2017年考研数学三真题及解析
- 格式:pdf
- 大小:1.75 MB
- 文档页数:9
2017年数三考研真题_附答案解析2017年全国硕⼠研究⽣⼊学统⼀考试数学三试题及参考答案⼀、选择题:1~8⼩题,每⼩题4分,共32分,下列每题给出的四个选项中,只有⼀个选项是符合题⽬要求的.1.若函数1,0(),0x f x axb x ?->?=??≤?在0x =处连续,则()(A)12ab =(B)12ab =-(C)0ab =(D)2ab =2.⼆元函数(3)z xy x y =--的极值点()(A)(0,0)(B)(0,3)(C)(3,0)(D)(1,1)3.设函数()f x 可导,且()()0f x f x '>则()(A)()()11f f >-(B)()()11f f <-(C)()()11f f >-(D)()()11f f <-4.若级数2111n sin kln n n ∞=??--∑收敛,则k =()(A)1(B)2(C)-1(D)-25.设α为n 维单位列向量,E 为n 阶单位矩阵,则()(A)T E αα-不可逆(B)T E αα+不可逆(C)2T E αα+不可逆(D)2T E αα-不可逆6.已知矩阵200021001A=??210020001B =??100020002C ??=,则()(A)A 与C 相似,B 与C 相似(B)A 与C 相似,B 与C 不相似(C)A 与C 不相似,B 与C 相似(D)A 与C 不相似,B 与C 不相似7.设A B 、、C 为三个随机事件,且A 与C 相互独⽴,与C 相互独⽴,则A B ?与C 相互独⽴的充要条件是()(A)A 与B 相互独⽴(B)A 与B 互不相容(C)AB 与C 相互独⽴(D)AB 与C 互不相容8.设12,......(2)n X X X n ≥来⾃总体(,1)N µ的简单随机样本,记11nii X X n ==∑则下列结论中不正确的是()(A)21()ni i X µ=-∑服从2χ分布(B)212()n X X -服从2χ分布(C)21()n ii XX =-∑服从2χ分布(D)2()n X µ-服从2χ分布⼆、填空题:9~14⼩题,每⼩题4分,共24分。
2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
考研数学三(微积分)历年真题试卷汇编17(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2008年)已知f(x,y)=则( )A.fx’(0,0),fy’(0,0)都存在。
B.fx’(0,0)不存在,fy’(0,0)存在C.fx’(0,0)存在,fy’(0,0)不存在。
D.fx’(0,0),fy’(0,0)都不存在。
正确答案:B解析:故fx’(0,0)不存在。
所以fy’(0,0)存在。
故选B。
知识模块:微积分2.(2016年)已知函数f(x,y)=则( )A.fx’-fy’=0。
B.fx’+fy’=0。
C.fx’-fy’=f。
D.fx’+fy’=f。
正确答案:D解析:由复合函数求导法则故fx’+fy’=f。
知识模块:微积分3.(2003年)设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是( )A.f(x0,y)在y=y0处的导数等于零。
B.f(x0,y)在y=y0处的导数大于零。
C.f(x0,y)在y=y0处的导数小于零。
D.f(x0,y)在y=y0处的导数不存在。
正确答案:A解析:可微函数f(x,y)在点(x0,y0)取得极小值,根据取极值的必要条件知fy’(x0,y0)=0,即f(x0,y)在y=y0处的导数等于零,故应选A。
本题也可用排除法分析,取f(x,y)=x2+y2,在(0,0)处可微且取得极小值,并且有f(0,y)=y2,可排除B,C,D,故正确选项为A。
知识模块:微积分4.(2017年)二元函数z=xy(3一x—y)的极值点是( )A.(0,0)。
B.(0,3)。
C.(3,0)。
D.(1,1)。
正确答案:D解析:根据二元函数极值点的条件zx’=y(3一x—y)一xy=y(3—2x—y),zy’=x(3一x—y)一xy—x(3一x一2y),zxx”=一2y,zxy”=3—2x一2y,zyy”=一2x。
考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2014年] 行列式A.(ad—bc)2B.一(ad—bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:解一令则此为非零元素仅在主、次对角线上的行列式由命题2.1.1.1(1),即得|A|=一(ad—bc)(ad—bc)=一(ad一bc)2.仅(B)入选.解二将|A|按第1行展开,然后可利用命题2.1.1.1(2),即式(2.1.1.5)直接写出结果:解三仅(B)入选.解四仅(B)入选.(注:命题2.1.1.1 设非零元素仅在主、次对角线上的2n阶、2n一1阶行列式分别为D2n,D2n-1,则命题2.1.2.3 设A,B分别是m阶与n阶矩阵,则) 知识模块:线性代数2.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:解一由A3=O得E=E-A3=(E-A)(E+A+A3),E=E+A3=(E+A)(E -A+A3).由命题2.2.1.2知,E-A,E+A均可逆.仅(C)入选.解二因A3=0,即A为幂零矩阵,其n个特征值全部都等于零,则A的矩阵多项式f1(A)=E-A的n个特征值为f1(λ)|λ=0=(1-λ)|λ=0=1.因而|E-A|=1≠0,故E一A可逆.A的另一个矩阵多项式f2(A)=E+A的n个特征值为f2(λ)|λ=0=(1+λ)|λ=0=1.故|E+A|=1,所以E+A可逆.知识模块:线性代数3.[2017年] 设α为n维单位列向量,E为n阶单位矩阵,则( ).A.E—ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E一2ααT不可逆正确答案:A解析:令A=ααT,则A2=A.又令AX=λX,由(A2-A)X=(λ2-λ)X=0得λ2-λ=0,即λ=0或λ=1.因为tr(A)=αTα=1=λ1+…+λn故得A的特征值为λ1=…=λn-1=0,λn=1.而E-ααT的特征值为λ1=…=λn-1=1,λn=0,从而|E-ααT|=0,E-ααT不可逆.仅(A)入选.知识模块:线性代数4.[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).A.B.3C.1/3D.正确答案:A解析:解一显然矩阵A满足命题2.2.2.1中的三个条件,因而由该命题得|A|=1.将|A|按第1行展开得到1=|A|=a11A11+a12A12+a13A13=a112+a122+a132=3a112,故仅(A)入选.解二由A*=AT,即其中Aij为|A|中元素aij的代数余子式,得aij=Aij(i,j=1,2,3).将|A|按第1行展开,得到|A|=a11A11+a12A12+a13A13=a112+122+a132=3a112>0.又由A*=AT得到|A*|=|A|3-1=|AT|=|A|,即|A|(|A|=1)=0,而|A|>0,故|A|-1=0,即|A|=1,则3a112=1.因a11>0,故仅(A)入选.注:命题2.2.2.1 设A为n(n≥3)阶实矩阵,其元素分别与其代数余子式相等(aij=Aij(i,j=1,2,…,n),即AT-A*或A=(A*)T)且其中一元素不等于0,则其行列式|A|等于1.知识模块:线性代数5.[2009年] 设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( ).A.B.C.D.正确答案:B解析:解一令则|C|=(-1)2×2|A||B|=2×3=6,即分块矩阵可逆,则由C*=|C|C-1得到解二因对任一四阶矩阵C,有C*C=CC*=|C|4,其中C*为C的伴随矩阵.下面用直接验证法进行选择.对于选项(A),有其中E2,E4分别为二阶、四阶单位矩阵.对于选项(B),有满足伴随矩阵的性质.对选项(C)、(D),分别有由此可知,仅(B)入选.知识模块:线性代数6.[2004年] 设n阶矩阵A与B等价,则必有( ).A.当|A|=a(a≠0)时,|B|=aB.当|A|=a(a≠0)时,|B|=-aC.当|A|≠0时,|B|=0D.当|A|=0时,|B|=0正确答案:D解析:解一因A与B等价,由命题2.2.5.4(1)知,仅(D)入选.(注:命题2.2.5.4 (1)矩阵等价的必要条件是矩阵的行列式同时为零或同时不为零.)解二因A与B等价,其秩必相等.当|A|=0时,秩(A)<n,故秩(B)<n,于是|B|=0.所以选项(D)正确.因秩(A)=秩(B),不一定有|A|=|B|或|A|=-|B|,故(A)、(B)不成立.至于(C),显然有秩(A)>秩(B),故(C)不成立.仅(D)入选.解三因A与B等价,由矩阵等价的必要条件知,存在可逆矩阵P与Q,使得A=PBQ.两边取行列式得|A|=|P||B||Q|,而|P|≠0,|Q|≠0,因而|A|与|B|同时为零或同时不为零.故当|A|=0时,必有|B|=0.仅(D)入选.知识模块:线性代数7.[2013年] 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ).A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B解析:解一对矩阵A,C分别按列分块,记A=[α1,α2,…,αn],C=[γ1,γ2,…,γn],又令B=(bγij)γn×n,则由AB=C得到可见,C的列向量组可由A的列向量组线性表出.因B可逆,由A=CB-1类似可证,A的列向量组也可由C的列向量组线性表出.由两向量组等价的定义知,仅(B)入选.解二因可逆矩阵可表示成若干个初等矩阵的乘积,而每个初等矩阵表示一次初等变换,可逆矩阵B左乘矩阵A,于是A经过有限次初等列变换化为C,而初等列变换能保持变换前的矩阵与变换后所得矩阵的列向量组的等价关系(见命题2.3.1.3),因而仅(B)入选.注:命题2.3.1.3 如果矩阵A 经有限次初等行(列)变换化成矩阵B(即A≌B),则A的行(列)向量组与B的行(列)向量组等价.知识模块:线性代数8.[2003年] 设α1,α2,…,α3均为n维向量,下列结论中不正确的是( ).A.若对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ksαs≠0,则α1,α2,…,αs线性无关B.若α1,α2,…,αs线性相关,则对于任意一组不全为零的数k1,k2,…,ks,有k1α1+k2α2+…+ksαs=0C.α1,α2,…,αs线性无关的充分必要条件是此向量组的秩为sD.α1,α2,…,α3线性无关的必要条件是其中任意两个向量线性无关正确答案:B解析:解一(A)正确.事实上,若α1,α2,…,α3线性相关,则存在一组不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0.这定义的逆否命题就是选项(A)中的命题.可见(A)成立.若α1,α2,…,αs线性相关,由其定义知,存在一组而不是任意一组不全为零的数k1,k2,…,ks使得k1α1+k2αs+…+ksαs=0.(B)不成立.由“向量组α1,α2,…,αs线性无关的充要条件是秩([α1,α2,…,αs])=s”知,(C)也成立.因α1,α2,…,αn线性无关的必要条件是其任一部分向量组线性无关.当然其中任意两个向量也线性无关,(D)也成立.仅(B)入选.解二可举反例证明(B)不正确:向量组α1=[1,0]T,α2=[4,0]T线性相关,但对于一组不全为零的常数k1=1,k2=0,却有k1α1+k2α2=α1=[1,0]T≠0.知识模块:线性代数9.[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.A.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性相关B.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性无关C.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性相关D.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性无关正确答案:A解析:解一由定义知,若α1,α2,…,αs线性相关,则存在不全为零的数c1,c2,…,cs,使得c1α1+c2α2+…+csαs=0.用A左乘等式两边,得c1A α1+c2Aα2+…+csAαs=0,于是Aα1,Aα2,…,Aαs线性相关.仅(A)入选.解二若α1,α2,…,αs线性相关,则秩([α1,α2,…,αs])其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为( ).A.α1,α2,α3B.α1,α2,α4C.α1,α3,α4D.α2,α3,α4正确答案:C解析:因故α1,α3,α4线性相关.仅(C)入选.知识模块:线性代数11.[2007年] 设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).A.α1一α2,α2一α3,α3一α1B.α1+α2,α2+α3,α3+α1C.α1—2α2,α2—2α3,α3—2α1D.α1+2α2,α2+2α3,α3+2α1正确答案:A解析:解一用观察易知,选项(A)中向量有关系(α1-α2)+(α2-α3)+(α3-α1)=0,故(A)中向量线性相关.解二由命题2.3.2.3判别之.s=3为奇数,k=3也为奇数,故(A)中向量线性相关.(注:命题2.3.2.3 已知向量组α1,α2,…,αs(s≥2)线性无关,设β1=α1±α2,β2=α2±α3,…,βs-1=αs-1±αs,βs=αs±α1,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则(1)当s与k的奇偶性相同时,向量组β1,β2,…,βs线性相关;(2)当s与k的奇偶性不同时,向量组β1,β2,…,βs线性无关.) 解三用线性相关的定义判定.为此令x1(α1-α2)+x2(α2-α3)+x3(α3-α1)=0,即(x1-x3)α1+(-x1+x2)α2+(-x2+x3)α3=0.因α1,α2,α3线性无关,故因其系数矩阵行列式等于零,故上述方程组有非零解,即α1-α2,α2-α3,α3-α1线性相关.知识模块:线性代数12.[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件正确答案:A解析:记β1=α1+kα3,β2=α2+lα3,则若α1,α2,α3线性无关,则[α1,α2,α3]为可逆矩阵,故秩即β1=α1+kα3,β2=α2+lα3线性无关.反之,设α1,α2线性无关,α3=0,则对任意常数k,l必有α1+kα3,α2+lα3线性无关,但α1,α2,α3线性相关,故α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的必要但非充分条件.仅(A)入选.知识模块:线性代数填空题13.[2016年] 行列式正确答案:λ4+λ3+2λ2+3λ+4解析:知识模块:线性代数14.[2010年] 设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=________.正确答案:3解析:|A+B-1|=|AE+EB-1|=|ABB-1+AA-1B-1|=|A(B+A-1)B-1|=|A||B+A-1||B-1|=|A||A-1+B ||B|-1=3×2×(1/2)=3.解二|A+B-1|=|EA+B-1E|=|B-1BA+B-1A-1A|=|B-1||B+A-1||A|=|B|-1|B+A-1||A|=(1/2)×2×3=3.知识模块:线性代数15.[2006年] 设矩阵E为二阶单位矩阵,矩阵A满足BA=B+2E,则|B|=____________.正确答案:2解析:解一由BA=B+2E得到B(A-E)=2E,两边取行列式利用命题2.1.2.1(2)和(5)得到|B||A—|=|2E|=22|E|=4.而故|B|=2.解二解一中没有求出矩阵B.但若要求出也不难.由B(A—E)=2E知B==2(A-E)-1而故从而|B|=2.(注:命题2.1.2.1 设A=[aij]n×n,B=[bij]n×n,E为n阶单位矩阵,k为常数.(2)|AB|=|A||B|,|AB|=|BA|,但AB≠BA;(5)|kA|=kn|A|,但[kaij]n ×n=k[aij]n×n=kA;) 知识模块:线性代数16.[2008年] 设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=_________.正确答案:3解析:解一因A的特征值为1,2,2,故A-1的特征值为1,1/2,1/2.因而4A-1一E的特征值为λ1=4×1—1=3,λ2=4×(1/2)一1=1,λ3=4×(1/2)一1=1,故|4A-1一E|=λ1λ2λ3=3×1×1=3.解二所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如果A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP—diag(1,2,2)①=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4.PΛ-1P-1一PEP-1=P(4Λ-1-E)P-1,两端取行列式得到|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,l /2)一E|=|diag(3,1,1)|=3.知识模块:线性代数17.[2003年] 设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵A=E-ααT,B=E+(1/a)ααT,其中A的逆矩阵为B,则a=____________.正确答案:-1解析:解一由题设有A-1=B,故AB=E,注意到αTα=2a2(是一个数),有E=AB-(E-ααT)[E+(1/a)ααT]=E+(1/a)ααT-ααT-(1/a)α(αTα)αT =E+[1/a-1-(1/a)·2a2]ααT=E+(1/a-1-2a)ααT,故(1/a-1-2a)ααT=O.因ααT≠O,所以1/a-1-2a=0,即(2a-1)(a+1)=0.因而a=1/2或a=-1.因a<0,故a=-1.解二因(E-A)2=(ααT)2=ααTααT=(αTα)ααT=2a2ααT=2a2(E-A),即A2-2A+2a2A=2a2E-E,亦即A[A-(2-2a2)E]=(2a2-1)E,故A可逆,且由题设有故整理得到而ααT≠O,故(a+1)(2a-1)=0,又因a<0,故a=-1.知识模块:线性代数18.[2012年] 设A为三阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A 的第1行与第2行得矩阵B,则|BA*|=__________.正确答案:-27解析:由题设有B=E12A,两边右乘A*,得到BA*=E12AA*=|A|E12E=|A|E12,则|BA*|=||A|E12|=|A|3|E12|=33×(-1)=-27.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。
考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。
第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。
A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。
第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。
2003年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则的取值范围是_____. (2)已知曲线与x 轴相切,则可以通过a 表示为________. (3)设a>0,而D 表示全平面,则=_______.(4)设n 维向量;E 为n 阶单位矩阵,矩阵 , , 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,为来自总体X 的简单随机样本,则当时,依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数 (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是(A) 在处的导数等于零. (B )在处的导数大于零. (C) 在处的导数小于零. (D) 在处的导数不存在. [ ]λb x a x y +-=2332b =2b ,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==⎰⎰-=Ddxdy x y g x f I )()(0,),0,,0,(<=a a a T αT E A αα-=T aE B αα1+=4.0-=X Z n X X X ,,,21 ∞→n ∑==ni i n X n Y 121)0(f 'xx f x g )()(=),(00y x ),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =(3)设,,,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. [ ](4)设三阶矩阵,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b 0.(C) a b 且a+2b=0. (D) a b 且a+2b 0. [ ] (5)设均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件(A) 相互独立. (B) 相互独立.(C) 两两独立. (D) 两两独立. [ ] 三、(本题满分8分)2nn n a a p +=2nn n a a q -=,2,1=n ∑∞=1n na∑∞=1n np∑∞=1n nq∑∞=1n na∑∞=1n np∑∞=1n nq∑∞=1n na∑∞=1n np∑∞=1n nq∑∞=1n na∑∞=1n np∑∞=1n nq⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ≠≠≠≠s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα s ααα,,,21 s ααα,,,21 1A 2A 3A 4A 321,,A A A 432,,A A A 321,,A A A 432,,A A A设试补充定义f(1)使得f(x)在上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求 五、(本题满分8分) 计算二重积分其中积分区域D=六、(本题满分9分)求幂级数的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件: ,,且f(0)=0,(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使九、(本题满分13分) 已知齐次线性方程组其中试讨论和b 满足何种关系时,(1) 方程组仅有零解;).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ]1,21[12222=∂∂+∂∂v f u f )](21,[),(22y x xy f y x g -=.2222y gx g ∂∂+∂∂.)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π}.),{(22π≤+y x y x ∑∞=<-+12)1(2)1(1n nnx n x ),(+∞-∞)()(x g x f =')()(x f x g ='.2)()(x e x g x f =+)3,0(∈ξ.0)(='ξf ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a .01≠∑=ni ian a a a ,,,21(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分13分) 设随机变量X 的概率密度为F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为, 而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2003年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则的取值范围是. 【分析】 当0可直接按公式求导,当x=0时要求用定义求导.【详解】 当时,有显然当时,有,即其导函数在x=0处连续.(2)已知曲线与x 轴相切,则可以通过a 表示为 . 【分析】 曲线在切点的斜率为0,即,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到与a 的关系.【详解】 由题设,在切点处有,有)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f ⎪⎪⎭⎫ ⎝⎛7.03.021~X λ2>λ≠x 1>λ,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ2>λ)0(0)(lim 0f x f x '=='→b x a x y +-=2332b =2b 64a 0='y 2b 03322=-='a x y .220a x =又在此点y 坐标为0,于是有,故【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. (3)设a>0,而D 表示全平面,则= .【分析】 本题积分区域为全平面,但只有当时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ==【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量;E 为n 阶单位矩阵,矩阵 , , 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里为n 阶矩阵,而为数,直接通过进行计算并注意利用乘法的结合律即可.【详解】 由题设,有====,于是有 ,即 ,解得 由于A<0 ,故a=-1. (5)设随机变量X 和Y 的相关系数为0.9, 若,则Y 与Z 的相关系数为0.9 .【分析】 利用相关系数的计算公式即可. 【详解】 因为0300230=+-=b x a x .44)3(6422202202a a a x a x b =⋅=-=,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==⎰⎰-=Ddxdy x y g x f I )()(2a 10,10≤-≤≤≤x y x ⎰⎰-=Ddxdy x y g x f I )()(dxdy ax y x ⎰⎰≤-≤≤≤10,102.])1[(2121012adx x x ady dx ax x=-+=⎰⎰⎰+0,),0,,0,(<=a a a T αT E A αα-=T aE B αα1+=T αα22a T =ααE AB =)1)((T T a E E AB αααα+-=T T T T a a E αααααααα⋅-+-11T T T T a a E αααααααα)(11-+-T T T a a E αααααα21-+-E aa E T =+--+αα)121(0121=+--a a 0122=-+a a .1,21-==a a 4.0-=X Z )4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y= =E(XY) – E(X)E(Y)=cov(X,Y), 且于是有 cov(Y ,Z)==【评注】 注意以下运算公式:, (6)设总体X 服从参数为2的指数分布,为来自总体X 的简单随机样本,则当时,依概率收敛于 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:【详解】 这里满足大数定律的条件,且=,因此根据大数定律有 依概率收敛于二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且存在,则函数 (A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ D ] 【分析】 由题设,可推出f(0)=0 , 再利用在点x=0处的导数定义进行讨论即可. 【详解】 显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有 存在,故x=0为可去间断点. 【评注1】 本题也可用反例排除,例如f(x)=x, 则此时g(x)=可排除(A),(B),(C) 三项,故应选(D).【评注2】 若f(x)在处连续,则.(2)设可微函数f(x,y)在点取得极小值,则下列结论正确的是)(4.0)()()(4.0)(Y E X E Y E Y E XY E +--.DX DZ =DZDY Z Y ),cov(.9.0),cov(==XY DYDXY X ρDX a X D =+)().,cov(),cov(Y X a Y X =+n X X X ,,,21 ∞→n ∑==ni i n X n Y 12121n X X X ,,,21 ).(1111∞→→∑∑==n EX n X n ni i pn i i 22221,,,nX X X 22)(i i i EX DX EX +=21)21(412=+∑==n i i n X n Y 121.21112=∑=n i i EX n )0(f 'xx f x g )()(=)0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→,0,0,0,1=≠⎩⎨⎧=x x x x 0x x =.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→),(00y x(A) 在处的导数等于零. (B )在处的导数大于零. (C) 在处的导数小于零. (D) 在处的导数不存在. [ A ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点取得极小值,根据取极值的必要条件知,即在处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,在处的导数即;而在处的导数即【评注2】 本题也可用排除法分析,取,在(0,0)处可微且取得极小值,并且有,可排除(B),(C),(D), 故正确选项为(A).(3)设,,,则下列命题正确的是(A) 若条件收敛,则与都收敛.(B) 若绝对收敛,则与都收敛.(C) 若条件收敛,则与敛散性都不定.(D) 若绝对收敛,则与敛散性都不定. [ B ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若绝对收敛,即收敛,当然也有级数收敛,再根据,及收敛级数的运算性质知,与都收敛,故应选(B).),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(0y x f 0y y =),(00y x 0),(00='y x f y ),(0y x f 0y y =),(0y x f 0y y =),(00y x f y '),(0y x f 0x x =).,(00y x f x '22),(y x y x f +=2),0(y y f =2nn n a a p +=2nn n a a q -=,2,1=n ∑∞=1n na∑∞=1n np∑∞=1n nq∑∞=1n na∑∞=1n np∑∞=1n nq∑∞=1n na∑∞=1n np∑∞=1n nq∑∞=1n na∑∞=1n np∑∞=1n nq∑∞=1n na∑∞=1n na∑∞=1n na2nn n a a p +=2nn n a a q -=∑∞=1n np∑∞=1n nq(4)设三阶矩阵,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b 0.(C) a b 且a+2b=0. (D) a b 且a+2b 0. [ C ] 【分析】 A 的伴随矩阵的秩为1, 说明A 的秩为2,由此可确定a,b 应满足的条件. 【详解】 根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有,即有或a=b.但当a=b 时,显然秩(A), 故必有 a b 且a+2b=0. 应选(C).【评注】 n (n 阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:(5)设均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数,都有,则线性无关.(B) 若线性相关,则对于任意一组不全为零的数,都有(C) 线性无关的充分必要条件是此向量组的秩为s.(D) 线性无关的必要条件是其中任意两个向量线性无关. [ B ] 【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(A): 若对于任意一组不全为零的数,都有,则必线性无关,因为若线性相关,则存在一组不全为零的数,使得 ,矛盾. 可见(A )成立.(B): 若线性相关,则存在一组,而不是对任意一组不全为零的数,都有 (B)不成立.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ≠≠≠≠0))(2(2=-+=b a b a ab b b a bbb a 02=+b a 2≠≠)2≥.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 s ααα,,,21 s k k k ,,,21 02211=+++s s k k k ααα s ααα,,,21 s k k k ,,,21 .02211=+++s s k k k ααα(C) 线性无关,则此向量组的秩为s ;反过来,若向量组的秩为s ,则线性无关,因此(C)成立.(D) 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数,使得成立,则线性相关. 其逆否命题为:若对于任意一组不全为零的数,都有,则线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:={掷第一次出现正面},={掷第二次出现正面},={正、反面各出现一次},={正面出现两次},则事件(A) 相互独立. (B) 相互独立.(C) 两两独立. (D) 两两独立. [ C ] 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为,,,, 且 ,,,,可见有,,,,.故两两独立但不相互独立;不两两独立更不相互独立,应选(C).【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分8分) 设s ααα,,,21 s ααα,,,21 s ααα,,,21 s ααα,,,21 s k k k ,,,21 02211=+++s s k k k ααα s ααα,,,21 s k k k ,,,21 02211≠+++s s k k k ααα s ααα,,,21 1A 2A 3A 4A 321,,A A A 432,,A A A 321,,A A A 432,,A A A 21)(1=A P 21)(2=A P 21)(3=A P 41)(4=A P 41)(21=A A P 41)(31=A A P 41)(32=A A P 41)(42=A A P 0)(321=A A A P )()()(2121A P A P A A P =)()()(3131A P A P A A P =)()()(3232A P A P A A P =)()()()(321321A P A P A P A A A P ≠)()()(4242A P A P A A P ≠321,,A A A 432,,A A A ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在上连续.【分析】 只需求出极限,然后定义f(1)为此极限值即可. 【详解】 因为= === =由于f(x)在上连续,因此定义,使f(x)在上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求的极限,可以适当简化.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足,又,求 【分析】 本题是典型的复合函数求偏导问题:,,直接利用复合函数求偏导公式即可,注意利用【详解】, ]1,21[)(lim 1x f x -→)(lim 1x f x -→])1(1sin 11[lim 1x x x x --+-→πππxx xx x πππππsin )1(sin )1(lim 111---+-→xx x xx ππππππππcos )1(sin cos lim 111-+---+-→xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→.1π)1,21[π1)1(=f ]1,21[+→0y 12222=∂∂+∂∂v f u f )](21,[),(22y x xy f y x g -=.2222ygx g ∂∂+∂∂),(v u f g =)(21,22y x v xy u -==.22uv fv u f ∂∂∂=∂∂∂vfxu f y x g ∂∂+∂∂=∂∂.vf y u f x yg ∂∂-∂∂=∂∂故 ,所以 =【评注】 本题考查半抽象复合函数求二阶偏导. 五 、(本题满分8分) 计算二重积分其中积分区域D=【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:,有=令,则.记 ,则==== 因此 ,【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积vf v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222.2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂.22y x +.)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π}.),{(22π≤+y x y x θθsin ,cos r y r x ==dxdy y x e e I Dy x)sin(22)(22+=⎰⎰+-π.sin 2022dr r re d e r ⎰⎰-πππθ2r t =tdt e e I t sin 0⎰-=πππtdt e A t sin 0⎰-=πt t de e A --⎰-=int 0π]cos sin [0⎰----ππtdt e t e t t ⎰--πcos t tde ]sin cos [0tdt e t e t t ⎰--+-ππ.1A e -+-π)1(21π-+=e A ).1(2)1(2πππππe e e I +=+=-分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数的和函数f(x)及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1. 求出和函数后,再按通常方法求极值.【详解】上式两边从0到x 积分,得由f(0)=1, 得令,求得唯一驻点x=0. 由于,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在内满足以下条件:,,且f(0)=0,(3) 求F(x)所满足的一阶微分方程; (4) 求出F(x)的表达式.【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 (1) 由== =(2-2F(x), 可见F(x)所满足的一阶微分方程为∑∞=<-+12)1(2)1(1n n nx n x .1)1()(1212∑∞=-+-=-='n n n x xx x f ).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰).1(),1ln(211)(2<+-=x x x f 0)(='x f ,)1(1)(222x x x f +--=''01)0(<-=''f ),(+∞-∞)()(x g x f =')()(x f x g ='.2)()(x e x g x f =+)()()()()(x g x f x g x f x F '+'=')()(22x f x g +)()(2)]()([2x g x f x g x f -+2)x e(2)==将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在,使【分析】 根据罗尔定理,只需再证明存在一点c ,使得,然后在[c,3]上应用罗尔定理即可. 条件f(0)+f(1)+f(2)=3等价于,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】 因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是, , . 故由介值定理知,至少存在一点,使因为f(c)=1=f(3), 且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在,使【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组.4)(2)(2x e x F x F =+']4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-]4[42C dx e e x x +⎰-.22x x Ce e -+.)(22x x e e x F --=)3,0(∈ξ.0)(='ξf )3,0[∈)3(1)(f c f ==13)2()1()0(=++f f f M f m ≤≤)0(M f m ≤≤)1(M f m ≤≤)2(.3)2()1()0(M f f f m ≤++≤]2,0[∈c .13)2()1()0()(=++=f f f c f )3,0()3,(⊂∈c ξ.0)(='ξf ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中试讨论和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式=(1) 当时且时,秩(A)=n ,方程组仅有零解.(2) 当b=0 时,原方程组的同解方程组为 由可知,不全为零. 不妨设,得原方程组的一个基础解系为,,当时,有,原方程组的系数矩阵可化为.01≠∑=ni ian a a a ,,,21 ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321).(11∑=-+ni i n a b b0≠b 01≠+∑=ni iab .02211=+++n n x a x a x a 01≠∑=ni ia),,2,1(n i a i =01≠a T a a )0,,0,1,(121 -=αT a a )0,,1,0,(132 -=α.)1,,0,0,(,1T n n a a -=α∑=-=ni iab 10≠b ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以倍)( 将第n 行倍到第2行的倍加到第1行,再将第1行移到最后一行)由此得原方程组的同解方程组为,, . 原方程组的一个基础解系为【评注】 本题的难点在时的讨论,事实上也可这样分析:此时系数矩阵的秩为 n-1(存在n-1阶子式不为零),且显然为方程组的一个非零解,即可作为基础解系.十、(本题满分13分) 设二次型,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (3) 求a,b 的值;(4) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 (1)二次型f 的矩阵为∑=-ni ia11→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a n a -2a -→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--- 12x x =13x x =1,x x n = .)1,,1,1(T =α∑=-=ni iab 1T )1,,1,1( =α)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T设A 的特征值为 由题设,有,解得 a=1,b= -2.(2) 由矩阵A 的特征多项式,得A 的特征值对于解齐次线性方程组,得其基础解系 ,对于,解齐次线性方程组,得基础解系由于已是正交向量组,为了得到规范正交向量组,只需将单位化,由此得,,令矩阵,则Q 为正交矩阵. 在正交变换X=QY 下,有.20020⎥⎥⎥⎦⎢⎢⎢⎣-=b A ).3,2,1(=i i λ1)2(2321=-++=++a λλλ.12242002002321-=--=-=b a b ba λλλ)3()2(220202012+-=+----=-λλλλλλA E .3,2321-===λλλ,221==λλ0)2(=-x A E T )1,0,2(1=ξ.)0,1,0(2T =ξ33-=λ0)3(=--x A E .)2,0,1(3T -=ξ321,,ξξξ321,,ξξξT )51,0,52(1=ηT )0,1,0(2=η.)52,0,51(3T -=η[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ,且二次型的标准形为【评注】 本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为设A 的特征值为,则由题设得,解得a=1,b=2.十一、(本题满分13分) 设随机变量X 的概率密度为F(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可.注意应先确定Y=F(X)的值域范围,再对y 分段讨论.【详解】 易见,当x<1时,F(x)=0; 当x>8 时,F(x)=1. 对于,有设G(y)是随机变量Y=F(X)的分布函数. 显然,当时,G(y)=0;当时,G(y)=1. 对于,有= =⎥⎥⎥⎦⎢⎢⎢⎣-=300020AQ Q T .322232221y y y f -+=)].2()2()[2(2020022b a a bbaA E +----=+----=-λλλλλλλ321,,λλλ).2(,2,2232321b a a +-=-=+=λλλλλ1)2(2321=-+=++a λλλ.12)2(22321-=+-=b a λλλ;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f )1)(0(≤≤X F ]8,1[∈x .131)(3132-==⎰x dt t x F x0<y 1≥y )1,0[∈y })({}{)(y X F P y Y P y G ≤=≤=})1({}1{33+≤=≤-y X P y X P .])1[(3y y F =+于是,Y=F(X)的分布函数为【评注】 事实上,本题X 为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布: 当y<0时,G(y)=0; 当 时,G(y)=1;当 0时, = = 十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为 , 而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为= =. 由于X 和Y 独立,可见G(u)== 由此,得U 的概率密度=【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性..1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若1≥y 1<≤y })({}{)(y X F P y Y P y G ≤=≤=)}({1y F X P -≤.))((1y y F F =-⎪⎪⎭⎫⎝⎛7.03.021~X }{)(u Y X P u G ≤+=}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P }22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P }2{7.0}1{3.0-≤+-≤u Y P u Y P ).2(7.0)1(3.0-+-u F u F )2(7.0)1(3.0)()(-'+-'='=u F u F u G u g ).2(7.0)1(3.0-+-u f u f。
2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
考研数学三(多元函数微积分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2008年] 设则( ).A.fx’(0,0),fy’(0,0)都存在B.fx’(0,0)不存在,fy’(0,0)存在C.fx’(0,0)存在,fy’(0,0)不存在D.fx’(0,0),fy’(0,o)都不存在正确答案:B解析:因而则极限不存在,故偏导数fx’(0,0)不存在.而因而偏导数fy’(0,0)存在.仅(B)入选.知识模块:多元函数微积分学2.[2003年] 设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是( ).A.f(x0,y)在y=y0处的导数大于零B.f(x0,y)在y=y0处的导数等于零C.f(x0,y)在y=y0处的导数小于零D.f(x0,y)在y=y0处的导数不存在正确答案:B解析:解一因f(x,y)在点(x0,y0)处可微,故f(x,y)在点(x0,y0)处两个偏导数存在,因而一元函数f(x0,y)在y=y0处的导数也存在.又因f(x,y)在点(x0,y0)处取得极小值,故f(x0,y0)在y=y0处的一阶(偏)导数等于零.仅(B)入选.解二由函数f(x,y)在点(x0,y0)处可微知,f(x.y)在点(x0,y0)处的两个偏导数存在.又由二元函数极值的必要条件即得f(x,y)在点(x0,y0)处的两个偏导数都等于零.因而有知识模块:多元函数微积分学3.[2016年] 已知函数则( ).A.fx’-fy’=0B.fx’+fy’=0C.fx’-fy’=fD.fx’+fy’=f正确答案:D解析:则仅(D)入选.知识模块:多元函数微积分学4.[2017年] 二元函数z=xy(3-x-y)的极值点为( ).A.(0,0)B.(0,3)C.(3,0)D.(1,1)正确答案:D解析:zy’=y(3-x-y)-xy=y(3-2x-y),zy’=x(3-x-y)-xy=x(3-x-2y),又zxx’=-2y,zxy=3-2x-2y,zyy’=-2x,将选项的值代入可知,只有(D)符合要求,即A=zxx”(1,1)=-2,B=zxy”(1,1)=-1,C=zyy”(1,1)=-2.满足B2-AC=-3<0,且A=-2<0,故点(1,1)为极大值点.仅(D)入选.知识模块:多元函数微积分学5.[2006年] 设f(x,y)与φ(z,y)均为可微函数,且φy’(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,Y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则fy’(x0,y0)=0B.若fx’(x0,y0)=0,则f’y(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则f’y(x0,y0)≠0正确答案:D解析:解一由拉格朗日乘数法知,若(x0,y0)是f(x,y)在条件φ(x,y)=0下的极值点,则必有fx’(x0,y0)+λφx’(x0,y0)=0,①fx’(x0,y0)+λφx’(x0,y0)=0.②若fx’(x0,y0)≠0,由式①知λ≠0.又由题设有φy’(x0,y0)≠0,再由式②知fy’(x0,y0)≠0.仅(D)入选.解二构造拉格朗日函数F(x,y,λ)=f(x,y)+λφ(x,y),并记对应于极值点(x0,y0)处的参数的值为λ0,则由式③与式④消去λ0得到fx’(x0,y0)/φx’(0,y0)=一λ0=f’y(x0,y0)/φ’y(x0,y0).即f’x(x0,y0)φ’y(x0,y0)一fy’(x0,y0)φx’(x0,y0)=0.整理得若fx’(x0,y0)≠0,则由式③知,φx’(x0,y0)≠0.因而fy’(x0,y0)≠0.仅(D)入选.解三由题设φy’(x,y)≠0知,φ(x,y)=0确定隐函数y=y(x).将其代入f(x,y)中得到f(x,y(x)).此为一元复合函数.在φ(x,y)=0两边对x求导,得到因f(x,y(x))在x=x0处取得极值,由其必要条件得到f’x+fy’y’=fx’+fy’(一φx’/φy’)=0.因而当fx’(x0,y0)≠0时,必有fy’(x0,y0)≠0.仅(D)入选.知识模块:多元函数微积分学填空题6.[2012年] 设连续函数z=f(x,y)满足则dz|(0,1)=__________.正确答案:2dx-dy解析:用函数f(x,y)在(x0,y0)处的微分定义:与所给极限比较易知:z=f(x,y)在点(0,1)处可微,且fx’(0,1)=2,fy’(0,1)=-1,f(0,1)=1,故dz|(0,1)=fx’(0,1)dx+fy’(0,1)dy=2dx-dy.知识模块:多元函数微积分学7.[2009年] 设z=(x+ey)x,则正确答案:2ln2+1解析:解一为简化计算,先将y=0代入z中得到z(x,0)=(x+1)x,z为一元函数.将x=1代入上式,得到解二考虑到z(x,0)=(x+1)x为幂指函数,先取对数再求导数:lnz=xln(x+1).在其两边对x求导,得到则知识模块:多元函数微积分学8.[2007年] 设f(u,v)是二元可微函数,则正确答案:解析:解一设u=y/x,v=x/y.为方便计,下面用“树形图”表示复合层次与过程.由式①一式②得到解二令f1’,f2’分别表示z=f(y/x,x /y)对第1个和第2个中间变量y/x、x/y求导数,则知识模块:多元函数微积分学9.[2004年] 函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则正确答案:解析:令u=xg(y),v=y,由此解出于是知识模块:多元函数微积分学10.[2005年] 设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=_________.正确答案:2edx+(e+2)dy解析:dz=d[xex+y+(x+1)ln(1+y)]=d(xex+y)+d[(x+1)ln(1+y)] =ex+ydx+xex+y(dx+dy)+ln(1+y)dx+[(x+1)/(1+y)]dy.①将x=1,y=0代入上式(其中dz,dx,dy不变),得到dz|(1,0)=edx+e(dx+dy)+2dy=2edx+(e+2)dy.解二利用全微分公式求之.为此,先求出偏导数故解三用定义简化法求之.固定一个变量转化为另一个变量的一元函数求导.由z(x,0)=xex得到由z(1,y)=ey+2ln(1+y)得到故知识模块:多元函数微积分学11.[2006年] 设函数f(u)可微,且f’(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|1,2=___________.正确答案:4dx一2dy解析:解一dz=df(4x2-y2)=f’(u)du=f’(u)d(4x2-y2)=f’(u)(8xdx-2ydy),其中u=4x2-y2.于是dz|1,2=f’(0)(8dx-4dy)=4dx-2dy.解二利用复合函数求导公式和定义简化法求之.由z=f(4x2-y2)得到解三由z=f(4x2-y2)得到于是故dz|1,2=4dx-2dy.知识模块:多元函数微积分学12.[2011年] 设函数则dz|1,1=____________.正确答案:(1+2ln2)(dx—dy)解析:解一所给函数为幂指函数,先在所给方程两边取对数,然后分别对x,y求偏导:由得到则解二先用定义简化法求出然后代入全微分公式求解.故dz|1,1=2(ln2+1/2)dx-2(ln2+1/2)dy=(1+2ln2)(dx-dy).知识模块:多元函数微积分学13.[2015年] 若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz|0,0=_______________.正确答案:解析:在ex+2y+3z+xyz=1①两边分别对x,y求偏导得到同法可得将x=0,y=0代入式①易求得z=0,代入式②、式③分别得到则知识模块:多元函数微积分学14.[2014年] 二次积分正确答案:解析:注意到不易求出,需先交换积分次序,由积分区域的表达式D={(x,y)|y≤x≤1,0≤y≤1)-{(x,y)|0≤y≤x,0≤x≤1}及交换积分次序得到故知识模块:多元函数微积分学解答题解答应写出文字说明、证明过程或演算步骤。