幅度构造,小断层,焦体,古潜山的准确定位,对非构造气藏的勘探,真假亮点的识别,内部成像,裂缝发育带分析,流体识别与监测等。
解决这些复杂问题,仅仅依靠常规纵波地震已无法解决,这需要另外的数据来约束纵波信息的多解性,因此必须采用综合物探技术方法。
多波多分量勘探是最新最有前途的前沿科学之一,能接收更多的地震波信息来解决复杂地质问题。
多波多分量勘探与同常规单一纵波勘探相比所提供的地震属性信息成倍增加并能衍生出各种组合参数,利用这些参数估算地层岩性,孔隙度,裂隙等比单纵波的可能性更大,可靠性更高。
联合纵横波特性有助于更准确确定地下地质情况。
利用多分量的走时,振幅,波场特征,速度场及时差,振幅比,纵横波速度比,泊松比,各向异性就可对油气储集体几何形态,岩石物性,流体性质等进行全面成像和刻画,能最大限度消除单一纵波进行储层预测的不唯一性。
目前多分量综合解释技术为寻找油气藏提供更可靠帮助。
二.多分量发展现状在油气勘探早期人们鲜于使用横波主要原因是:在构造为主要勘探目标时期,纵波即可胜任而且比横波更有优越,横波各向异性理论很复杂影响人们研究热情,横波震源激发与操作难度大,资料中遇到了严重的静校正问题。
尽管如此人们并没有停止对横波的研究。
20世纪30年代人们意识到解决日益复杂的地质问题必须引入横波或转换波。
多分量勘探技术发展经历了三个不同发展阶段:70年代以前,人们试图利用横波的低速来获得比纵波更高的分辨率,但由于接收到的横波频率偏低,且费用高,因此未能取得明显效果。
70年代后期到80年代中期,人们开始利用纵横波资料提取岩性信息,识别真假亮点,该阶段取得了一定的成功,与此同时,各向异性导致横波分裂现象引起人们的关注,因为岩层中的各向异性主要由定向裂隙引起,而裂隙与油气关系甚密,从而导致了80年代中期以来兴起的第二次多波研究浪潮。