2017年高考数学理试题分类汇编圆锥曲线
- 格式:doc
- 大小:1.01 MB
- 文档页数:16
2017年的全国1卷理科数学考试中,圆锥曲线是考查的重点之一。
圆锥曲线作为高中数学的重要内容,深受学生们的关注和重视。
本文将从以下几个方面对2017年的全国1卷理科数学圆锥曲线进行分析和总结,帮助学生更好地复习和备考。
一、考查的内容2017年的全国1卷理科数学考试中,圆锥曲线主要考查了椭圆、双曲线和抛物线的相关知识。
涉及的知识点包括曲线的方程、性质、焦点、准线、直线、切线、渐近线等内容。
考题以解析几何的形式出现,要求考生运用所学知识解题,考察学生对圆锥曲线的理解和掌握程度。
二、难度分析2017年的圆锥曲线考题整体难度适中,但从解题的角度来看,难度考查了学生对圆锥曲线的深入理解和灵活运用能力。
其中,部分考题对于几何图形的分析和推理要求较高,考生需要具备较强的逻辑思维能力和解题技巧。
三、备考建议针对2017年的全国1卷理科数学圆锥曲线的考试情况,学生在备考过程中要重点掌握圆锥曲线的相关知识,包括各种曲线的方程、性质、焦点、准线、直线、切线、渐近线等内容。
在解题方法上,要加强对几何分析和推理的训练,提高解题技巧和应试能力。
也要多做历年真题和模拟题,针对性地进行复习和练习,加深对知识点的理解和掌握。
四、复习方法在复习过程中,建议学生通过系统学习教科书相关章节,掌握圆锥曲线的基本概念和性质。
可以借助辅导书、习题集等辅助资料进行强化训练,加深对知识点的理解。
多做真题和模拟题,及时总结和归纳解题思路和方法,在实践中提高解题能力。
积极参加学校的数学学科活动和竞赛,加强学习氛围,激发学习兴趣。
五、总结2017年的全国1卷理科数学考试中的圆锥曲线部分,考查的内容主要围绕椭圆、双曲线和抛物线展开,难度适中,但要求学生在解题过程中具备较强的逻辑思维能力和解题技巧。
备考时,学生要重点掌握相关知识,加强几何分析和推理的训练,多做真题和模拟题,提高解题能力。
通过科学的复习方法和策略,相信学生们一定能够取得理想的成绩。
以上是对2017年的全国1卷理科数学圆锥曲线的分析和总结,希望能够对广大学生在备考中有所帮助。
2011-2017新课标(文科)圆锥曲线分类汇编一、选择填空[2011新课标]4.椭圆的离心率为〔 D 〕A.B.CD[解析]cea===2228111162,be ea=-=-=∴=,故选D.[2011新课标]9.已知直线l过抛物线C的焦点,且与C的对称轴垂直. l与C交于A, B两点,|AB|=12,P为C的准线上一点,则ABP的面积为〔 C 〕A.18B.24C.36D.48[解析]易知2P=12,即AB=12,三角形的高是P=6,所以面积为36,故选C.[2012新课标]4.设F1、F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为〔C〕A.12B.23C.34D.45[解析]∵△F2PF1是底角为30º的等腰三角形,260PF A∴∠=︒,212||||2PF F F c==,∴2||AF=c,322c a∴=,34e∴=,故选C.[2012新课标]10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,||AB=C的实轴长为〔〕A..4D.8[解析]由题设知抛物线的准线为:4x=,设等轴双曲线方程为:222x y a-=,将4x=代入等轴双曲线方程解得y=∵||AB=∴a=2,∴C的实轴长为4,故选C.[2013新课标1]4. 已知双曲线C:2222=1x ya b-(a>0,b>0),则C的渐近线方程为( )A.y=±14x B.y=±13x C.y=±12x D.y=±x[解析]∵e=∴ca=2254ca=,∵c2=a2+b2,∴2214ba=.∴12ba=.∵双曲线的渐近线方程为by xa=±,∴渐近线方程为12y x=±,故选C。
[2013新课标1]8. O为坐标原点,F为抛物线C:y2=的焦点,P为C上一点,若|PF|=,则△POF的面积为(C).A.2 B...4[解析]利用|PF|=Px=可得x P=∴y P=±∴S△POF=12|OF|·|y P|=221168x y+=1312∆[2013新课标2]5. 设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为(D ) A .6 B . 13 C . 12D .3[解析]如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||2PF x F F c ==3x =, 而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴3c e a ===[2013新课标2]10. 抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF|=3|BF|,则l 的方程为(C).A .y =x -1或y =-x +1B .y =(x -1)或y = -(x -1)C .y = 3(x -1)或y = -3(x -1)D .y = 2(x -1)或y = -2(x -1)[解析]由题意可得抛物线焦点F(1,0),准线方程为x =-1,当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线, 垂足分别为M ,N ,则由抛物线定义可得,|AM|=|AF|,|BN|=|BF|. 设|AM|=|AF|=3t(t >0),|BN|=|BF|=t ,|BK|=x ,而|GF|=2, 在△AMK 中,由||||||||NB BK AM AK =,得34t xt x t=+, 解得x =2t ,则cos ∠NBK=||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率k =tan 60°y 1)x -. 当直线l 的斜率小于0时,如图所示, 同理可得直线方程为y=1)x -,故选C.[2014新课标1]〔4〕已知双曲线)0(13222>=-a y a x 的离心率为2,则=a 〔 D 〕 A. 2 B.26C. 25D. 1 [解析]2=,解得1a =,选D. [2014新课标2]10. 设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =〔 C 〕 〔A 〔B 〕6 〔C 〕12 〔D 〕[2014新课标2]12. 设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值X 围是〔 A 〕〔A 〕[]1,1-〔B 〕1122⎡⎤-⎢⎥⎣⎦,〔C〕⎡⎣〔D 〕22⎡-⎢⎣⎦,[2015新课标1]〔5〕已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|=〔B 〕 〔A 〕3 〔B 〕6 〔C 〕9 〔D 〕12[2015新课标1]16. 已知F 是双曲线C :x 2-82y=1的右焦点,P 是C 的左支上一点,A 〔0,66〕.当△APF 周长最小是,该三角形的面积为12√6[2015新课标2]15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程x 24-y 2=1。
湖北省各地2017届高三最新考试数学理试题分类汇编圆锥曲线2017.02一、选择、填空题1、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是A 。
1B 。
12D2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)已知圆22:4C x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线PA 、PB , A 、B 为切点,则直线AB 经过定点 A 。
48(,)99B 。
24(,)99C.(2,0) D 。
(9,0)3、(荆门市2017届高三元月调考)已知椭圆C :)0(12222>>=+b a by a x 的右焦点为(,0)F c ,圆222:()M x a y c -+=,双 曲线以椭圆C 的焦点为顶点,顶点为焦点,若双曲线的两条渐近线都与圆M 相切,则椭圆C 的离心率为AD .124、(荆州市五县市区2017届高三上学期期末)已知,O F 分别为双曲线2222:1(0,0)x y E a b a b-=>>的中心和右焦点,点,G M 分别在E 的渐近线和右支,FG OG ⊥,//GM x 轴,且OM OF =,则E 的离心率为ABCD5、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知F 为双曲线22:1(0)33x y C a a -=>的一个焦点,则点F 到C 的一条渐近线的距离为 AB .3CD .3a6、(武汉市2017届高三毕业生二月调研考)已知直线23y x =-与抛物线24y x =交于,A B 两点,O 为坐标原点,,OA OB 的斜率分别为12,k k ,则1211k k + A.12 B 。
2 C. 12- D. 13-7、(武汉市武昌区2017届高三1月调研)已知双曲线()222210,0x y a b a b-=>>的两条渐近线分别为1l ,2l ,经过右焦点F 垂直于1l 的直线分别交1l ,2l 于,A B 两点,若OA ,AB ,OB 成等差数列,且AF 与FB 反向,则该双曲线的离心率为( )A .528、(襄阳市2017届高三1月调研)已知双曲线()222210,0x y a b a b-=>>过点()4,2P ,且它的渐近线与圆(2283x y -+=相切,则该双曲线的方程为 A. 22184x y -= B. 221168x y -= C. 221812x y -= D. 2211212x y -= 9、(襄阳市优质高中2017届高三1月联考)在平面直角坐标系xoy 中,双曲线的中心在原点,焦点在y 轴上,一条渐近线与直线210x y +-=垂直,则双曲线的离心率为A 。
江西省各地2017届高三最新考试数学理试题分类汇编圆锥曲线2017.02一、选择、填空题1、(红色七校2017届高三第二次联考)已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN = ,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝ B .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝C.()(22316x y -+-= D .()(22316x y -+-=2、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))已知双曲线()222210 0x y a b a b -=>>,的左右焦点分别为()()12 0 0F c F c -,,,,以线段12F F 为直径的圆与双曲线在第二象限的交点为P ,若直线2PF 与圆222:216c b E x y ⎛⎫-+= ⎪⎝⎭相切,则双曲线的渐近线方程是( )A .y x =±B .y = C.y = D .2y x =±3、(赣中南五校2017届高三下学期第一次联考)已知双曲线C 的中心在原点,焦点在y 轴上,若双曲线C 40y +-=平行,则双曲线C 的离心率为( )2 4、(赣州市2017届高三上学期期末考试)若双曲线2222:1(0,0)x y C a b a b-=>>的渐近线与圆22430x y y +-+=相切,则该双曲线C 的离心率为( )A ..2 C.5、(上饶市2017届高三第一次模拟考试)已知双曲线方程为222214x y m b-=+,若其过焦点的最短弦长为2,则该双曲线的离心率的取值范围是( )A .(1,2B .[)2+∞ C .(1,2D .()2+∞ 6、(江西省师大附中、临川一中2017届高三1月联考)已知点,M N 是抛物线24y x =上不同的两点,F 为抛物线的焦点,且满足23MFN π∠=,弦MN 的中点P 到直线:l 116y =-的距离记为d ,若22MN d λ= ,则λ的最小值为 ( )17、(新余市2017高三上学期期末考试)已知12F F 、是双曲线22221(a 0,b 0)y x a b-=>>的左、右焦点,点1F 关于渐近线的对称点恰好落在以2F 为圆心,||2OF 为半径的圆上,则该双曲线的离心率为( )A.2B.3C.2D.38、(宜春中学2017届高三2月月考)已知椭圆22221(0)x y a b a b+=>>的左顶点和上顶点分别为A 、B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率为( )A .B .C .D .9、(江西省重点中学协作体2017届高三下学期第一次联考)设A 、B 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点,,P Q 是双曲线C 上关于x 轴对称的不同两点,设直线,AP BQ 的斜率分别为,m n ,则21ln ||ln ||2||b a m n a b mn ++++取得最小值时,双曲线C 的离心率为( )B. D. 10、(江西师范大学附属中学2017届高三12月月考)两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为 A .1B .3C .19D .4911、(南昌市八一中学2017届高三2月测试)已知双曲线x 2a 2-y 2b2=1(a >0,b >0),过其左焦点F 作x 轴的垂线,交双曲线于A ,B 两点,若双曲线的右顶点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .⎝ ⎛⎭⎪⎫1,32B .(1,2) C.⎝ ⎛⎭⎪⎫32,+∞ D . (2,+∞)二、解答题 1、(红色七校2017届高三第二次联考)已知椭圆的焦点坐标为F 1(﹣1,0),F 2(1,0),过F 2垂直于长轴的直线交椭圆于P 、Q 两点,且|PQ |=3.(1)求椭圆的方程;(2)过F 2的直线l 与椭圆交于不同的两点M 、N ,则△F 1MN 的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.2、(赣吉抚七校2017届高三阶段性教学质量监测考试(二))已知椭圆()22122:10x y C a b a b+=>>的离心率e =,右顶点、上顶点分别为 A B ,,直线AB 被圆22:1O x y +=. (1)求椭圆C 的方程;(2)设过点B 且斜率为k 的动直线l 与椭圆C 的另一个交点为M ,()ON OB OM λ=+,若点N 在圆O 上,求正实数λ的取值范围.3、(赣中南五校2017届高三下学期第一次联考)已知抛物线:的准线为,焦点为,的圆心在轴的正半轴上,且与轴相切,过原点作倾斜角为的直线,交于点,交于另一点,且(I ) 求和抛物线的方程;(II ) 过上的动点作的切线,切点为、,求当坐标原点到直线 的距离取得最大值时,四边形的面积.4、(赣州市2017届高三上学期期末考试)已知圆2219:()24E x y +-=,经过椭圆2222:1(0)x y C a b a b+=>>的左、右焦点12,F F ,且与椭圆C 在第一象限的交点为A ,且1F E A ,,三点共线,直线l 交椭圆C 于两点M N ,,且(0)MN OA λλ=≠.(1)求椭圆C 的方程;(2)当AMN ∆的面积取到最大值时,求直线l 的方程.5、(上饶市2017届高三第一次模拟考试)已知椭圆C :22221(0)x y a b a b+=>>,圆Q :224230x y x y +--+=的圆心Q 在椭圆C 上,点(0,1)P 到椭圆C 的右焦点的距离为2.(1)求椭圆C 的方程;(2)过点P 作直线l 交椭圆C 于A ,B 两点,若tan AQB S AQB ∆=∠,求直线l 的方程.6、(江西省师大附中、临川一中2017届高三1月联考) 已知右焦点为F 的椭圆222:1(3x y M a a +=>与直线y =相交于P 、Q 两点,且PF QF ⊥.(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆E 上不同的三点,并且O 为ABC ∆的重心,试探究ABC ∆的面积是否为定值,若是,求出这个定值;若不是,说明理由.7、(新余市2017高三上学期期末考试)已知椭圆()222:11x M y a a+=>右顶点、上顶点分别为A 、B ,且圆1:22=+y x O 的圆心到直线AB 的距离为23. (1)求椭圆M 的方程;(2)若直线l 与圆O 相切,且与椭圆M 相交于,P Q 两点,求PQ 的最大值.8、(宜春中学2017届高三2月月考)已知抛物线E :y 2=2px (P >0)的准线为x=﹣1,M ,N 为直线x=﹣2上的两点,M ,N 两点的纵坐标之积为﹣8,P 为抛物线上一动点,PN ,PM ,分别交抛物线于A ,B 两点. (1)求抛物线E 的方程;(2)问直线AB 是否过定点,若过定点,请求出此定点;若不过定点,请说明理由.9、(江西省重点中学协作体2017届高三下学期第一次联考)已知椭圆222:1(03)9x y C b b+=<<的左右焦点分别为,E F ,过点F 作直线交椭圆C 于,A B两点,若FB AF 2=且0.AE AB ⋅=(1)求椭圆C 的方程;(2)已知圆O 为原点,圆)0()3(:222>=+-r r y x D 与椭圆C 交于N M ,两点,点P 为椭圆C 上一动点,若直线PN PM ,与x 轴分别交于点,,S R 求证:||||OR OS ⋅为常数.10、(江西师范大学附属中学2017届高三12月月考)已知椭圆22122:1(0)x y C a b a b+=>>的一个焦点与抛物线22:2(0)C y px p =>的焦点F 重合,且点F 到直线10x y -+=的距离为1C 与2C(Ⅰ)求椭圆1C 的方程;(Ⅱ)过点F 的直线l 与1C 交于,A B 两点,与2C 交于,C D 两点,求11||||AB CD +的取值范围.11、(南昌市八一中学2017届高三2月测试)已知椭圆:C ()222210x y a b a b+=>>的左焦点F 与抛物线24y x =-的焦点重合,直线02x y -+=与以原点O 为圆心,以椭圆的离心率e 为半径的圆相切. (1)求该椭圆C 的方程;(2)过点F 的直线交椭圆于,A B 两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记∆GFD 的面积为1S ,∆OED 的面积为2S .试问:是否存在直线AB ,使得12S S =?说明理由.参考答案一、选择、填空题 1、C 2、答案:D解析:设切点为M ,则1EM PF ∥,又22114F E F F =,所以14PF r b ==,所以22PF a b =+, 因此()222242b a b c b a ++=⇒=,所以渐近线方程为2y x =±. 3、A 4、B 5、A 6、A 7、C 8、D9、D 解析:设点00(,)P x y 则00(,)Q x y -,所以0000,AP BQ y y m k n k x a x a-====+-,即2022y m n a x ⋅=-,又2200221x y a b -=,即2222002()b y x a a =-,所以22b m n a ⋅=-,则2222212ln ||ln ||ln 2||2b a b a a b m n a b mn a b b a++++=+++,令ba=则222221ln ln 22b a a b x a b b a x+++=++,考查函数1()ln 2f x x x =++,由21)(21)'()2x f x x-=,知1(0,)2x ∈时()f x 单调递减,1(,)2x ∈+∞时()f x 单调递减,所以当12x =时,()f x 取得唯一极小值即为最小值,此时2212b a =,所以2e ==10、A 11、D二、解答题1、解:(1)设椭圆方程为=1(a>b>0),由焦点坐标可得c=1…由|PQ|=3,可得=3,…又a2﹣b2=1,解得a=2,b=,…故椭圆方程为=1…(2)设M(x1,y1),N(x2,y2),不妨y1>0,y2<0,设△F1MN的内切圆的径R,则△F1MN的周长=4a=8,(|MN|+|F1M|+|F1N|)R=4R因此最大,R就最大,…由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,由得(3m2+4)y2+6my﹣9=0,…得,,则=,…令t=,则t≥1,则,…令f(t)=3t+,则f′(t)=3﹣,≤3,当t≥1时,f′(t)≥0,f(t)在[1,+∞)上单调递增,有f(t)≥f(1)=4,S△F1MN≤3,即当t=1,m=0时,S△F1MNS=4R,∴R max=,这时所求内切圆面积的最大值为π.△F1MN故直线l:x=1,△F1MN内切圆面积的最大值为π.2、解:(1)2e a b =⇒=,所以直线AB 的方程为12x yb b+=即220x y b +-=,……2分圆心()0 0O ,到直线AB的距离为d =1b =⇒=, 所以椭圆C 的方程为2214x y +=;……………………………………6分(2)设点M 的坐标为()()000 0x y y ≠,则N 点的坐标为()()00 1x y λλ+,, 所以()2222002200011121x y x y y λλ⎡⎤++=⇒=⎣⎦+++,……8分又220014x y +=, 所以()202001 1 1325y y y λ=∈-++,,,得2316λ≥. 所以正实数λ的取值范围是3 4⎡⎫+∞⎪⎢⎣⎭,.………………………………12分 3、(1)准线L 交轴于,在中所以,所以,抛物线方程是 (3分)在中有,所以所以⊙M 方程是:(6分)(2)解法一 设所以:切线;切线(8分)因为SQ 和TQ 交于Q 点所以和成立 所以ST 方程:(10分)所以原点到ST 距离,当即Q 在y 轴上时d 有最大值此时直线ST 方程是 (11分)所以所以此时四边形QSMT 的面积 (12分)4、(1)如图,圆E 经过椭圆C 的左、右焦点1F ,2F , 所以2219(0)24c +-=,解得c =1分 因为1F ,E ,A 三点共线,所以1AF 为圆E 的直径, 所以212AF F F ⊥…………………………………………2分 因为2222121AF AF AF =-=,所以1224a AF AF =+=.所以2a =…………………………………………………4分 由222a b c =+,得b =所以椭圆C 的方程为22142x y +=…………………………………………………………5分(2)由(1)得,点A 的坐标为,因为(0)MN OA λλ=≠所以直线l,设直线l 的方程为y xm =+……………………………6分 联立222142y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2220x m +-=………………………………………7分设1122(,),(,)M x y N x y,由22)4(2)0m ∆=-->,得22m -<<.因为122122x x x x m ⎧+=⎪⎨⋅=-⎪⎩所以12MN x =-=9分又点A 到直线l的距离为d =,12AMN S MN d ∆==22422m m -+=⋅=10分 当且仅当224m m -=,即m =时,等号成立……………………………………11分 所以直线l的方程为2y x =2y x =…………………………………12分 5、解:(1)因为椭圆C 的右焦点(,0)F c ,||2PF =,所以c = 因为(2,1)Q 在椭圆C 上,所以22411a b +=, 由223a b -=,得26a =,23b =,所以椭圆C 的方程为22163x y +=. (2)由tan AQB S AQB ∆=∠得:1sin tan 2QA QB AQB AQB ⋅∠=∠, 即cos 2QA QB AQB ⋅∠=,可得2QA QB ⋅=,①当l 垂直x轴时,(1)QA QB ⋅=-(2,1)4132⋅-=+-=,此时满足题意,所以此时直线l 的方程为0x =; ②当l 不垂直x 轴时,设直线l 的方程为1y kx =+,由221,631x y y kx ⎧+=⎪⎨⎪=+⎩消去y 得22(12)440k x kx ++-=, 设11(,)A x y ,22(,)B x y ,所以122412k x x k -+=+,122412x x k -=+,代入2QA QB ⋅=可得:1122(2,1)(2,1)2x y x y --⋅--=,代入111y kx =+,221y kx =+,得21212(2)(2)2x x k x x --+=,代入化简得:2224(1)8201212k kk k-+++=++,解得14k =, 经检验满足题意,则直线l 的方程为440x y -+=, 综上所述直线l 的方程为0x =或440x y -+=.6、(1)设(,0)F c,(P t,则(Q t - ,…………………………(1分)22317t a ∴+=,即2247t a =,①…………………………(2分)PF QF ⊥,1=-,即2297c t -=-,②…………………………(3分) ∴由①②得224977c a -=-,又223a c -=,24a ∴=,…………………………(4分)∴椭圆M 的方程为22143x y +=.…………………………(5分) (2)设直线AB 方程为:y kx m =+,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=,122122834634km x x k m y y k -⎧+=⎪⎪+∴⎨⎪+=⎪+⎩O 为重心,2286()(,)3434km mOC OA OB k k-∴=-+=++ ,…………………………(7分) C 点在椭圆E 上,故有222286()()3434143km m k k -+++=,可得22443m k =+,………………………………………………………………………………(8分)而||AB ==, 点C 到直线AB 的距离21|3|km d +=(d 是原点到AB 距离的3倍得到),……………………(9分)19||22ABC S AB d ∆∴=== ,……………(10分)当直线AB 斜率不存在时,||3AB =,3d =,92ABC S ∆=, ABC ∴∆的面积为定值92.…………………………………………………………(12分) 7、【解析】(1)据题意:)1,0(),0,(B a A ,故直线AB 的方程为:1=+y ax,即:0=-+a ay x 。
一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知12,F F 是双曲线()222210,0x y a b a b-=>>的左右焦点,以12F F 为直径的圆与双曲线在第一象限的交点为P ,过点P 向x 轴作垂线,垂足为H ,若PH a =,则双曲线的离心率为2. 【2016高考冲刺卷(7)【江苏卷】】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,过2F 的直线交双曲线的右支于P ,Q 两点,若112||||PF F F =,且223||2||PF QF =,则该双曲线的离心率为 .【答案】75【解析】由双曲线的性质可知,1||2PF c =,2||22PF c a =-,∴2||33QF c a =-,1||3FQ c a =-2251270c ac a ⇒-+=,7()(57)05c c a c a e a --=⇒==,故填:75.3. 【江苏省扬州中学2015—2016学年第二学期质量检测】已知F 是椭圆1C :双曲线2C 的一个公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若0=⋅BF AF ,则2C 的离心率是 ▲ .【解析】设双曲线的实轴长为2a ,F '为椭圆1C :2C 的另一个公共焦点,则由对称性知0AF AF '⋅=,4. 【2016高考冲刺卷(3)【江苏卷】】抛物线24y x =上的一点到其焦点距离为3,则该点坐标为 . 【答案】(2,22)±【解析】由题意知抛物线的焦点为()1,0,准线为1x =-;根据抛物线的定义:抛物线上的点到焦点的距离等于该点到准线的距离,知该点的横坐标为2,代入抛物线方程得该点坐标为(2,22)±.5. 【2016高考冲刺卷(1)【江苏卷】】以抛物线y 2=4x 的焦点为焦点,以直线y =±x 为渐近线的双曲线标准方程为________.6. 【2016高考押题卷(2)【江苏卷】】已知点(50)A 和曲线)522(142≤≤-=x x y 上的点12n P P P ,,,.若12||||||nP A P A P A ,,,成等差数列且公差1(55d ∈,,则n 的最大值为______. 【答案】14【解析】因题设的曲线是双曲线)522(1422≤≤=-x y x 上的一段,而点(50)A 是它的 7. 【江苏省扬州中学2016届高三4月质量监测】在平面直角坐标系xOy 中,已知A 、B 分别是双曲线x 2-23y =1的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin sin sin A B C-的值是 . 【答案】12- 【解析】试题分析:由正弦定理得2122sin sin sin -=-=-=-=-c a c a AB AC BC C B A 8. 【2016高考冲刺卷(4)【江苏卷】】在平面直角坐标系xOy 中,已知方程2242x y m m--+=1表示双曲线,则实数m 的取值范围为 ▲ . 【答案】(2,4)- 【解析】试题分析:由题意得(4)(2)0(4)(2)024m m m m m -+>⇒-+<⇒-<<9. 【南通市2016届高三下学期第三次调研考试数学试题】在平面直角坐标系xOy 中,双曲线2221x y a-=与抛物线212y x =-有相同的焦点,则双曲线的两条渐近线的方程为 . 【答案】24y x =± 【解析】试题分析:由题意得21922a a +=⇒=,而双曲线2221x y a -=渐近线的方程为1,y x a =±即24y x =±10. 【2016高考押题卷(3)【江苏卷】】设双曲线1169:22=-y x C 的两焦点分别为P F F ,,21是C 上一点,若以P 为圆心的圆过C 的一个焦点和顶点,则=⋅21PF PF .11. 【2016高考押题卷(1)【江苏卷】】已知双曲线22221(0)x y a b ab 的一个焦点为(3,0),直线10x y 与双曲线右支有交点,则当双曲线离心率最小时双曲线方程为_______.【答案】22154x y【解析】由题意知方程组2222110x y a b x y 有正数解,即2222222()20b a x a x a a b 有正数解,所以0))((44222224≥+-+=∆b a a a b a ,即0122≥-+a b ,又229a b -=,故1022≤a ,即5≤a ,所以离心率53≥=a c e ,即当5a 时双曲线离心率取最小值,此时方程解为5x,双曲线方程为22154x y .12. 【2016年第一次全国大联考【江苏卷】】在平面直角坐标系xOy 中,与双曲线22154x y -=有相同渐近线,且一条准线方程为3y =的双曲线的标准方程为_______. 【答案】221810y x -=【解析】与双曲线22154x y -=有相同渐近线的双曲线的标准方程可设为2254x y λ-=,因为一条准线方程为3y=,所以双曲线焦点在y 轴上,故0,λ<23λ=⇒=-,所求方程为221810y x -=13. 【2016年第四次全国大联考【江苏卷】】设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,过点F 作双曲线一条渐近线的垂线,垂足为A ,垂线交另一条渐近线于B 点,若向量BF 与FA 同向,且3AB OA OB =+,则双曲线的离心率为_______.14. 【 2016年第二次全国大联考(江苏卷)】已知椭圆22221(0)y x a b a b +=>>的离心率为22,长轴AB 上2016个等分点从左到右依次为点122015,,,M M M ,过1M 点作斜率为(0)k k ≠的直线,交椭圆C 于12,P P 两点,1P点在x 轴上方;过2M 点作斜率为(0)k k ≠的直线,交椭圆C 于34,P P 两点,3P 点在x 轴上方;以此类推,过2015M 点作斜率为(0)k k ≠的直线,交椭圆C 于40294030,P P 两点,4029P 点在x 轴上方,则4030条直线124030,AP AP AP ,,的斜率乘积为_______. 【答案】20151.2-【解析】因为椭圆的离心率为22,所以22=2a c ,又222=a b c +,所以22=2a b ,设1P ),(11P P y x ,由椭圆对称性知22111222140301111112P P P AP AP AP BP P P P y y y b k k k k x a x a x a a ⋅⋅⋅==-=-+--==,从而4030条直线124030,AP AP AP ,,的斜率乘积配成2015组,每组乘积皆为12-,因此结果为20151.2-15. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】如图,抛物线形拱桥的顶点距水面4米时,测得拱桥内水面宽为16米;当水面升高 3米后,拱桥内水面的宽度为 ▲ 米.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)已知椭圆)0(1:2222>>=+b a by ax C 的离心率为e ,直线:l y ex a =+与,x y 轴分别交于B A 、点.(Ⅰ)求证:直线l 与椭圆C 有且仅有一个交点; (Ⅱ)设T 为直线l 与椭圆C 的交点,若ATeAB =,求椭圆C 的离心率;(第8题)(Ⅲ)求证:直线:l y ex a =+上的点到椭圆C 两焦点距离和的最小值为2.a【答案】(Ⅰ)详见解析(Ⅱ)1.2e -=(Ⅲ)详见解析 【解析】(Ⅰ)由22221x y a b y ex a ⎧+=⎪⎨⎪=+⎩,消y 得:222222()b x a ex a a b ++=,即22222342220b x a e x ea x a a b +++-=, 222322()20b c x ea x a c +++=,2220,x cx c x c ++==-,y ec a =-+,即直线:l y ex a =+上的点到椭圆C 两焦点距离和的最小值为2.a ……14分2. 【2016年第三次全国大联考【江苏卷】】(本小题满分16分)已知椭圆)0(12222>>=+b a by a x 与双曲线1222=-y x 有相同的焦点,且点A (2,1)在椭圆上(1)试求椭圆的标准方程;(2)若点B 、C 是椭圆上的两点,直线AB 、AC 的斜率1k 、2k 满足等式2121-=k k , ①试证B 、C 两点关于原点对称;②若椭圆左顶点为P ,直线PB 、PC 与y 轴分别交于点M 、N ,试证以MN 为直径的圆D 必过两定点.【答案】(Ⅰ)13622=+y x (Ⅱ)详见解析(Ⅲ)详见解析 【解析】(1)由3212=+=c 得322=-b a ,又11422=+ba ,联立解之得3,622==b a 从而所求椭圆的标准方程为13622=+y x . )66,0(11-x y ,线段MN 中点坐标为D )66,0(2111-x yx ,121126y MN x =-从而以MN 为直径的圆方程为2211221112)66()66(-=--+x y x y x y x因点B 在椭圆上,故1362121=+y x ,故622121=+y x ,代入上式得212112)3()26(y y x y x =++,令0=y 得32=x ,于是3±=x ,故以MN 为直径的圆D 必过两定点)0,3(±.3. 【2016年第四次全国大联考【江苏卷】】(本小题满分16分)已知椭圆2222:1(0)x y C a b a b 的离心率为2,直线2x =为椭圆的一条准线. 椭圆上两点1122(,)(,)A x y B x y 、. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点M 满足2OM OA OB =+,且121222x x y y +=-,求证:点M 在椭圆C 上;(Ⅲ)若点(1,0)M -满足2,OM OA OB λ=+求实数λ的取值范围.即实数λ的取值范围为[32,-……16分4. 【2016年第一次全国大联考【江苏卷】】 (本小题满分14分)在平面直角坐标系xOy 中,已知P 点到两定点(2,0),(2,0)D E -连线斜率之积为12-.(1)求证:动点P 恒在一个定椭圆C 上运动;(2)过F 的直线交椭圆C 于,A B 两点,过O 的直线交椭圆C 于,M N 两点,若直线AB与直线MN 斜率之和为零,求证:直线AM 与直线BN 斜率之和为定值. 【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】(1)设(,)P x y ,则由题意得1222y y x x ⋅=-+-,化简得:22142x y += 因此动点P 恒在椭圆22142x y +=上 ……4分 即直线AM 与直线BN 斜率之和为定值0. ……14分5. 【2016高考押题卷(1)【江苏卷】】(本小题满分16分)已知椭圆C :22221(0)x y a b a b+=>> ,经过点P (1,. (1)求椭圆C 的方程;(2) 设直线l 与椭圆C 交于,A B 两点,且以AB 为直径的圆过椭圆右顶点M ,求证:直线l 恒过定点. 【答案】(Ⅰ)2214x y +=(Ⅱ)详见解析【解析】解:(1)由2222213142a b caa b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩,解得 21a b =⎧⎨=⎩,所以椭圆C 的方程是 2214x y +=. .…………………5分 综上,直线l 经过定点6(,0).5…………………14分6. 【2016高考押题卷(3)【江苏卷】】(本小题满分16分)设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为21,F F ,过2F 的直线l 交椭圆C 于两点Q P ,,且02160=∠PF F . (1)若21PF F ∆是等腰三角形,求椭圆C 的离心率e 的值; (2)设||||1PF PQ λ=,且3443<≤λ,求椭圆C 的离心率e 的取值范围. 【答案】(Ⅰ)21=e (Ⅱ)]913114447,313624(--∈e 【解析】(1)因21PF F ∆是等腰三角形,且02160=∠PF F ,故21PF F ∆是等边三角形,则c F F PF PF 2||||||2121===,所以由椭圆定义可得a c c 222=+,即21=e ,故所求椭圆的离心率为21=e .----------------------------------------------------------------5分; (2)由椭圆定义可得a PF PF 2||||21=+,a QF QF 2||||21=+,则a QF PQ PF 4||||||11=++,--------------------------------------------------------------------6分;222)2(2)2(4t t t e ---+=,即161222+-=tt e ,再令u t=1,由)3137,4137[++∈t ,得]9137,12137(1--∈t , 即]9137,12137(--∈u --------------------------------------------------------15分.而二次函数1612)(22+-==u u u g e 的对称轴为41=u ,而4112137>-,所以)(u g y =在]9137,12137(--∈u 上单调递增,借助图象可得函数)(u g y =的值域为]271338149,31328(2--∈e ,即离心率e 的取值范围是 ]913114447,313624(--∈e .-----------------------------------16分.7. 【2016高考押题卷(2)【江苏卷】】(本小题满分16分)定义:若12,P P 是椭圆2222:1(0)x y C a b a b +=>>上不同的两点,12PP ⊥x 轴,圆E 过12,,P P 且椭圆C 上任意一点都不在圆E 内,则称圆E 为该椭圆的一个内切圆.已知椭圆2222:1(0)x y C a b a b+=>>的离心率23=e ,且经过点P )23,1( (1)求椭圆C 的标准方程;(2)试问:椭圆C 是否存在过左焦点1F 的内切圆?若存在,求出圆E 方程;若不存在,请说明理由.(3)若圆F 是过椭圆C 上下顶点21,A A 的内切圆,过椭圆C 异于其顶点的任意一点Q 作圆F 的两条切线,切点分别为R T ,,(R T ,不在坐标轴上),直线TR 在x 轴,y 轴上的截距分别为,,m n 证明:22141n m +为定值; 由题意知,点E 在x 轴上,设点(,0),E t 则圆E 的方程为2222()().x t y m t n -+=-+8. 【2016高考冲刺卷(2)【江苏卷】】(本小题满分16分)如图,已知椭圆12222=+by a x (0>>b a )的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足MP M F λ=1(R ∈λ),M F PO 2⊥,O 为坐标原点.(1)若椭圆方程为14822=+y x ,且),(22P ,求点M 的横坐标;(2)若2=λ,求椭圆离心率e 的取值范围9. 【2016高考冲刺卷(4)【江苏卷】】 (本小题满分14分)已知椭圆:C 22142x y +=的焦点分别为12,F F .(Ⅰ)求以线段12F F 为直径的圆的方程;(Ⅱ)过点(4,0)P 任作一条直线l 与椭圆C 交于不同的两点,M N .在x 轴上是否存在点Q ,使得180PQM PQN ∠+∠=︒?若存在,求出点Q 的坐标;若不存在,请说明理由.即2222(16)4(21)(324)0k k k -+->,解得216k <. 设11(,)M x y ,22(,)N x y ,则21221621k x x k +=+,212232421k x x k -=+,11(4)y k x =-,22(4)y k x =-.由1212120y y k k x m x m+=+=--,得 10. 【南京市2016届高三年级第三次模拟考试】 (本小题满分14分) 如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+= (a >b >0)2(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .【答案】(1)22163x y +=(2)①635,②详见解析【解析】解:(1)由题意,得22c a =,22411a b+=,解得a 2=6,b 2=3. 因为O 到直线PQ 2,所以△O PQ 63. 因为椭圆的对称性,当切线方程为y 2 (x 3)时,△O PQ 63综上所述,△O PQ 的面积为63·································8分②解法二 消去y 得5x 2-3x +6=0.设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2=835. 由椭圆定义可得,PQ =PF +FQ =2a -e( x 1+x 2)=2×6-22×835=665.···············6分 ② (i)若直线PQ 的斜率不存在,则直线PQ 的方程为x =2或x =-2. 当x =2时,P (2,2),Q (2,-2). 因为OP OQ ⋅=0,所以OP ⊥OQ . 当x =-2时,同理可得OP ⊥OQ . ··························10分222612m k -+.·································12分 因为OP OQ ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m2=(1+k 2)×222612m k -++km ×(-2412km k +)+m 2.将m 2=2k 2+2代入上式可得OP OQ ⋅=0,所以OP ⊥OQ . 综上所述,OP ⊥OQ . ·····································14分11. 【江苏省扬州中学2015—2016学年第二学期质量检测】如图,曲线Γ由两个椭圆1T :()222210x y a b a b +=>>和椭圆2T :()222210y x b c b c+=>>组成,当,,a b c 成等比数列时,称曲线Γ为“猫眼曲线”.若猫眼曲线Γ过点()0,2M -,且,,a b c 的公比为22. (1)求猫眼曲线Γ的方程;(2)任作斜率为()0k k ≠且不过原点的直线与该曲线相交,交椭圆1T 所得弦的中点为M ,交椭圆2T 所得弦的中点为N ,求证:ONOMK k 为与k 无关的定值; (3)若斜率为2的直线l 为椭圆2T 的切线,且交椭圆1T 于点,A B ,N 为椭圆1T 上的任意一点(点N 与点,A B 不重合),求ABN ∆面积的最大值.k 存在且0k ≠,12x x ∴≠,且0x 0≠ ∴01212012y y y x x x -⋅=-- ,即21k k OM -=⋅ (8分)同理,2k k ON -=⋅ 41k k ON OM =∴得证 (10分) (3)设直线l 的方程为2y x m =+22221⎧=+⎪⎨+=⎪⎩y m y x bc ,()2222222220∴+++-=b c x x m c b c12. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分16分)如图,已知椭圆C:22221x y a b +=(0a b >>)经过点31,2⎛⎫P ⎪⎝⎭,离心率12e =,直线l 的方程为4x =. (1)求椭圆C 的标准方程;(2)AB 是经过椭圆右焦点F 的任一弦(不经过点P ),设直线AB 与l 相交于点M ,记PA ,PB ,PM 的斜率分别为123,,k k k ,问:是否存在常数λ,使得123k k λk +=?若存在,求出λ的值;若不存在,说明理由.13. 【2016高考冲刺卷(5)【江苏卷】】(本题满分16分)如图21,F F 为椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,E D ,是椭圆的两个顶点,椭圆的离心率23=e ,2DEF ∆的面积为231-.若点),(00y x M 在椭圆C 上,则点),(00bya x N 称为点M 的一个“椭点”,直线l 与椭圆交于B A ,两点,B A ,两点的“椭点”分别为Q P ,.(1)求椭圆C 的标准方程;(2)问是否存在过左焦点1F 的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.14. 【2016高考冲刺卷(6)【江苏卷】】在平面直角坐标系xOy 中,点C 在椭圆M :x 2a 2+y2b2=1(a>b>0)上.若点)0,(a A ,)3,0(a B ,且AB →=32BC →. (1) 求椭圆M 的离心率;(2) 设椭圆M 的焦距为4,P ,Q 是椭圆M 上不同的两点,线段PQ 的垂直平分线为直线l ,且直线l 不与y 轴重合.①若点P (-3,0),直线l 过点7)6,0(-,求直线l 的方程; ②若直线l 过点(0,-1),且与x 轴的交点为D ,求D 点横坐标的取值范围. 【答案】(1)32;(2)①y =-x -67或y =-95x -67;(3)⎝ ⎛⎭⎪⎫-113,0∪⎝ ⎛⎭⎪⎫0,113【解析】(1) 设C(x 0,y 0),则AB →=⎝ ⎛⎭⎪⎫a ,a 3,BC →=⎝ ⎛⎭⎪⎫x 0,y 0-a 3.因为AB →=32BC →,所以⎝ ⎛⎭⎪⎫a ,a 3=32(x 0,y 0-a 3)=(32x 0,32y 0-a 2),得⎩⎪⎨⎪⎧x 0=23a ,y 0=59a ,代入椭圆方程得a 2=95b 2.因为a 2-b 2=c 2,所以e =c a =23.所以x D =-k∈⎝ ⎛⎭⎪⎫-113,0∪⎝⎛⎭⎪⎫0,113. 综上所述,点D 横坐标的取值范围为⎝ ⎛⎭⎪⎫-113,0∪⎝⎛⎭⎪⎫0,113.15. 【2016高考冲刺卷(7)【江苏卷】】已知椭圆2222:1(0)x y E a b a b+=>>的离心率为2,点在E 上. (1)求椭圆E 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与E 相交于,A B 两点,M 是线段AB 的中点.证明:直线OM 的斜率与直线l 的斜率的乘积是一个定值.16. 【2016高考冲刺卷(9)【江苏卷】】 在平面直角坐标系O x y 中,点000(,)(0)P x y y ≠在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x xy y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于,A B 两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F三点共线.(Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-. 因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.。
2017年全国各地高考数学真题分章节分类汇编第10部分:圆锥曲线一、选择题:1.( 2010年高考全国卷I 理科9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为(A)2(B)2(C)(D)1.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]1a PF e x a ex c =--=+=+,22000||[)]1a PF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 060=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0||y =2.(2010年高考福建卷理科2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A.22x +y +2x=0 B. 22x +y +x=0 C. 22x +y -x=0 D. 22x +y -2x=0 【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
【命题意图】本题考查抛物线的几何性质以及圆的方程的求法,属基础题。
3.(2010年高考福建卷理科7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A. )+∞B. [3)++∞C. 7[-,)4+∞D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。
2017年高考数学理试题分类汇编:圆锥曲线DOA a=,AN AM b == ∵60MAN ∠=︒,∴3AP =,222234OP OA PA a b --∴2232tan 34AP OP a b θ==-又∵tan ba θ=223234b a a b =-,解得223ab =∴22123113b e a ++【全国2卷(理)】16.已知F 是抛物线C:28yx=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M为FN 的中点,则FN = .【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-, 如图,M 为F 、N 中点,故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =,∴6NF NM MF =+=lFN M C B AOyx【北京卷】(9)若双曲线221y x m-=3则实数m =_______________. 【解析】.1321mm +=⇒=【江苏卷】8.在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是 .【解析】右准线方程为33101010x ==,渐近线为33y x =±,则31030(,)1010P ,31030(,)1010Q -,1(10,0)F -,2(10,0)F ,则302102310S =⨯=.【山东卷】14.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .三、大题【全国I 卷(理)】20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,3),P 4(13C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.20.解:(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点将()233011P P ⎛- ⎝⎭,,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a=,21b =∴椭圆C 的方程为:2214x y+=.(2)①当斜率不存在时,设()():AAl x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==-得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=122814kbx x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y kk x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =-- 当2x =时,1y =- 所以l 过定点()21-,.【全国II 卷(理)】20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM=.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦 点F ..解:⑴设()P x y ,,易知(0)N x ,(0)NP y =,又1022NM ⎛== ⎝, ∴2M x y ⎛⎫ ⎪⎝⎭,,又M 在椭圆上.∴22122x +=,即222xy +=.⑵设点(3)QQ y -,,()PPP x y ,,(0)Qy ≠,由已知:()(3)1PPPQPOP PQ x y y y y ⋅=⋅---=,,,()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=,∴33PQ P Q P P Q xx y y x y y ⋅+=-+=.设直线OQ :3Qyy x =⋅-, 因为直线l 与OQl 垂直.∴3lQk y =故直线l 方程为3()PPQy x x y y =-+,令0y =,得3()PQP y yx x -=-,13P Q P y y x x -⋅=-, ∴13PQ Px yy x =-⋅+,∵33PQPy yx =+,∴1(33)13PPx x x=-++=-,若0Qy=,则33Px-=,1Px=-,1Py=±,直线OQ 方程为0y =,直线l 方程为1x =-,直线l 过点(10)-,,为椭圆C 的左焦点.【全国III 卷(理)】20.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.解:(1)显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=, 2416m ∆=+恒大于0,122y y m +=,124y y =-. 1212OA OB x x y y ⋅=+12(2)(2)my my =++21212(1)2()4m y y m y y =++++ 24(1)2(2)4m m m =-+++0= ∴OA OB ⊥,即O 在圆M 上. (2)若圆M 过点P ,则0AP BP ⋅= 1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++= 21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y , 120122y y y +==-,001924x y =-+=, 半径2291||42r OQ ⎛⎫⎛⎫==+- ⎪ ⎪⎝⎭⎝⎭则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为0(,)Q x y , 12012y y y +==,0023x y =+=, 半径22||31r OQ ==+则圆22:(3)(1)10M x y -+-= 【北京卷】(18)(14分)已知抛物线C :y 2=2px过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A 为线段BM 的中点.(18)解:(Ⅰ)把P (1,1)代入y 2=2Px 得P =12∴C :y 2=x ,∴焦点坐标(14,0),准线:x =-14. (Ⅱ)设l :y =kx +12,A (x 1,y 1),B (x 2,y 2),OP :y =x ,ON :y =22yx x, 由题知A (x 1,x 1),B (x 1,122x y x )212y kx y x⎧>+⎪⎨⎪=⎩⇒k 2x 2+(k -1)x +14=0,x 1+x 2=21kk-,x 1·x 2=214k. 1112121112221122,22x kx x y x x y kx kx x x x ⎛⎫+ ⎪+⎝⎭+=++=+由x 1+x 2=21k k -,x 1x 2=214k, 上式()2111121122122124kk kx kx k x x x k x -=+=+-⋅=∴A 为线段BM 中点.【江苏卷】17.(14分)如图,在平面直角坐标系xOy 中,椭圆1(0)2222x y E :+a b a b=>>的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.17.解:(1)∵椭圆E 的离心率为12,∴12c a =①.∵两准线之间的距离为8,∴228a c=②.联立①②得2,1a c ==,∴3b =,故椭圆E 的标准方程为22143x y +=.(2)设0(,)P x y ,则000,0xy >>,由题意得00001(1)1(1)x y x y x y x y +⎧=-+⎪⎪⎨-⎪=--⎪⎩,整理得02001x x x y y=-⎧⎪-⎨=⎪⎩,∵点00(,)P x y 在椭圆E 上,∴2200143x y +=,∴2220020(1)33y x y -=,∴2200169,77xy ==,故点P 的坐标是4737(,)77.【江苏卷】B.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = ,B =.(1) 求AB ;(2)若曲线C1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程. B.解:(1)AB ==.(2)设11(,)P x y 是曲线1C 上任意一点,变换后对应的点为1`0210x x y y ⎡⎤⎢⎥⎣⎡⎤⎡⎦⎤=⎢⎥⎢⎥⎣⎦⎣⎦,所以112x y y x =⎧⎨=⎩,即1112x y y x =⎧⎪⎨=⎪⎩,因为11(,)P x y 在曲线1C 上,所以228xy +=即曲线C 2的方程.【山东卷】(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为2,焦距为2. (Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =-交椭圆E 于,A B 两点,C是椭圆E 上一点,直线OC 的斜率为2k ,且122k k=,M是线段OC 延长线上一点,且:2:3MC AB =,M的半径为MC ,,OS OT 是M的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.(21)解:(I )由题意知 22c e a ==,22c =,所以2,1a b ==,因此 椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y , 联立方程2211,23,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()2211424310kx k x +--=,由题意知0∆>, 且()112122211231,21221k x xx x k k +==-++,所以22112112211181221k k AB kx x k ++=+-=+.由题意知1224k k =,所以2124kk =由此直线OC 的方程为124y x k =.联立方程2211,22,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此2221211814k OC x y k +=+=+.由题意可知1sin21SOT rOC r OCr∠==++,而2121221121181411822321k OC k rk k k ++=+++21221112324141k k k +=++,令2112t k =+,则()11,0,1t t >∈, 因此2223313112221121119224OC t r t t t t t ===≥+-⎛⎫+---+ ⎪⎝⎭,当且仅当112t =,即2t =时等号成立,此时122k =±, 所以1sin22SOT ∠≤,因此26SOT ∠π≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为122k =±.【天津卷】(19)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)ypx p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6AP 的方程.(19)(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12c a =,2p a =,12a c -=, 解得1a =,12c =,2p =, 于是22234ba c =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x=.所以,直线AP 的方程为3630x y +-=,或3630x y --=.【浙江卷】21.(本题满分15分)如图,已知抛物线2xy =,点A 11()24-,,39()24B ,,抛物线上的点11()()24P x y x -<<,.过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求AP PQ ⋅的最大值.21.解:(Ⅰ)由题易得P (x ,x 2),-12<x <32,故k AP=21412x x -+=x -12∈(-1,1), 故直线AP 斜率的取值范围为(-1,1).(Ⅱ)由(Ⅰ)知P (x ,x 2),-12<x <32, 故PA =(-12-x ,14-x 2), 设直线AP 的斜率为k , 则AP :y =kx +12k +14,BP :y =13924x k k -++, 由112413924y kx k y x k k ⎧=++⎪⎪⎨⎪=-++⎪⎩222234981(,)2244k k k k Q k k +-++⇒++ 故23432221(,)11k k k k k k k PQ k k +----++=++ , 又2(1,)PA k kk =---- , 故323322(1)(1)(1)(1)(1)(1)11k k k k k PA PQ PA PQ k k k k +-+--==+=+-++, 即3(1)(1)PA PQ k k =+-,令3()(1)(1),11f x x x x =+--<<, 则22()(1)(24)2(1)(21)f x x x x x '=+-=-+-,当112x -<<时,()0f x '>,当112x <<时,()0f x '<, 故max 127()()216f x f ==,即PA PQ 的最大值为2716.。
北京市部分区2017届高三上学期考试数学理试题分类汇编圆锥曲线一、选择、填空题1、(朝阳区2017届高三上学期期末)已知双曲线2221(0)4x y b b -=>的一条渐近线方程为320x y +=,则b 等于 .2、(西城区2017届高三上学期期末)已知双曲线2221(0)y x b b-=>的一个焦点是(2,0),则其渐近线的方程为(A )0x = (B 0y ±= (C )30x y ±=(D )30x y ±=3、(东城区2017届高三上学期期末)抛物线22y x =的准线方程是(A )1y =- (B )12y =- (C )1x =- (D )12x =-4、(丰台区2017届高三上学期期末)设椭圆C :222+1(0)16x y a a =>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,如果12||+||10PF PF =,那么椭圆C 的离心率为 .5、(海淀区2017届高三上学期期末)抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .36、(昌平区2017届高三上学期期末)在焦距为2c 的椭圆2222:1(0)x y M a b a b+=>>中,12,F F 是椭圆的两个焦点,则 “b c <”是“椭圆M 上至少存在一点P ,使得12PF PF ⊥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7、(海淀区2017届高三上学期期末)已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A .12y x =-+B .12y x =C .2y x =-D .2y x =-8、(石景山区2017届高三上学期期末)若双曲线2214x y m -=的渐近线方程为y x =,则双曲线的焦点坐标是 .9、(通州区2017届高三上学期期末)“>1m ”是“方程2211x y m m -=-表示双曲线”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10、(东城区2017届高三上学期期末))若点(2,0)P 到双曲线2221(0)x y a a-=>的一条渐近线的距离为1,则a =_______.11、(北京昌平临川育人学校2017届高三上学期期末)设双曲线=1的两焦点分别为F 1,F 2,P 为双曲线上的一点,若PF 1与双曲线的一条渐近线平行,则•=( )A .B .C .D .二、解答题1、(昌平区2017届高三上学期期末)椭圆C 的焦点为1(F ,2F ,且点M 在椭圆C 上.过点(0,1)P 的动直线l 与椭圆相交于,A B 两点,点B 关于y 轴的对称点为点D (不同于点A ).(I) 求椭圆C 的标准方程;(II)证明:直线AD 恒过定点,并求出定点坐标.2、(朝阳区2017届高三上学期期末)已知椭圆22:132x y C +=上的动点P 与其顶点(0)A ,B 不重合.(Ⅰ)求证:直线PA 与PB 的斜率乘积为定值;(Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当//OM PA ,//ON PB 时,求OMN ∆的面积.3、(西城区2017届高三上学期期末)已知直线:l x t =与椭圆22:142x y C +=相交于A ,B两点,M 是椭圆C 上一点.(Ⅰ)当1t =时,求△MAB 面积的最大值;(Ⅱ)设直线MA 和MB 与x 轴分别相交于点E ,F ,O 为原点.证明:||||OE OF ⋅ 为定值.4、(东城区2017届高三上学期期末)已知椭圆2222:1(0)x y C a b a b+=>>经过点(2,0)M ,离心率为12.,A B 是椭圆C 上两点,且直线,OA OB 的斜率之积为34-,O 为坐标原点. (Ⅰ)求椭圆C 的方程;(Ⅱ)若射线OA 上的点P 满足||3||PO OA =,且PB 与椭圆交于点Q ,求||||BP BQ 的值.5、(丰台区2017届高三上学期期末)已知抛物线C :22(0)y px p =>的焦点为F ,且经过点(12),A ,过点F 的直线与抛物线C 交于P ,Q 两点. (Ⅰ)求抛物线C 的方程;(Ⅱ)O 为坐标原点,直线OP ,OQ 与直线2px =-分别交于S ,T 两点,试判断FS FT⋅uu r uu u r 是否为定值?若是,求出这个定值;若不是,请说明理由.6、(海淀区2017届高三上学期期末)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.7、(石景山区2017届高三上学期期末)已知椭圆2222:1(0)x y C a b a b+=>>,点(2,0)在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点(1,0)P 的直线(不与坐标轴垂直)与椭圆交于A B 、两点,设点B 关于x 轴的对称点为B '.直线B A '与x 轴的交点Q 是否为定点?请说明理由.8、(通州区2017届高三上学期期末)如图,已知椭圆()2222:10x y C a b a b +=>>经过点)23,1(P ,离心率21=e .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设AB 是经过右焦点F 的任一弦(不经过点P ),直线AB 与直线:4l x =相交于点M ,记PA ,PB ,PM 的斜率分别为1k ,2k ,3k ,求证:1k ,3k ,2k 成等差数列.参考答案一、选择、填空题1、32、B3、D4、535、B6、A7、A 8、( 9、A 1011、解:由双曲线=1的a=,b=1,c=2,得F 1(﹣2,0),F 2(2,0),渐近线为,由对称性,不妨设PF 1与直线平行,可得,由得,即有,,•=﹣×+(﹣)2=﹣.故选B .二、解答题1、解:(I)法一设椭圆C 的标准方程为22221(0)x y a b a b+=>>.由已知得22222,211,a b c a b c ⎧=+⎪⎪+=⎨⎪⎪=⎩解得2a b =⎧⎪⎨=⎪⎩所以椭圆C 的方程为22142x y +=. …………6分法二设椭圆C 的标准方程为22221(0)x y a b a b+=>>.由已知得c =12214a MF MF =+==.所以2a =, 2222b a c =-=.所以椭圆C 的方程为22142x y +=. …………6分 (II)法一当直线l 的斜率存在时(由题意0≠k ),设直线l 的方程为1y kx =+.由221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=.设11(,)A x y ,22(,)B x y .则22122122168(21)0,4,212.21k k k x x k x x k ⎧⎪∆=++>⎪⎪+=-⎨+⎪⎪=-⎪+⎩特殊地,当A 为(2,0)时,12=-k ,所以2423=-x ,223=-x ,243=y ,即24(,)33-B .所以点B 关于y 轴的对称点24(,)33D ,则直线AD 的方程为(2)=--y x . 又因为当直线l 斜率不存时,直线AD 的方程为0=x , 如果存在定点Q 满足条件,则(0,2)Q . 所以111112111---===-QA y y k k x x x ,222222111---===-+--QD y y k k x x x , 又因为 121212112()2()220QA QB x x k k k k k k x x x x +-=-+=-=-=, 所以=QA QD k k ,即,,A D Q 三点共线.即直线AD 恒过定点,定点坐标为(0,2)Q . …………14分 法二(II)①当直线l 的斜率存在时(由题意0≠k ),设直线l 的方程为1y kx =+ .由221,24y kx x y =+⎧⎨+=⎩,可得22(12)420k x kx ++-=. 设1122(,),(,)A x y B x y ,则22(,)D x y -.所以22122122168(21)0,4,212.21k k k x x k x x k ⎧⎪∆=++>⎪⎪+=-⎨+⎪⎪=-⎪+⎩因为2121AD y y k x x -=--,所以直线AD 的方程为:211121()y y y y x x x x --=---.所以21121112121y y x y x yy x y x x x x --=⋅++--+21121121112121y y x y x y x y x yx x x x x --++=⋅+--+2112212121y y x y x y x x x x x -+=⋅+--+ 2112212121(1)(1)y y x kx x kx x x x x x -+++=⋅+--+ 21122121212y y kx x x x x x x x x -++=⋅+--+ 2112212121y y kx x x x x x x -=⋅++--+21212y y x x x -=⋅+--.因为当0,2x y ==, 所以直线MD 恒过(0,2)点.②当k 不存在时,直线AD 的方程为0x =,过定点(0,2). 综上所述,直线AD 恒过定点,定点坐标为(0,2). …………14分2、解:(Ⅰ)设00(,)P x y ,则2200132x y +=. 所以直线PA 与PB2200220062233(3)3y x x x -===---.……4分 (Ⅱ)依题直线,OM ON 的斜率乘积为23-. ①当直线MN 的斜率不存在时,直线,OM ON的斜率为±OM 的方程是3y x =,由22236,,x y y x ⎧+=⎪⎨=⎪⎩得2x =±,1y =±.取M,则1)N -.所以OMN ∆②当直线MN 的斜率存在时,设直线MN 的方程是y kx m =+,由22,2360y kx m x y =+⎧⎨+-=⎩得222(32)6360k x kmx m +++-=. 因为M ,N 在椭圆C 上,所以2222364(32)(36)0k m k m ∆=-+->,解得22320k m -+>.设11(,)M x y ,22(,)N x y ,则122632kmx x k +=-+,21223632m x x k -=+.MN ===. 设点O 到直线MN 的距离为d,则d =.所以OMN ∆的面积为12OMNS d MN ∆=⨯⨯=⋅⋅⋅⋅⋅⋅①. 因为//OM PA ,//ON PB ,直线OM ,ON 的斜率乘积为23-,所以121223y y x x =-. 所以2212121212121212()()()y y kx m kx m k x x km x x m x x x x x x +++++==2222636m k m -=-. 由222262363m k m -=--,得22322k m +=.⋅⋅⋅⋅⋅⋅②由①②,得OMNS ∆===.综上所述,2OMN S ∆=. …………………………………13分 3、解:(Ⅰ)将1x =代入22142x y +=,解得2y =±,所以||AB =[2分] 当M 为椭圆C 的顶点()2,0-时,M 到直线1x =的距离取得最大值3,[4分]所以△MAB面积的最大值是2.[5分] (Ⅱ)设,A B 两点坐标分别为(),A t n ,(),B t n -,从而2224t n +=.[6分]设()00,M x y ,则有220024x y +=,0x t ≠,0y n ≠±.[7分]直线MA 的方程为00()y ny n x t x t--=--,[8分] 令0y =,得000ty nx x y n-=-,从而000ty nx OE y n -=-.[9分]直线M B 的方程为00()y ny n x t x t++=--,[10分] 令0y =,得000ty nx x y n+=+,从而000ty nx OF y n +=+.[11分]所以000000=ty nx ty nx OE OF y n y n -+⋅⋅-+222200220=t y n x y n--()()222202204242=n y n y y n ----[13分]22022044=y n y n -- =4.所以OE OF ⋅为定值.[14分]4、解:(Ⅰ)由题意得222212.a c a abc =⎧⎪⎪=⎨⎪⎪=+⎩,,解得b =所以椭圆C 的方程为22143x y +=. ……………………………5分(Ⅱ)设112233(,),(,),(,)A x y B x y Q x y . 因为点P 在直线AO 上且满足||3||PO OA =, 所以11(3,3)P x y . 因为,,B Q P 三点共线,所以BP BQ λ=.所以12123232(3,3)(,)x x y y x x y y λ--=--,123212323(),3().x x x x y y y y λλ-=-⎧⎨-=-⎩ 解得31231231,31.x x x y y y λλλλλλ-⎧=+⎪⎪⎨-⎪=+⎪⎩因为点Q 在椭圆C 上,所以2233143x y +=.所以2212123131()()143x x y y λλλλλλ--+++=.即22222112212122296(1)()()()()1434343x y x y x x y y λλλλλ--+++-+=1, 因为,A B 在椭圆C 上,所以2211143x y +=,2222143x y +=.因为直线,OA OB 的斜率之积为34-, 所以121234y y x x ⋅=-,即1212043x x y y+=.所以2291()1λλλ-+=,解得5λ=. 所以||||5||BP BQ λ==. ……………………………14分 5、解:(Ⅰ)把点(1,2)A 代入抛物线C 的方程22y px =,得42p =,解得2p =, 所以抛物线C 的方程为24y x =. (4)分(Ⅱ)因为2p =,所以直线2px =-为1x =-,焦点F 的坐标为(1,0) 设直线PQ 的方程为1x ty =+,211(,)4y P y ,222(,)4y Q y , 则直线OP 的方程为14y x y =,直线OQ 的方程为24y x y =. ……………….5分 由14,1,y x y x ⎧=⎪⎨⎪=-⎩得14(1,)S y --,同理得24(1,)T y --. ……………….7分 所以14(2,)FS y =--uu r ,24(2,)FT y =--uu u r ,则12164FS FT y y ⋅=+uu r uu u r . ……………….9分由21,4,x ty y x =+⎧⎨=⎩得2440y ty --=,所以124y y =-, ……………….11分 则164(4)FS FT ⋅=+-uu r uu u r 440=-=. 所以,FS FT ⋅u u r u u u r的值是定值,且定值为0. (13)分6、解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==所以椭圆G 的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=② 将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+ 所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.7、解:(Ⅰ)因为点(2,0)在椭圆C 上,所以2a =.又因为2c e a ==,所以c =1b =. 所以椭圆C 的标准方程为:2214x y +=. ……………………5分(Ⅱ)设112222(,),(,),(,),(,0)A x y B x y B x y Q n '-.设直线AB :(1)(0)y k x k =-≠. ……………………6分联立22(1)440y k x x y =-+-=和,得:2222(14)8440k x k x k +-+-=.所以2122814k x x k +=+,21224414k x x k -=+. ……………8分直线AB '的方程为121112()y y y y x x x x +-=--, ……………9分令0y =,解得112122111212()y x x x y x yn x y y y y -+=-+=++ ………11分又1122(1),(1)y k x y k x =-=-, 所以121212()42x x x x n x x -+==+-.所以直线B A '与x 轴的交点Q 是定点,坐标为(4,0)Q .………13分 8、解:(Ⅰ)由点3(1,)2P 在椭圆上得,221914a b +=① 11,22c e a ==又所以② 由①②得2221,4,3c a b ===,故椭圆C 的标准方程为22143x y +=……………….4分(Ⅱ)椭圆右焦点坐标F (1,0),显然直线AB 斜率存在, 设,AB k AB 的斜率为则直线的方程为(1)y k x =-③…………….5分代入椭圆方程22143x y +=,整理得2222(43)84(3)0k x k x k +-+-= ……………….6分 设1122(,),(,)A x y B x y ,则有2212122284(3),4343k k x x x x k k -+==++④ ……………….7分 在方程③中,令4x =得,(4,3)M k ,从而2121213322,,11y y k k x x --==-- 33312412k k k -==--,……………….9分 又因为B F A 、、共线,则有BF AF k k k ==,即有k x yx y =-=-112211 所以=+21k k =--+--1231232211x y x y )1111(2311212211-+---+-x x x y x y =2k -121212232()1x x x x x x +--++⑤将④代入⑤得=+21k k 322k -12134834)3(42348222222-=++-+--+k k kk k k k ,……………….12分又213-=k k , 所以=+21k k 32k ,即132,,k k k 成等差数列.……………….13分。
2017 年高考试题分类汇编之圆锥曲线(理数)解析一、选择题 (1)二、填空题 (3)三、大题 (5)一、选择题22而24y x =,即2P =.【全国Ⅱ卷(理)】9.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )【天津卷】(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,.若经过F和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )32b ,222234OP OA PA a b =-=-【全国2卷(理)】16.已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长【江苏卷】8.在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是 .【山东卷】14.在平面直角坐标系xOy 中,双曲线()2210,0x y a b a b -=>>的右支与焦点为F的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程满足2NP NM =.上,且1OP PQ ⋅=.证明:过点P 且垂直于.解:⑴设()P x y ,,易知(0)N x , (0NP =,又10NM NP ⎛== ,⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠, 由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴21OP OQ OP ⋅=+=设直线OQ :Q y y =⋅(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.2416m ∆=+恒大于1OA OBx ⋅=24(m =-∴OA OB ⊥,即O 在圆M 上. ,则0AP BP ⋅= 122)(2)my my --2121)(2)8m y y m y y +-++=1(1(2方程.【山东卷】(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>,焦距为2.(Ⅰ)求椭圆E 的方程;,M 的半径为并求取得最大值时由题意知0∆>,令2112t k =+,△AP的方程. 与x轴相交于点D.若APD斜率的取值范围;故PA =(-12故1(PQ +=又(1PA =--32(1)k PA PQ PA PQ k +==(1)(1)PA PQ k k =+-,令()0x '<,PA PQ 的最大值为。
2017 年高考试题分类汇编之圆锥曲线(理数) 解析一、选择题 ............................................................................................................................... 1 二、填空题 ............................................................................................................................... 3 三、大题 .. (5)一、选择题【浙江卷】2.椭圆22194x y +=的离心率是 A .133B .53C .23D .59【解析】94533e -==,选B.【全国1卷(理)】10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴 易知11cos 22AF GF AK AK AF P P GP Pθ⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩(几何关系)(抛物线特性)cos AF P AFθ⋅+=∴同理1cos P AF θ=-,1cos PBF θ=+∴22221cos sin P PAB θθ==- 又DE 与AB 垂直,即DE 的倾斜角为π2θ+ 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24θ=21616sin 2θ=≥,当π4θ=取等号 即AB DE +最小值为16,故选A【全国Ⅱ卷(理)】9.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .233【解析】取渐近线by x a =,化成一般式0bx ay -=,圆心()20,到直线距离为2223b a b =+得224c a =,24e =,2e =.【全国III 卷(理)】5.已知双曲线C:22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y += 有公共焦点,则C 的方程为( ) A. 221810x y -= B. 22145x y -= C. 22154x y -= D. 22143x y -=【解析】∵双曲线的一条渐近线方程为52y x =,则52b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.【全国III 卷(理)】10.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.63B.33C.23 D.13 【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴222abd a a b==+ 又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴63c e a ==,故选A【天津卷】(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离心率为2.若经过F和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.22144x y -= B.22188x y -=C.22148x y -=D.22184x y -=【解析】由题意得224,14,22188x y a b c a b c ==-⇒===⇒-=- ,故选B.二、填空题【全国1卷(理)】15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________. 【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴32AP b =,222234OP OA PA a b =-=-∴2232tan 34b AP OP a b θ==-又∵tan b a θ=,∴223234b b a a b =-,解得223a b = ∴221231133b e a =+=+=【全国2卷(理)】16.已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-, 如图,M 为F 、N 中点,故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =, ∴6NF NM MF =+=lFN M C BAOyx【北京卷】(9)若双曲线221y x m-=的离心率为3,则实数m =_______________.【解析】.1321mm +=⇒= 【江苏卷】8.在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是 . 【解析】右准线方程为33101010x ==,渐近线为33y x =±,则31030(,)1010P ,31030(,)1010Q -,1(10,0)F -,2(10,0)F ,则302102310S =⨯=. 【山东卷】14.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .三、大题【全国I 卷(理)】20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32 ),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.20.解:(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点将()2330112P P ⎛⎫- ⎪⎝⎭,,,代入椭圆方程得222113141b a b⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m ----+=+==-得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kb x x k -+=+,21224414b x x k -⋅=+ 则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-= 222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,. 【全国II 卷(理)】20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F ..解:⑴设()P x y ,,易知(0)N x ,(0)NP y =,又1022y NM NP ⎛⎫== ⎪⎝⎭,∴12M x y ⎛⎫⎪⎝⎭,,又M 在椭圆上. ∴22122y x ⎛⎫+= ⎪⎝⎭,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠, 由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=. 设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直. ∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-, 13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+,∴1(33)13P P x x x =-++=-,若0Q y =,则33P x -=,1P x =-,1P y =±,直线OQ 方程为0y =,直线l 方程为1x =-,直线l 过点(10)-,,为椭圆C 的左焦点.【全国III 卷(理)】20.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上; (2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.解:(1)显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. 1212OA OB x x y y ⋅=+u u r u u u r12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0= ∴OA OB ⊥uu r uu u r,即O 在圆M 上.(2)若圆M 过点P ,则0AP BP ⋅=uu u r uu r1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径2291||42r OQ ⎛⎫⎛⎫==+- ⎪ ⎪⎝⎭⎝⎭则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径22||31r OQ ==+ 则圆22:(3)(1)10M x y -+-=【北京卷】(18)(14分)已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.(18)解:(Ⅰ)把P (1,1)代入y 2=2Px 得P =12∴C :y 2=x ,∴焦点坐标(14,0),准线:x =-14. (Ⅱ)设l :y =kx +12,A (x 1,y 1),B (x 2,y 2),OP :y =x ,ON :y =22yx x , 由题知A (x 1,x 1),B (x 1,122x y x ) 212y kx y x⎧>+⎪⎨⎪=⎩⇒k 2x 2+(k -1)x +14=0,x 1+x 2=21k k -,x 1·x 2=214k . 1112121112221122,22x kx x y x x y kx kx x x x ⎛⎫+ ⎪+⎝⎭+=++=+由x 1+x 2=21k k -,x 1x 2=214k , 上式()2111121122122124kk kx kx k x x x k x -=+=+-⋅=∴A 为线段BM 中点. 【江苏卷】17.(14分)如图,在平面直角坐标系xOy 中,椭圆1(0)2222x y E :+a b a b=>>的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.17.解:(1)∵椭圆E 的离心率为12,∴12c a =①.∵两准线之间的距离为8,∴228a c=②.联立①②得2,1a c ==,∴3b =,故椭圆E 的标准方程为22143x y +=. (2)设00(,)P x y ,则000,0x y >>,由题意得00001(1)1(1)x y x y x y x y +⎧=-+⎪⎪⎨-⎪=--⎪⎩,整理得0201x x x y y =-⎧⎪-⎨=⎪⎩,∵点00(,)P x y 在椭圆E 上,∴2200143x y +=,∴222002(1)33y x y -=,∴2200169,77x y ==,故点P 的坐标是4737(,)77.【江苏卷】B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = ,B =. (1) 求AB ;(2)若曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.B.解:(1)AB ==.(2)设11(,)P x y 是曲线1C 上任意一点,变换后对应的点为1`0210x x y y ⎡⎤⎢⎥⎣⎡⎤⎡⎦⎤=⎢⎥⎢⎥⎣⎦⎣⎦,所以112x y y x =⎧⎨=⎩,即1112x y y x =⎧⎪⎨=⎪⎩,因为11(,)P x y 在曲线1C 上,所以228x y +=即曲线C 2的方程. 【山东卷】(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为22,焦距为2. (Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :132y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.(21)解:(I )由题意知 22c e a ==,22c =, 所以 2,1a b ==,因此 椭圆E 的方程为2212x y +=. (Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,23,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩ 得()2211424310k x k x +--=, 由题意知0∆>,且()112122211231,21221k x x x x k k +==-++, 所以 22112112211181221k k AB k x x k ++=+-=+.由题意知1224k k =, 所以2124k k = 由此直线OC 的方程为124y x k =. 联立方程2211,22,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩ 得2221221181,1414k x y k k ==++, 因此 2221211814k OC x y k +=+=+.由题意可知 1sin 21SOT r OC r OC r∠==++, 而2121221121181411822321k OCk r k kk ++=+++21221112324141k k k +=++, 令2112t k =+,则()11,0,1t t>∈, 因此 2223313112221121119224OCt r t t t t t ===≥+-⎛⎫+---+ ⎪⎝⎭, 当且仅当112t =,即2t =时等号成立,此时122k =±, 所以 1sin 22SOT ∠≤, 因此26SOT ∠π≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l 的斜率为122k =±.【天津卷】(19)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. (19)(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12c a =,2p a =,12a c -=, 解得1a =,12c =,2p =, 于是22234b a c =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.所以,直线AP 的方程为3630x y +-=,或3630x y --=.【浙江卷】21.(本题满分15分)如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点11()()24P x y x -<<,.过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求AP PQ ⋅的最大值. 21.解:(Ⅰ)由题易得P (x ,x 2),-12<x <32, 故k AP=21412x x -+=x -12∈(-1,1), 故直线AP 斜率的取值范围为(-1,1).(Ⅱ)由(Ⅰ)知P (x ,x 2),-12<x <32, 故PA =(-12-x ,14-x 2), 设直线AP 的斜率为k ,则AP :y =kx +12k +14,BP :y =13924x k k -++, 由112413924y kx k y x k k ⎧=++⎪⎪⎨⎪=-++⎪⎩222234981(,)2244k k k k Q k k +-++⇒++ 故23432221(,)11k k k k k k k PQ k k +----++=++ , 又2(1,)PA k k k =---- ,故323322(1)(1)(1)(1)(1)(1)11k k k k k PA PQ PA PQ k k k k +-+--==+=+-++, 即3(1)(1)PA PQ k k =+-,令3()(1)(1),11f x x x x =+--<<, 则22()(1)(24)2(1)(21)f x x x x x '=+-=-+-,当112x -<<时,()0f x '>,当112x <<时,()0f x '<,故max 127()()216f x f ==,即PA PQ 的最大值为2716.。