人教a版·数学·高一必修1课时作业20方程的根与函数的零点_word版含解析
- 格式:doc
- 大小:115.50 KB
- 文档页数:6
2018-2019 学年人教 A 版高中数学必修 1 练习含解析第三章 3.1 3.1.11.函数 y = 2x - 1 的图象与 x 轴的交点坐标及其零点分别是 ( )A. 1, 1B . 1,0 ,12 222C .-1,-1 D . -1, 0 ,- 1222 2解析: 由 y = 2x -1= 0,得 x = 1,故交点坐标为1, 0,零点是 1222.答案: B2.函数 f(x)= 2x + 3x 的零点所在的一个区间是 ( )A . (- 2,- 1)B . (- 1,0)C .(0,1)D . (1,2)解析: 因为 f(- 1)= 1- 3<0, f(0) =1> 0,所以 f(x)在区间 (-1,0)上存在零点.2 答案: B3.若函数 f( x)= x 2+ 2x + a 没有零点,则实数 a 的取值范围是 ( )A . a < 1B . a > 1C .a ≤ 1D . a ≥ 1解析: 由题意知, = 4- 4a < 0,∴ a >1.答案: B4.二次函数 y =ax 2+bx + c 中, a ·c <0,则函数零点的个数是 ________.解析:∵ a ·c < 0,∴Δ=b 2- 4ac > 0.∴二次函数 y = ax 2+ bx +c 的图象与 x 轴有两个交点,则函数有两个零点.答案: 25.函数 f(x)= ax 2+ 2ax + c(a ≠ 0)的一个零点为 1,则它的另一个零点是 ________.解析: ∵a ≠ 0,∴此函数为二次函数.设另一个零点为x 2,由根与系数的关系,得1+x 2=-2a=- 2.∴ x 2 =- 3.a答案: - 36.已知函数 f(x) =x 2 +3(m + 1)x +n 的零点是1 和 2,求函数 y =log n (mx + 1)的零点.解: 由题可知, f(x)= x 2+ 3(m +1)x + n 的两个零点为 1 和 2. 则 1 和 2 是方程 x 2 +3(m + 1)x + n =0 的两根. 1+ 2=- 3 m + 1 , m =- 2,可得解得1× 2= n ,n = 2.12018-2019 学年人教 A 版高中数学必修 1 练习含解析所以函数y= log n(mx+1)的解析式为y= log2(- 2x+ 1).要求其零点,令log 2(- 2x+ 1)=0,解得 x= 0.所以函数 y= log 2(- 2x+ 1)的零点为0.2。
3.1.1 方程的根与函数的零点1.函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.比如,由于方程f(x)=lg x=0的解是x=1,所以函数f(x)=lg x的零点是1.辨误区函数的零点不是点我们把使f(x)=0成立的实数x叫做函数y=f(x)的零点,因此函数的零点不是点,而是函数y=f(x)与x轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f(x)=x+1,当f(x)=x+1=0时仅有一个实根x=-1,因此函数f(x)=x+1有一个零点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.【例1】函数f(x)=x2-1的零点是( )A.(±1,0) B.(1,0)C.0 D.±1解析:解方程f(x)=x2-1=0,得x=±1,因此函数f(x)=x2-1的零点是±1.答案:D2函数零点(或零点个数)正比例函数y=kx(k≠0)一个零点0反比例函数kyx=(k≠0)无零点一次函数y=kx+b(k≠0)一个零点b k -二次函数y=ax2+bx+c(a≠0Δ>0两个零点-b±Δ2aΔ=0一个零点-b2aΔ<0无零点指数函数y=a x(a>0,且a≠1)无零点对数函数y=log a x(a>0,且a≠1)一个零点1幂函数y=xαα>0一个零点0α≤0无零点【例2( )A.0 B.1 C.2 D.1或2解析:∵b2=ac,∴方程ax2+bx+c=0的判别式Δ=b2-4ac=b2-4b2=-3b2.又∵abc≠0,∴b≠0.因此Δ<0.故函数f(x)=ax2+bx+c的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f(x)=0有实根⇔函数f(x)的图象与x轴有交点⇔函数f(x)有零点.【例3-1】若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.解析:因为函数f(x)=x2+ax+b的零点就是方程x2+ax+b=0的根,故方程x2+ax +b=0的根是2和-4,可由根与系数的关系求a,b的值.解:由题意,得方程x2+ax+b=0的根是2和-4,由根与系数的关系,得2(4), 2(4),ab+-=-⎧⎨⨯-=⎩即2,8.a b =⎧⎨=-⎩(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联 Δ>0 Δ=0 Δ<0二次函数 f (x )=ax 2+ bx +c (a >0) 的图象图象与x 轴交点 (x 1,0),(x 2,0) (x 0,0) 无交点方程f (x )=0的根 x =x 1,x =x 2 x =x 0 无实数根函数y =f (x )的零点x 1,x 2 x 0 无零点式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x=0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3. 故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F(x)=f(x)-g(x)的零点就是方程F(x)=0即方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象的交点的横坐标.这样,我们就将函数F(x)的零点问题转化为函数f(x)与g(x)图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x2+7x+6;(2)f(x)=1-log2(x+3);(3)f(x)=2x-1-3;(4)f(x)=24122x xx+--.解析:分别解方程f(x)=0得函数的零点.解:(1)解方程f(x)=x2+7x+6=0,得x=-1或-6.故函数的零点是-1,-6.(2)解方程f(x)=1-log2(x+3)=0,得x=-1.故函数的零点是-1.(3)解方程f(x)=2x-1-3=0,得x=log26.故函数的零点是log26.(4)解方程f(x)=24122x xx+--=0,得x=-6.故函数的零点为-6.辨误区忽略验根出现错误本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f(x)=ln x-11x-的零点的个数是( )A.0 B.1 C.2 D.3解析:在同一坐标系中画出函数y=ln x与11yx=-的图象如图所示,因为函数y=ln x与11yx=-的图象有两个交点,所以函数f(x)=ln x-11x-的零点个数为2.答案:C,5.判断零点所在的区间零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1)当函数y=f(x)同时满足:①函数的图象在区间[a,b]上是连续曲线;②f(a)·f(b)<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 错解 错解一:由题意,得f (1)=2>0,f (4)=2>0,因此函数f (x )=x 2-5x +6在区间[1,4]上没有零点,即零点个数为0.错解二:∵f (1)=2>0,f (2.5)=-0.25<0,∴函数在区间(1,2.5)内有一个零点;又∵f (4)=2>0,f (2.5)=-0.25<0,∴函数在区间(2.5,4)内有一个零点.∴函数在区间[1,4]内有两个零点. 错因分析对于错解一,是错误地类比了零点存在性定理,注意当f (a )·f (b )>0时,区间(a ,b )内的零点个数是不确定的;对于错解二,注意当f (a )·f (b )<0时,区间(a ,b )内存在零点,但个数是不确定的.正解由x 2-5x +6=0,得x =2或x =3,所以函数f (x )=x 2-5x +6在区间[1,4]上的零点个数是2.【例5-2】函数f (x )=lg x -x的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0. ∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10). 答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔ca<0.④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0.(2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程x 1,x 2中有且仅有一个在区间 (k 1,k 2)内f (k 1)·f (k 2)<0或f (k 1)=0,k 1<12<22k k b a +-或f (k 2)=0,12<22k k b a+-<k 2.__________________________________________________________________ __________________________________________________________________ __________________________________________________________________【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意.(2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1). 若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1].点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时, (1)方程有一根; (2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根.(2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.。
第三章函数的应用§3.1函数与方程3.1.1 方程的根与函数的零点课时目标 1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数,理解二次函数的图象与x轴的交点和相应的一元二次方程根的关系.2.理解函数零点的概念以及函数零点与方程根的联系.3.掌握函数零点的存在性定理.1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应的ax2+bx+c=0(a≠0)的根的关系2.函数的零点对于函数y=f(x),我们把________________叫做函数y=f(x)的零点.3.方程、函数、图象之间的关系方程f(x)=0__________⇔函数y=f(x)的图象______________⇔函数y=f(x)__________.4.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是________的一条曲线,并且有____________,那么,函数y =f(x)在区间(a,b)内________,即存在c∈(a,b),使得__________,这个c也就是方程f(x)=0的根.一、选择题1.二次函数y=ax2+bx+c中,a·c<0,则函数的零点个数是()A.0个B.1个C.2个D.无法确定2.若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法正确的是()A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D .若f(a)f(b)<0,有可能不存在实数c ∈(a ,b)使得f(c)=03.若函数f(x)=ax +b(a ≠0)有一个零点为2,那么函数g(x)=bx 2-ax 的零点是( ) A .0,-12 B .0,12 C .0,2 D .2,-12 4.函数f(x)=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)5.函数f(x)=⎩⎪⎨⎪⎧x 2+2x -3, x ≤0,-2+ln x , x>0零点的个数为( )A .0B .1C .2D .36.已知函数y =ax 3+bx 2+cx +d 的图象如图所示,则实数b 的取值范围是( ) A .(-∞,0) B .(0,1) C .(1,2) D .(2,+∞)二、填空题7.已知函数f(x)是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______. 8.函数f (x )=ln x -x +2的零点个数为________.9.根据表格中的数据,可以判定方程e x -x -2=0的一个实根所在的区间为(k ,k +1)(k ∈N ),则k 的值为________.三、解答题10.证明:方程x 4-4x -2=0在区间[-1,2]内至少有两个实数解.11.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围.能力提升12.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2, x >0,若f (-4)=f (0),f (-2)=-2,则方程f (x )=x 的解的个数是( )A .1B .2C .3D .413.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围.1.方程的根与方程所对应函数的零点的关系(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.(2)根据函数零点定义可知,函数f(x)的零点就是方程f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.(3)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象交点的横坐标.第三章 函数的应用 §3.1 函数与方程 3.1.1 方程的根与函数的零点知识梳理1.2 1 0 2 1 2.使f(x)=0的实数x 3.有实数根 与x 轴有交点 有零点 4.连续不断 f(a)·f(b)<0 有零点 f(c)=0 作业设计1.C [方程ax 2+bx +c =0中,∵ac<0,∴a ≠0, ∴Δ=b 2-4ac>0,即方程ax 2+bx +c =0有2个不同实数根, 则对应函数的零点个数为2个.] 2.C [对于选项A ,可能存在根; 对于选项B ,必存在但不一定唯一; 选项D 显然不成立.] 3.A [∵a ≠0,2a +b =0, ∴b ≠0,a b =-12.令bx 2-ax =0,得x =0或x =a b =-12.] 4.C [∵f(x)=e x +x -2, f(0)=e 0-2=-1<0, f(1)=e 1+1-2=e -1>0, ∴f(0)·f(1)<0,∴f(x)在区间(0,1)上存在零点.]5.C [x ≤0时,令x 2+2x -3=0,解得x =-3. x>0时,f(x)=ln x -2在(0,+∞)上递增, f(1)=-2<0,f(e 3)=1>0,∵f(1)f(e 3)<0 ∴f(x)在(0,+∞)上有且只有一个零点. 总之,f(x)在R 上有2个零点.]6.A [设f (x )=ax 3+bx 2+cx +d ,则由f (0)=0可得d =0,f (x )=x (ax 2+bx +c )=ax (x -1)(x -2)⇒b =-3a ,又由x ∈(0,1)时f (x )>0,可得a >0,∴b <0.]7.3 0解析 ∵f (x )是R 上的奇函数,∴f (0)=0,又∵f (x )在(0,+∞)上是增函数,由奇函数的对称性可知,f (x )在(-∞,0)上也单调递增,由f (2)=-f (-2)=0.因此在(0,+∞)上只有一个零点,综上f (x )在R 上共有3个零点,其和为-2+0+2=0. 8.2解析 该函数零点的个数就是函数y =ln x 与y =x -2图象的交点个数.在同一坐标系中作出y =ln x 与y =x -2的图象如下图:由图象可知,两个函数图象有2个交点,即函数f (x )=ln x -x +2有2个零点. 9.1解析 设f (x )=e 2-(x +2),由题意知f (-1)<0,f (0)<0,f (1)<0,f (2)>0,所以方程的一个实根在区间(1,2)内,即k =1.10.证明 设f (x )=x 4-4x -2,其图象是连续曲线. 因为f (-1)=3>0,f (0)=-2<0,f (2)=6>0. 所以在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解. 11.解 令f (x )=mx 2+2(m +3)x +2m +14.依题意得⎩⎪⎨⎪⎧m >0f 4<0或⎩⎪⎨⎪⎧m <0f 4>0,即⎩⎪⎨⎪⎧m >026m +38<0或⎩⎪⎨⎪⎧m <026m +38>0,解得-1913<m <0.12.C [由已知⎩⎪⎨⎪⎧ 16-4b +c =c ,4-2b +c =-2,得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2, x >0.当x ≤0时,方程为x 2+4x +2=x , 即x 2+3x +2=0, ∴x =-1或x =-2; 当x >0时,方程为x =2, ∴方程f (x )=x 有3个解.]13.解 设f (x )=x 2+(k -2)x +2k -1.∵方程f (x )=0的两根中,一根在(0,1)内,一根在(1,2)内,∴⎩⎪⎨⎪⎧ f 0>0f 1<0f 2>0,即⎩⎪⎨⎪⎧2k -1>01+k -2+2k -1<04+2k -4+2k -1>0 ∴12<k <23.。
(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题(每小题5分,共20分)1.函数f (x )=x -4x 的零点有( )A .0个B .1个C .2个D .无数个解析: 令f (x )=0,即x -4x =0.∴x =±2.故f (x )的零点有2个,选C.答案: C2.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点是-3,则它的另一个零点是( )A .-1B .1C .-2D .2解析: 由根与系数的关系得-3+x =-2a a ,∴x =1.即另一个零点是1,故选B.答案: B3.设函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析: 方法一:令f (x )=x 3-⎝⎛⎭⎫12x -2,则f (0)=0-⎝⎛⎭⎫12-2=-4<0,f (1)=1-⎝⎛⎭⎫12-2=-1<0,f (2)=23-⎝⎛⎭⎫120=7>0,f (3)=27-⎝⎛⎭⎫121=2612>0,f (4)=43-⎝⎛⎭⎫122=6334>0,∴f (1)·f (2)<0,故x 0所在的区间是(1,2).方法二:数形结合法,如图所示.答案: B 4.已知x 0是函数f (x )=2x +11-x 的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则() A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析: y =2x 在(1,+∞)上是增函数y =11-x在(1,+∞)上是增函数 ∴f (x )=2x +11-x在(1,+∞)上是增函数. ∴y =f (x )只有x 0一个零点∴x 1<x 0时,f (x 1)<0x 2>x 0时,f (x 2)>0.故选B.答案: B二、填空题(每小题5分,共10分)5.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0零点的个数为________. 解析: x ≤0时,令x 2+2x -3=0解得x =-3x >0时,f (x )=ln x -2在(0,+∞)上递增f (1)=-2<0,f (e 3)=1>0故在(0,+∞)上有且只有一个零点.答案: 26.已知f (x )是R 上的奇函数,函数g (x )=f (x +2),若f (x )有三个零点,则g (x )的所有零点之和为________.解析: ∵f (x )是R 上的奇函数,图象关于原点对称,∴f (x )的三个零点中,一个是原点,另两个关于原点对称,不妨设为-x 0,x 0,即f (-x 0)=f (x 0)=f (0)=0.∵g (x )=f (x +2),设g (x )的零点为x 1,∴g (x 1)=f (x 1+2)=0.∴x 1+2=-x 0或x 1+2=x 0或x 1+2=0.∴g (x )的所有零点之和为-x 0-2-2+x 0-2=-6.答案: -6三、解答题(每小题10分,共20分)7.求函数f (x )=2x +lg(x +1)-2的零点个数.解析: 方法一:∵f (0)=1+0-2=-1<0,f (2)=4+lg 3-2>0,∴f (x )在(0,2)上必定存在零点,又显然f (x )=2x +lg(x +1)-2在(0,+∞)上为增函数(图略),故f (x )有且只有一个零点. 方法二:在同一坐标系下作出h (x )=2-2x和g (x )=lg(x +1)的草图.由图象知g (x )=lg(x +1)的图象和h (x )=2-2x 的图象有且只有一个交点,即f (x )=2x +lg(x +1)-2有且只有一个零点.8.若方程x 2+(k -2)x +2k -1=0的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值范围.解析: 设f (x )=x 2+(k -2)x +2k -1∵f (x )=0的两根中,一根在(0,1)内,一根在(1,2)内, ∴⎩⎪⎨⎪⎧ f (0)>0f (1)<0f (2)>0.即⎩⎪⎨⎪⎧ 2k -1>01+k -2+2k -1<04+2k -4+2k -1>0∴12<k <23. 尖子生题库☆☆☆9.(10分)已知二次函数f (x )=ax 2+bx +c .(1)若a >b >c ,且f (1)=0,试证明f (x )必有两个零点;(2)设x 1,x 2∈R ,x 1<x 2,且f (x 1)≠f (x 2),若方程f (x )=12[f (x 1)+f (x 2)]有两个不等实根,试证明必有一个实根属于区间(x 1,x 2).解析: (1)∵f (1)=0,∴a +b +c =0.又∵a >b >c ,∴a >0,c <0,即ac <0.∴Δ=b 2-4ac ≥-4ac >0.∴方程ax 2+bx +c =0必有两个不等实根,∴f (x )必有两个零点.(2)令g (x )=f (x )-12[f (x 1)+f (x 2)],则 g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=12[f (x 1)-f (x 2)], g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=12[f (x 2)-f (x 1)]. ∵g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2, 且f (x 1)≠f (x 2),∴g (x 1)g (x 2)<0.∴g (x )=0在(x 1,x 2)内必有一实根.。
第三章 函数的应用 §3.1 函数与方程3.1.1 方程的根与函数的零点自主学习1.能够结合二次函数的图象判断一元二次方程根的存在性及根的个数. 2.理解函数的零点与方程根的关系. 3.掌握函数零点的存在性的判定方法.1.对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的________.2.函数y =f (x )的零点就是方程f (x )=0的__________,也就是函数y =f (x )的图象与x 轴的交点的__________.3.方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有________⇔函数y =f (x )有________.4.函数零点的存在性的判定方法如果函数y =f (x )在[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )________0,那么y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )________0,这个c 也就是方程f (x )=0的根.对点讲练求函数的零点【例1】 求下列函数的零点:(1)f (x )=-x 2-2x +3; (2)f (x )=x 4-1; (3)f (x )=x 3-4x .规律方法 求函数的零点,关键是准确求解方程的根,若是高次方程,要进行因式分解,分解成多个因式积的形式且方程的另一边为零,若是二次方程常用因式分解或求根公式求解.变式迁移1 若函数f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值.判断函数在某个区间内是否有零点【例2】 (1)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3) C.⎝⎛⎭⎫1,1e 和(3,4) D .(e ,+∞)(2)f (x )=ln x -2x在x >0上共有________个零点.规律方法 这是一类非常基础且常见的问题,考查的是函数零点的判定方法,一般而言只需将区间端点代入函数求出函数值,进行符号判断即可得出结论,这类问题的难点往往是函数符号的判断,可运用函数的有关性质进行判断,同时也要注意该函数的单调性.变式迁移2 方程x 2-3x +1=0在区间(2,3)内根的个数为( ) A .0 B .1 C .2 D .不确定已知函数零点的特征,求参数范围【例3】 若函数f (x )=ax 2-x -1仅有一个零点,求实数a 的取值范围.变式迁移3 已知在函数f (x )=mx 2-3x +1的图象上其零点至少有一个在原点右侧,求实数m 的范围.1.函数f (x )的零点就是方程f (x )=0的根,但不能将它们完全等同.如函数f (x )=x 2-4x +4只有一个零点,但方程f (x )=0有两个相等实根.2.并不是所有的函数都有零点,即使在区间[a ,b ]上有f (a )·f (b )<0,也只说明函数y =f (x )在(a ,b )上至少有一个零点,但不一定唯一.反之,若f (a )·f (b )>0,也不能说明函数y =f (x )在区间(a ,b )上无零点,如二次函数y =x 2-3x +2在[0,3]上满足f (0)·f (3)>0,但函数f (x )在区间(0,3)上有零点1和2.3.函数的零点是实数而不是坐标轴上的点.课时作业一、选择题1.若函数f (x )唯一的零点在区间(1,3),(1,4),(1,5)内,那么下列说法中错误的是( ) A .函数f (x )在(1,2)或[2,3)内有零点 B .函数f (x )在(3,5)内无零点 C .函数f (x )在(2,5)内有零点D .函数f (x )在(2,4)内不一定有零点2.函数f (x )=log 3x -8+2x 的零点一定位于区间( ) A .(5,6) B .(3,4) C .(2,3) D .(1,2)3.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上零点的个数为( )A.至多有一个B.有一个或两个C.有且仅有一个D.一个也没有4.已知f(x)是定义域为R的奇函数,且在(0,+∞)内的零点有1 003个,则f(x)的零点的个数为()A.1 003 B.1 004 C.2 006 D.2 0075.若函数y=f(x)在区间[0,4]上的图象是连续不断的曲线,且方程f(x)=0在(0,4)内仅有一个实数根,则f(0)·f(4)的值()A.大于0 B.小于0 C.等于0 D.无法判断二、填空题6.二次函数f(x)=ax2+bx+c中,a·c<0,则函数的零点有________个.7.若函数f(x)=ax+b(a≠0)有一个零点是2,那么函数g(x)=bx2-ax的零点是__________.8.方程2ax2-x-1=0在(0,1)内恰有一个实根,则实数a的取值范围是____________.三、解答题9.判断下列函数在给定区间上是否存在零点.(1)f(x)=x2-3x-18,x∈[1,8];(2)f(x)=x3-x-1,x∈[-1,2];(3)f(x)=log2(x+2)-x,x∈[1,3].10.已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点.(1)若函数的两个零点是-1和-3,求k的值;(2)若函数的两个零点是α和β,求α2+β2的取值范围.第三章函数的应用§3.1函数与方程3.1.1方程的根与函数的零点答案自学导引1.零点2.实数根横坐标3.交点零点4.< = 对点讲练【例1】 解 (1)由于f (x )=-x 2-2x +3=-(x +3)(x -1). 所以方程-x 2-2x +3=0的两根是-3,1. 故函数的零点是-3,1. (2)由于f (x )=x 4-1=(x 2+1)(x +1)(x -1),所以方程x 4-1=0的实数根是-1,1, 故函数的零点是-1,1.(3)令f (x )=0,即x 3-4x =0,∴x (x 2-4)=0,即x (x +2)(x -2)=0. 解得:x 1=0,x 2=-2,x 3=2,所以函数f (x )=x 3-4x 有3个零点,分别是-2,0,2. 变式迁移1 解 ∵2,-4是函数f (x )的零点, ∴f (2)=0,f (-4)=0. 即⎩⎪⎨⎪⎧ 2a +b =-4-4a +b =-16,解得⎩⎪⎨⎪⎧a =2b =-8. 【例2】 (1)B (2)1解析 (1)∵f (1)=-2<0, f (2)=ln 2-1<0,∴在(1,2)内f (x )无零点,A 不对;又f (3)=ln 3-23>0,∴f (2)·f (3)<0,∴f (x )在(2,3)内有一个零点.(2)f (x )=ln x -2x在x >0上是增函数,且f (2)·f (3)<0,故f (x )有且只有一个零点.变式迁移2 B [令f (x )=x 2-3x +1,∴其对称轴为x =32,∴f (x )在(2,3)内单调递增,又∵f (2)·f (3)<0, ∴方程在区间(2,3)内仅有一个根.]【例3】 解 ①若a =0,则f (x )=-x -1,为一次函数,易知函数仅有一个零点; ②若a ≠0,则函数f (x )为二次函数,若其只有一个零点,则方程ax 2-x -1=0仅有一个实数根,故判别式Δ=1+4a =0,则a =-14.综上,当a =0或a =-14时,函数仅有一个零点.变式迁移3 解 (1)当m =0时,f (0)=-3x +1,直线与x 轴的交点为⎝⎛⎭⎫13,0,即函数的零点为13,在原点右侧,符合题意.图①(2)当m ≠0时,∵f (0)=1, ∴抛物线过点(0,1).若m <0,f (x )的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.图②若m >0,f (x )的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当9-4m ≥0即可,解得0<m ≤94,综上所述,m 的取值范围为 ⎝⎛⎦⎤-∞,94. 课时作业 1.C2.B [f (3)=log 33-8+2×3=-1<0, f (4)=log 34-8+2×4=log 34>0. 又f (x )在(0,+∞)上为增函数, 所以其零点一定位于区间(3,4).]3.C [若a =0,则f (x )=bx +c 是一次函数, 由f (1)·f (2)<0得零点只有一个;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,如有两个零点,则必有f (1)·f (2)>0,与已知矛盾.故f (x )在(1,2)上有且仅有一个零点.]4.D [因为f (x )是奇函数,则f (0)=0,又在(0,+∞)内的零点有1 003个,所以f (x )在 (-∞,0)内的零点有1 003个.因此f (x )的零点共有1 003+1 003+1=2 007个.] 5.D [考查下列各种图象上面各种函数y =f (x )在(0,4)内仅有一个零点, 但是(1)中,f (0)·f (4)>0, (2)中f (0)·f (4)<0,(3)中f (0)·f (4)=0.] 6.2解析 ∵Δ=b 2-4ac >0,∴方程ax 2+bx +c =0有两个不等实根,即函数f (x )有2个零点.7.0,-12解析 由2a +b =0,得b =-2a ,g (x )=bx 2-ax =-2ax 2-ax ,令g (x )=0,得x =0或x =-12,∴g (x )=bx 2-ax 的零点为0,-12.8.(1,+∞)解析 令f (x )=2ax 2-x -1,a =0时不符合题意;a ≠0且Δ=0时,解得a =-18,此时方程为-14x 2-x -1=0,也不合题意;只能f (0)·f (1)<0,解得a >1.9.解 (1)方法一 ∵f (1)=-20<0,f (8)=22>0, ∴f (1)·f (8)<0.故f (x )=x 2-3x -18在[1,8]上存在零点.方法二 令x 2-3x -18=0,解得x =-3或x =6, ∴函数f (x )=x 2-3x -18在[1,8]上存在零点. (2)∵f (-1)=-1<0,f (2)=5>0, ∴f (-1)·f (2)<0.故f (x )=x 3-x -1在[-1,2]上存在零点. (3)∵f (1)=log 2(1+2)-1>log 22-1=0, f (3)=log 2(3+2)-3<log 28-3=0, ∴f (1)·f (3)<0.故f (x )=log 2(x +2)-x 在[1,3]上存在零点.10.解 (1)∵-1和-3是函数f (x )的两个零点,∴-1和-3是方程x 2-(k -2)x +k 2+3k +5=0的两个实数根. 则⎩⎪⎨⎪⎧-1-3=k -2,-1×(-3)=k 2+3k +5, 解得k =-2.(2)若函数的两个零点为α和β,则α和β是方程x 2-(k -2)x +k 2+3k +5=0的两根,∴⎩⎪⎨⎪⎧α+β=k -2,αβ=k 2+3k +5,Δ=(k -2)2-4×(k 2+3k +5)≥0.则⎩⎪⎨⎪⎧α2+β2=(α+β)2-2αβ=-k 2-10k -6,-4≤k ≤-43, ∴α2+β2在区间⎣⎡⎦⎤-4,-43上的最大值是18,最小值是509, 即α2+β2的取值范围为⎣⎡⎦⎤509,18.。
=则函数+x-4的零点,即函数的交点的横坐标,如图所示,函数y=--4的零点有2∵x =6∈[1,8],x =-3∉[1,8],∴f (x )=x 2-3x -18在区间[1,8]上存在零点. 【答案】 存在7. 已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________.【解析】 由题意f (1)·f (0)<0.∴a (2+a )<0.∴-2<a <0.【答案】 (-2,0)8.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________.【解析】 令f (x )=ln x +x -4,且f (x )在(0,+∞)上递增, 因为f (2)=ln 2+2-4<0,f (3)=ln 3-1>0.所以f (x )在(2,3)内有解,所以k =2. 【答案】 2三、解答题(每小题10分,共20分)9.已知函数f (x )=x 2+3(m +1)x +n 的零点是1和2,求函数y =log n (mx +1)的零点.【解析】 由题可知,f (x )=x 2+3(m +1)x +n 的两个零点为1和2.则1和2是方程x 2+3(m +1)x +n =0的两根.可得⎩⎨⎧1+2=-3(m +1),1×2=n ,解得⎩⎨⎧m =-2,n =2.所以函数y =log n (mx +1)的解析式为 y =log 2(-2x +1),要求其零点,令 log 2(-2x +1)=0,解得x =0.所以函数y =log 2(-2x +1)的零点为0.10.已知函数f (x )=2x -x 2,问方程f (x )=0在区间[-1,0]内是否有解,为什么?.有两个不相等的实根,则函数象有两个不同的交点,由图可知,1<k<1.的图象如图所示.当要使方程f(x)=b有三个不同的根,则。
方程的根与函数的零点教学目标:知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法零点存在性的判定.情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点零点的概念及存在性的判定.难点零点的确定.教学程序与环节设计:结合二次函数引入课题.研究二次函数在零点、零点之内及零点外的函数值符号,并尝试进行系统的总结.教学过程与操作设计:环节教学内容设置师生双边互动创设情境先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:○1方程0322=--xx与函数322--=xxy○2方程0122=+-xx与函数122+-=xxy○3方程0322=+-xx与函数322+-=xxy师:引导学生解方程,画函数图象,分析方程的根与图象和x轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?零点存在性的探索:(Ⅰ)观察二次函数32)(2--=xxxf的图象:○1在区间]1,2[-上有零点______;=-)2(f_______,=)1(f_______,)2(-f·)1(f_____0(<或>).○2在区间]4,2[上有零点______;)2(f·)4(f____0(<或>).(Ⅱ)观察下面函数)(xfy=的图象○1在区间],[ba上______(有/无)零点;)(af·)(bf_____0(<或>).○2在区间],[cb上______(有/无)零点;)(bf·)(cf_____0(<或>).○3在区间],[dc上______(有/无)零点;)(cf·)(df_____0(<或>).生:分析函数,按提示探索,完成解答,并认真思考.师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.。
f ⎝ ⎛⎭
⎪⎫12=π2+log 212>0, 所以f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,故函数f (x )=πx +log 2x 的零点所在区间为⎣⎢⎡⎦
⎥⎤14,12. 【答案】 A
4.设函数f (x )=⎝ ⎛⎭
⎪⎫13x 与g (x )=3-x 的图象的交点为(x 0,y 0),则x 0所在的区间为( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,4)
【解析】 令h (x )=⎝ ⎛⎭
⎪⎫13x -(3-x ),则f (0)=-2,f (1)=-53,f (2)=-89,f (3)=127.故h (x )的零点在(2,3)内,因此两函数图象交点在(2,3)内.选C.
【答案】 C
5.已知函数f (x )=
则函数y =f (x )+x -4的零点个数为( )
A .1
B .2
C .3
D .4
【解析】 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标,如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.
【答案】 B
二、填空题(每小题5分,共15分)
6.函数f (x )=x 2-3x -18在区间[1,8] 上________(填“存在”或“不存在”)零点.
【解析】 法一:∵f (1)=12-3×1-18=-20<0,
f (8)=82-3×8-18=22>0,∴f (1)·f (8)<0,
又 f (x )=x 2-3x -18在区间[1,8]上的图象是连续的,
故f (x )=x 2-3x -18在区间[1,8]上存在零点.
法二:令f (x )=0,得x 2-3x -18=0,
∴(x -6)(x +3)=0.
有两个不相等的实根,则函数
的图象如图所示.当x>m
有三个不同的根,则。