第一章1.2 材料的塑性、蠕变性与超塑性 - 副本
- 格式:ppt
- 大小:901.50 KB
- 文档页数:30
名词解释第一章:弹性比功:材料在弹性变形过程中吸收变形功的能力。
包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。
滞弹性:是材料在加速加载或者卸载后,随时间的延长而产生的附加应变的性能,是应变落后于应力的现象。
粘弹性:是指材料在外力的作用下,弹性和粘性两种变形机理同时存在的力学行为。
内耗:在非理想弹性变形过程中,一部分被材料所吸收的加载变形功。
塑性:材料断裂前产生塑性变形的能力。
韧性:是材料力学性能,是指材料断裂前吸取塑性变形攻和断裂功的能力。
银纹:是高分子材料在变形过程中产生的一种缺陷,由于它密度低,对光线反射高为银色。
超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。
脆性断裂:是材料断裂前基本不产生明显的宏观塑性变形,没有明显预兆,而是突然发生的快速断裂过程。
韧性断裂:是指材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。
剪切断裂:是材料在切应力作用下沿滑移面滑移分离而造成的断裂。
河流花样:两相互平行但出于不同高度上的解理裂纹,通过次生解理或撕裂的方式相互连接形成台阶,同号台阶相遇变汇合长大,异号台阶相遇则相互抵消。
当台阶足够高时,便形成河流花样。
解理台阶:不能高度解理面之间存在的台阶韧窝:新的微孔在变形带内形核、长大、聚集,当其与已产生的裂纹连接时,裂纹便向前扩展形成纤维区,纤维区所在平面垂直于拉伸应力方向,纤维区的微观断口特征为韧窝。
2 材料的弹性模数主要取决因素:1)键合方式和原子结构2)晶体结构3)化学成分4)微观组织5)温度6)加载方式3决定金属材料屈服强度的因素1)晶体结构2)晶界与亚结构3)溶质元素4)第二相5)温度6)应变速率与应力状态4 金属的应变硬化的实际意义1)在加工方面:利用应变硬化和塑性变形的合理配合,可使金属进行均匀的塑性变形,保证冷变形工艺的顺利实施2)在材料应用方面:应变硬化可以使金属机件具有一定的抗偶然过载能力,保证机件的安全使用。
1.1超塑性的概念超塑性是指材料在特定条件下,表现出异常高的塑性而不产生缩颈与断裂的现象。
但至今还没有从物理本质上的确切定义。
有的以拉伸试验的延伸率来定义,认为 >200%即为超塑性;有的以应变速率敏感性指数m来定义,认为m>0.3,即为超塑性;还有的认为抗颈缩能力大,即为超塑性。
1.2超塑性的分类根据目前世界上各国学者研究的成果,按照实现超塑性的条件(组织,温度,应力状态等)可将超塑性分为三类:1.微晶组织超塑性(即恒温超塑性或结构超塑性)一般所指超塑性多属这类,它是国内外研究最多的一种。
当材料是微细的等轴晶粒组织,间距为0.5一5μm,温度大于该材料熔点温度的一半,应变速度为10-4一10-1/s之间时,材料拉伸断裂将呈现超塑性变形的能力。
2.相变超塑性(变温超塑性或动态超塑性)将材料在相变温度附近进行热循环,利用相变过程,每一次热循环贡献一小的应变,从而在多次热循环过程中获得大的延伸率。
3.内应力超塑性和相变超塑性一样进行热循环,利用材料的热膨胀系数的差异产生内应力,内应将有助于基体的塑性流动,从而使材料获得超塑性。
1.3超塑性的特点金属塑性成形时宏观变形有几个特点:大延伸、无缩颈、小应力、易成形。
(1)大变形:超塑性材料在单向时延伸率极高,有的可以到8000%表明超塑性材料在变形稳定性方面要比普通材料好很多。
这样使材料的成形性能大大改善,可以使许多形状复杂,一般难以成形的材料变形成为可能。
(2)无紧缩:超塑性材料的变形类似于粘性物质的流动,没有(或很小)应变硬化效应,但对应变速率敏感,当变形速度增大,材料会强化。
因此,超塑性材料变形时初期有紧缩形成,但由于紧缩部位变形速度增大而发生局部强化,而其余未强化部分继续变形,这样使紧缩传播出去,结果获得巨大的宏观均匀变形。
超塑性的无紧缩是指宏观上的变形结果,并非真的没有紧缩。
(3)小应力:超塑性材料在变形过程中,变形抗力可以很小,因为它具有粘性或半粘性流动的特点。
材料的超塑性及其变形机理专业:材料工程学号:2012177姓名:孙宇材料的超塑性及其变形机理1.材料超塑性的定义超塑性合金是指那些具有超塑性的金属材料。
超塑性是一种奇特的现象。
具有超塑性的合金能像饴糖一样伸长10倍、20倍甚至上百倍,既不出现缩颈,也不会断裂。
金属的超塑性现象,是英国物理学家森金斯在1928年发现的,他给这种现象做如下定义:凡金属在适当的温度下(大约相当于金属熔点温度的一半)变得像软糖一样柔软,而应变速度10毫米/秒时产生本身长度三倍以上的延伸率,均属于超塑性。
超塑性材料是指:具有相对细小的晶粒(20微米-30纳米)的金属、陶瓷等,其晶粒分布可以是均匀或不均匀的,且晶粒或相的形状、尺寸或取向具有各向异性或各相同性。
2.超塑性及其宏观变形特征通常认为超塑性是指材料在拉伸条件下,表现出异常高的伸长率而不产生缩δ100%时,即可称为超塑性。
实际上,有的超塑材颈与断裂现象。
当伸长率≥料其伸长率可达到百分之几百,甚至达到百分之几千,如在超塑拉伸条件下Sn-Bi 共晶合金可获得1950%的伸长率,Zn-AI共晶合金的伸长率可达3200%以上。
也有人用应变速率敏感性指数m值来定义超塑性,当材料的m值大于0.3时,材料即具有超塑性。
金属材料在超塑性状态下的宏观变形特征,可用大变形、小应力、无缩颈、易成形等来描述。
1) 大变形超塑性材料在单向拉伸时伸长率占极高,目前已有占达8000%以上的报道。
超塑性材料塑性变形的稳定性、均匀性要比普通材料好得多,这就使材料成形性能大为改善,可以使许多形状复杂,难以成形构件的一次成形变为可能。
2) 小应力材料在超塑性变形过程中的变形抗力很小,它往往具有粘性或半粘性流动的特点,在最佳超塑变形条件下,超塑流变应力σ通常是常规变形的几分之一乃至几十分之一。
例如,Zn-22%Al合金在超塑变形时的流动应力不超过2MPa,钛合金板料超塑成形时,其流动应力也只有几十兆帕甚至几兆帕。
第一章:金属材料的塑性性质○1 弹性与塑性的本质区别不在于应力—应变关系是否线性,而在于卸载后变形是否可恢复1、简单○2 低碳钢屈服阶段很长,铝、铜、某些高强度合金钢没有明显的屈服阶段(此时取0.2%塑性应变对应的应力为条件屈服应力);0.2一、金属材拉伸试验○3 塑性变形量p / E (E 弹性模量;Et 切线模量)○4 简单拉伸件塑性时d E d(拉伸d 0); d Ed(压缩d 0)t料的○5 塑性变形后反向加载(单晶体:反向也对称强化;多晶体:反向弱化—包辛格效应)塑性○6 高温蠕变:应力不变时应变仍随时间增长的现象性质塑性变形不引起体积变化2 静水压○1 静水压力与材料体积改变之间近似服从线弹性规律金属材料发生大塑性变形时可忽略弹性力试验体积变化○2 材料的塑性变形与静水压力无关1、滑移面:晶体各层原子间发生的相对滑移总是平行于这种原子密排的平面,这种大密度平面称为滑移面。
二、塑2、滑移方向:滑移面内,原子排列最密的方向是最容易发生滑移的,称为滑移方向;性变3、滑移系:每个滑移面和滑移方向构成一滑移系。
(体心立方—12;面心立方—48;密排六方—3)形的物理1、为使晶体发生塑性变形,外加应力至少在一个滑移方向上的剪应力分量达到剪切屈服应力;Y基础位错刃形位错:位错运动方向与F 平行;位错在晶体内的运动是塑性变形的根源;塑性变形时位错型聚集、杂质原则阻碍滑移造成强化。
螺形位错:位错运动方向与F 垂直。
三、轴向拉伸时的塑性失稳采用应变的对数定义的优点:=F / A 1、可以对应变使用加法:名义应力:应力真应力: =F / A2、体积不可压缩条件: 1 2 3 0工程应变: =(l-l )/l应变拉伸失稳条件:0 0=ln(1+ )=ln(l /l )自然应变/对数应变:d / d (此时d / d 0)1、材料塑1、材料的塑性行为与时间、温度无关——研究常温静载下的材料;2、材料具有无限的韧性;3、变形前材料是初始各向同性的,且拉伸、压缩的真应力—自然应变曲线一致性行为基本假设4、重新加载后的屈服应力(后继屈服应力)=卸载前的应力5、应变可分解为弹性和塑性两部分: =e p6、塑性变形是在体积不变的情况下产生的,静水压力不产生塑性变形;7、应力单调变化时有:E(弹性模量) E(s 割线模量)E(t 切线模量) 0简化模型○1 理想弹性○2 理想刚塑性○3 刚线性强化○4 理想弹塑性○5 弹—线性强化四、材料塑性行为的理想化2、应力、应变曲线的理想化模型经验公式鲁得维克表达式:n=+H (0 n 1)Y修正的鲁得维克式:E (当/ E )Y当(E / )n ( /E )Y Y YY Y Y1)n=0:刚塑性材料;2)0<n≤1:刚线性强化材料1)弹性范围内用Hooke 定律表达;2)塑性范围内用幂函数表达。
《材料性能学》课程教学大纲一、《材料性能学》课程说明(一)课程代码:(二)课程英文名称:Introductions of Materials Properties(三)开课对象:材料物理专业(四)课程性质:《材料性能学》属于材料科学与工程一级学科主干专业课(五)教学目的:使学生掌握材料各种主要性能的基本概念物理本质化学变化律以及性能指标的工程意义,了解影响材料性能的主要因素及材料性能与其化学成分,组织结构之间的关系,基本掌握提高材料性能的主要途径。
(六)教学内容:本课程包括金属材料力学性能,金属物理性能分析,无机材料无论性能,高分子材料力学材料性能、材料的腐蚀与老化、性能指标的工程意义、指标的测试与评价及应用为主线贯穿始终,让学生对材料性能知识有一个完整的了解,以便达到举一反三、触类旁通的效果。
(七)教学时数:学时数:72 学时分数: 4 学分(八)教学方式:以粉笔、黑板为主要形式的课堂教学(九)考核方式和成绩记载说明考核方式为考试。
严格考核学生出勤情况达到学籍管理规定的旷课量取消考试资格,综合成绩根据平时成绩和期末成绩评定,平时成绩占40%,期末成绩占60%。
.二、讲授大纲与各章的基本要求第一章材料的单向静拉伸的力学性能教学要点:让学生了解材料在静载作用下的应力应变关系及常见的三种失败形式的特点和基本规律,这些性能指标的物理概念和工程意义,探讨提高材料性能指标的途径和方向1、使学生了解力—拉伸曲线和应力——应变曲线。
2 、使学生了解材料的弹性变形以及性能指标3、非理想弹性与内耗的概念4、非理想弹性的几种类型及工程应用5、掌握塑性变形的实质以及指标测方法6、了解断裂的机理教学时数: 8 学时教学内容:第一节力——伸长曲线和应力——应变曲线一、力——伸长曲线(低碳钢曲线,决定因素)二、应力——应变曲线中有实力与工程应力的关系式、曲线第二节弹性形变及其性能指标一、弹性形变本质二、弹性模数三、影响弹性模数的因素(键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件的负荷持续时间)四、比例极限与弹性极限五、弹性比功第三节非理想弹性与内耗一、滞弹性二、粘弹性三、伪弹性四、包申格效应五、内耗第四节塑性变形及其性能指标一、塑性变形机理(金属材料的塑性变形、陶瓷材料的塑性变形、高分子的塑性变形)二、屈服观象与屈服强度三、影响金属材料屈服强度的因素(晶体结构、晶界与亚结构、溶质元素、第二相、温度应变速率与应力状态)四、应变硬化(机理、指数、意义)五、抗拉强度与缩颈条件六、塑性与塑性指标七、超塑性第五节断裂一、断裂的类型及断口特征(韧性断裂与脆性断裂、穿晶断裂与沿晶断裂、洁切断裂与解理断裂、高分子材料的断裂、断口分析)二、裂纹形裂的位错模型(佤纳——斯特罗理论、断裂强度的裂纹理论)三、断裂强度四、真实断裂强度与静力韧度考核要求:1、力—伸长曲线和应力——应变曲线1.1力—伸长曲线(低碳钢曲线、决定因素)(识记)1.2应力—应变曲线中有实力与工程应力的关系式(识记)2、弹性形变及其性能指标2.1弹性形变本质(领会)2.2弹性模数(识记)2.3影响弹性模数的因素(键合方式和原子结构、晶体结构、化学成分、微观组织、温度、加载条件的负荷持续时间)(领会)2.4比例极限与弹性极限(领会)2.5弹性比功(领会)3、非理想弹性与内耗3.1滞弹性(领会)3.2粘弹性(领会)3.3伪弹性(领会)3.4包申格效应(识记)3.5内耗(识记)4、塑性变形及其性能指标4.1塑性变形机理(识记)4.2屈服观象与屈服强度(领会)4.3影响金属材料屈服强度的因素(识记)4.4应变硬化(领会)4.5抗拉强度与缩颈条件(识记)4.6塑性与塑性指标(识记)4.7超塑性(识记)第五节断裂5.1断裂的类型及断口特征(识记)5.2裂纹形裂的位错模型(领会)5.3断裂强度(领会)5.4真实断裂强度与静力韧度(领会)第二章材料在其他静载下的力学性能教学要点:让学生了解扭转、弯曲、压缩与带缺口试样的静拉伸以及材料硬度实验的方法、应用范围、力学性能指标。
材料的超塑性及其变形机理专业:材料工程学号:2012177姓名:孙宇材料的超塑性及其变形机理1.材料超塑性的定义超塑性合金是指那些具有超塑性的金属材料。
超塑性是一种奇特的现象。
具有超塑性的合金能像饴糖一样伸长10倍、20倍甚至上百倍,既不出现缩颈,也不会断裂。
金属的超塑性现象,是英国物理学家森金斯在1928年发现的,他给这种现象做如下定义:凡金属在适当的温度下(大约相当于金属熔点温度的一半)变得像软糖一样柔软,而应变速度10毫米/秒时产生本身长度三倍以上的延伸率,均属于超塑性。
超塑性材料是指:具有相对细小的晶粒(20微米-30纳米)的金属、陶瓷等,其晶粒分布可以是均匀或不均匀的,且晶粒或相的形状、尺寸或取向具有各向异性或各相同性。
2.超塑性及其宏观变形特征通常认为超塑性是指材料在拉伸条件下,表现出异常高的伸长率而不产生缩δ100%时,即可称为超塑性。
实际上,有的超塑材颈与断裂现象。
当伸长率≥料其伸长率可达到百分之几百,甚至达到百分之几千,如在超塑拉伸条件下Sn-Bi 共晶合金可获得1950%的伸长率,Zn-AI共晶合金的伸长率可达3200%以上。
也有人用应变速率敏感性指数m值来定义超塑性,当材料的m值大于0.3时,材料即具有超塑性。
金属材料在超塑性状态下的宏观变形特征,可用大变形、小应力、无缩颈、易成形等来描述。
1) 大变形超塑性材料在单向拉伸时伸长率占极高,目前已有占达8000%以上的报道。
超塑性材料塑性变形的稳定性、均匀性要比普通材料好得多,这就使材料成形性能大为改善,可以使许多形状复杂,难以成形构件的一次成形变为可能。
2) 小应力材料在超塑性变形过程中的变形抗力很小,它往往具有粘性或半粘性流动的特点,在最佳超塑变形条件下,超塑流变应力σ通常是常规变形的几分之一乃至几十分之一。
例如,Zn-22%Al合金在超塑变形时的流动应力不超过2MPa,钛合金板料超塑成形时,其流动应力也只有几十兆帕甚至几兆帕。
材料超塑性及应用课程编号:课程名称:材料超塑性及应用英文名称:Superplasticty and its Application for Materials学分:2先修课程基础:《晶体结构与缺陷》,《工程力学》与《材料力学》二者之一。
教材:自编一、课程简介本课程的目的在于使学生对于材料超塑性的力学、微观机理、应用等方面具有比较深入的理解,初步掌握超塑性的研究路线及方法。
对超塑性力学行为与显微组织及其变化的关系的物理本质具有比较清晰的认识,对超塑性的发展及其应用领域具有比较明确的分析,对超塑性的试验研究手段具有一定的了解,对于超塑性的应用及超塑性成形工艺具有一定的初步知识。
通过本课程的学习,使研究生对超塑性实验、理论、应用,及其与常规塑性变形的关系具有比较明确的认识,为其在今后研究和工作中的应用打下基础。
二、基本要求基础知识:超塑性力学特征,材料超塑性宏观行为与微观结构的关系,几种典型超塑性材料及其成形应用。
实验及技能:超塑性力学性能实验应力、应变、应变速率、m植等的热力模拟试验,数据分析、实验报告;超塑性材料显微组织及其在超塑性变形中的变化。
三、内容概要第一章材料超塑性概述(2学时)1.1、超塑性研究及应用的历史1.2、超塑性的分类1.3、对超塑性变形机理的认识和争论1.4、几位对超塑性学术发展具有重要影响人物研究工作介绍第二章超塑性力学特征(4学时)2.1、超塑性本构关系2.2、超塑性应力—应变关系、应力—应变速率关系2.2、超塑性力学实验方法第三章超塑性变形微观机理(6学时)3.1、常规塑性变形、蠕变、绝热剪切等变形的微观机理3.2、对超塑性变形微观机理的认识及争论第四章几种材料超塑性(5学时)4.1、低熔点合金超塑性4.2、锌铝合金超塑性4.3、钛合金超塑性4.4、黑色金属、高温合金等材料的超塑性4.5、先进材料(金属间化合物、金属基复合材料、陶瓷等)的超塑性第五章几种超塑性成形的典型方法及典型零件(3学时)5.1、超塑性气压成形方法及典型零件5.2、超塑性体积成形方法及典型零件5.3、超塑性成形/扩散连接复合工艺四、实验(3学时)利用Gleeble1500热力模拟实验机测定材料的m值;观察超塑性变形前后材料的显微组织变化五、参考书1、刘勤,金属超塑性,上海,上海交通大学出版社,19892、O.A.Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics, Berlin, Spring-Verlag Heidelberg New York, 1992。