2019数学九年级上册24.4.1 弧长和扇形面积
- 格式:doc
- 大小:327.88 KB
- 文档页数:2
24.4《弧长和扇形面积》(第1课时)教案学习目标:【知识与技能】1、理解并掌握弧长及扇形面积的计算公式2、会利用弧长、扇形面积计算公式计算简单组合图形的周长【过程与方法】1、认识扇形,会计算弧长和扇形的面积2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知识的能力【情感、态度与价值观】1、通过对弧长及扇形的面积公式的推导,理解整体和局部2、通过图形的转化,体会转化在数学解题中的妙用【重点】弧长和扇形面积公式,准确计算弧长和扇形的面积【难点】运用弧长和扇形的面积公式计算比较复杂图形的面积学习过程:一、自主学习(一)复习巩固1、小学里学习过圆周长的计算公式、圆面积计算公式,那公式分别是什么?2、我们知道,弧长是它所对应的圆周长的一部分,扇形面积是它所对应的圆面积的一部分,那么弧长、扇形面积应怎样计算呢?(二)自主探究1、如图,某传送带的一个转动轮的半径为10cm1)转动轮转一周,传送带上的物品A被传送多少厘米?2)转动轮转1°,传送带上的物品A被传送多少厘米?3)转动轮转n°,传送带上的物品A被传送多少厘米?OB O B A ABO A B O A B O2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即AB 的长(结果精确到0.1mm).3、上面求的是110°的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢?请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。
因此弧长的计算公式为l =__________________________4、如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为1︒的扇形面积是面积的几分之几?进而求出圆心角n 的扇形面积 如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形的面积为S = ___ .因此扇形面积的计算公式:S=————————或S=——————————(三)、归纳总结: 1、 叫扇形2、弧长的计算公式是 扇形面积的计算公式是 (四)自我尝试:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
人教版数学九年级上册24.4《弧长和扇形的面积》说课稿1一. 教材分析人教版数学九年级上册第24.4节《弧长和扇形的面积》是本册教材中的重要内容,它是在学生已经掌握了圆的性质、圆的周长和面积的基础上进行授课的。
本节课主要介绍了弧长的计算方法和扇形的面积计算方法,旨在让学生理解和掌握弧长和扇形面积的计算公式,并能够运用这些知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质、周长和面积的概念已经有了初步的了解。
但是,对于弧长和扇形面积的计算方法,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握这些概念和方法。
三. 说教学目标1.知识与技能目标:让学生理解和掌握弧长和扇形的面积的计算方法,能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索弧长和扇形面积的计算方法,培养他们的观察能力和思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们的自主学习能力和团队合作精神。
四. 说教学重难点1.教学重点:弧长和扇形面积的计算方法。
2.教学难点:弧长和扇形面积计算公式的推导过程。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、案例教学法和小组合作法等教学方法,结合多媒体课件和黑板等教学手段,引导学生主动参与课堂,提高他们的学习兴趣和积极性。
六. 说教学过程1.导入新课:通过一个实际问题,引出弧长和扇形面积的概念,激发学生的学习兴趣。
2.自主探究:让学生通过观察、分析、归纳等方法,自主探索弧长和扇形面积的计算方法。
3.讲解与演示:讲解弧长和扇形面积的计算公式,并通过多媒体课件和黑板进行演示。
4.练习与巩固:让学生通过课堂练习和小组讨论,巩固所学知识。
5.拓展与应用:引导学生运用弧长和扇形面积的知识解决实际问题。
6.课堂小结:总结本节课的主要内容和知识点。
七. 说板书设计板书设计如下:1.弧长的计算方法–弧长 = 半径 × 弧度2.扇形面积的计算方法–扇形面积 = 1/2 × 弧长 × 半径八. 说教学评价教学评价将从学生的知识掌握、能力培养和情感态度三个方面进行。
活动1创设情境这是章前图中的车轮的一部分,如果一只蚂蚁从点O出发,爬到A处,再沿弧AB 爬到B处,最后回到点O处,若车轮半径OA长60 cm,∠AOB=108°,你能算出蚂蚁所走的路程吗?这就涉及到计算弧长的问题,也是本节课要研究的第一问题.活动2探究新知思考:1.弧是圆的一部分,想一想,如何计算圆周长?2.圆周长可以看作多少度的圆心角所对的弧长?3.1°的圆心角所对的弧长是多少?2°的圆心角所对的弧长是多少?3°的圆心角所对的弧长是多少?n°的圆心角所对的弧长又是多少呢?4.推导出弧长公式l=nπR180,强调n表示1°的圆心角的倍数,n不带单位,180也如此.5.对于公式l=nπR180,当R一定时,你能从函数的角度来理解弧长l和圆心角n的关系吗?活动3达标检测11.学生运用公式计算活动1中的问题.2.解决教材第111页的例1.3.完成教材第113页的练习第1,2题.4.在半径为12的⊙O中,60°圆心角所对的弧长是( )A.6πB.4πC.2πD.π答案:4.B活动4自主探究1.观察问题1中蚂蚁所围成的图形是什么?请学生独立阅读教材第112页第1自然段.2.我们知道弧是圆的一部分,所以我们把弧长的问题转化为圆周长的问题来解决.那么扇形呢?你能类比弧长的推导方式求出扇形的面积公式吗?3.比较弧长公式和扇形面积公式,请推导出扇形面积和对应弧长的关系.活动5反馈新知1.已知扇形的半径为3 cm,面积为3πcm2,则扇形的圆心角是________°,扇形的弧长是________cm.(结果保留π)(答案:120,2π)2.师生共同完成教材第112页例2.3.完成教材第113页练习第3题.4.如图,已知扇形的圆心角是直角,半径是2,则图中阴影部分的面积是________.(结果不计算近似值)(答案:π-2)5.方法小结:问题1:求一个图形的面积,而这个图形是未知图形时,我们应该把未知图形化为什么图形呢?问题2:通过以前的学习,我们又是通过什么方式把未知图形化为已知图形的呢?活动6达标检测21.120°的圆心角所对的弧长是12πcm,则此弧所在的圆的半径是________.2.如图,在4×4的方格中(共有16个方格),每个小方格都是边长为1的正方形.O,A,B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)3.如图,矩形ABCD中,AB=1,AD=2,以AD的长为半径的⊙A交BC边于点E,则图中阴影部分的面积为________.答案:1.18 cm;2.2π;3.2-12-14π.活动7课堂小结与作业布置课堂小结1.弧长公式是什么?扇形的面积公式呢?是怎样推导出来的?如何理解这两个公式?这两个公式有什么作用?这两个公式有什么联系?2.在解决部分与整体关系的问题时,我们应学会用什么方法去解决?3.解决不规则图形的面积问题时,我们应用什么数学思想去添加辅助线?作业布置教材第115页习题24.4第1题的(1),(2)题,第2~8题.。
第二十四章弧长和扇形面积知识点1:弧长公式, n°的圆心角所对的弧长l=.半径为R的圆中重点提示: (1)关于弧长公式重点是要理解1°的圆心角所对的弧长是圆周长的,即,亦即;(2)弧长公式所波及的三个量 : 弧长、圆心角的度数、弧所在圆的半径 , 知道其中的任何两个量就能够求出第三个量 .知识点 2:扇形面积公式扇形的定义 : 由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.扇形面积公式: 半径为R, 圆心角为n°的扇形面积S 扇形=( 若已知或已求出了扇形对应的弧长l,则扇形面积公式也能够写成S 扇形 = lR).重点提示 : (1)关于扇形面积公式重点是要理解1°的扇形面积是圆面积的, 即;(2)扇形面积公式所波及的三个量 : 扇形面积、扇形半径、圆心角的度数 , 知道其中的任何两个量就能够求出第三个量 ;(3)关于扇形面积公式 S扇形 = lR, 可依照题目条件灵便选择使用 , 它与三角形面积公式S= ah 有点近似, 用类比的方法记忆会更好;(4) 注意扇形面积的两个公式之间的联系:S 扇形 == ·· R= lR,不论利用哪个公式计算扇形面积,R 都必定已知 .知识点 3:弓形的认识弦和弦所对的弧所围成的图形叫做弓形 , 利用扇形面积和三角形面积可求出弓形的面积 . 弓形有以下三种情况 :(1) 当弓形的弧小于半圆时, 弓形的面积等于扇形面积与三角形面积的差, 即 S 弓形 =S 扇形 -S △OAB;(2)当弓形的弧大于半圆时, 弓形的面积等于扇形面积与三角形面积的和, 即 S 弓形=S 扇形 +S△OAB;(3)当弓形的弧是半圆时, 弓形的面积是圆面积的一半, 即 S 弓形 =也就是说 : 要计算弓形的面积, 第一要察看它的弧属于半圆、劣弧仍是优弧S 圆 ., 只有对它分析正确才能保证计算结果的正确阴影部分经常是基本图形的组合问题的重点.., 解题时要认真分析图形, 找出组合方式, 这是解决这类考点1:弧长公式的运用【例1】挂钟分针的长为250px, 经过45 分钟 , 它的针尖转过的弧长是().A.cmB. 15π cmC.cmD. 75π cm答案:B.点拨 : 此题已知弧所在圆的半径为250px, 又知分针45 分钟转过270° , 所以针尖转过的弧长是l==15π(cm).考点 2:圆中图形面积的计算【例 2】如图 , 圆心角都是90°的扇形 OAB与扇形 OCD叠放在一同 , 连结 AC、BD.(1)求证 :AC=BD;(2)若图中阴影部分的面积是π cm2,OA=50px, 求 OC的长 .解 : (1) 因为∠ AOB=∠ COD=90°, 所以∠ AOC+∠ AOD=∠ BOD+∠AOD所以∠ AOC=∠ BOD.又因为 AO=BO,CO=DO,所以△ AOC≌△ BOD,所以 AC=BD.(2) 依照题意得S 阴影=-=,即π =.解得 OC=1(cm).点拨 : 由△ AOC ≌△ BOD可知图中阴影部分面积是扇环形面积, 即π =,解得 OC=1.考点 3:弧长公式和扇形面积在本质生活中的应用【例 3】在物理课上李娜同学用一个滑轮起重装置以以下图: 滑轮的半径是250px,当她将一重物向上提升375px 时, 滑轮的半径 OA绕轴心 O按逆时针方向旋转的角度是( 假定绳子与滑轮之间没有滑动, π取 3.14, 结果精准到1° ).答案 : 86°.点拨 : 在绳子与滑轮之间没有滑动前提的下轮子是带动着绳子在转动, 当轮子的点A 转到点A1地址时 , 绳子上的某一点也就从点A被带到点A1, 绳子被带动上升375px,也就是长度为375px, 所以此题所察看的数学知识可以等价“圆中的计算问题”: 已知,如图☉O的半径为250px,长为375px.求∠ A1OA的度数. 设OA绕圆心O按逆时针方向旋转n° ,则15=, 解得n≈ 86.。
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时,主要介绍了弧长和扇形面积的计算方法。
这部分内容是圆的知识的重要组成部分,也是中考的热点。
通过本节课的学习,让学生掌握弧长和扇形面积的计算公式,理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。
二. 学情分析九年级的学生已经学习了平面几何、代数等基础知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于弧长和扇形面积的计算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解概念,掌握计算方法。
三. 说教学目标1.知识与技能目标:让学生掌握弧长和扇形面积的计算公式,能够正确计算弧长和扇形面积。
2.过程与方法目标:通过观察、实验、推理等方法,让学生理解弧长和扇形面积的概念,培养学生的空间想象能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够主动探索数学问题。
四. 说教学重难点1.教学重点:弧长和扇形面积的计算公式。
2.教学难点:理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的创新能力。
2.教学手段:利用多媒体课件、实物模型等,帮助学生直观地理解弧长和扇形面积的概念,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示生活中的实例,引发学生对弧长和扇形面积的思考,激发学生的学习兴趣。
2.新课导入:介绍弧长和扇形面积的概念,引导学生理解弧长和扇形面积的计算公式。
3.实例讲解:通过具体的例子,讲解弧长和扇形面积的计算方法,让学生加深理解。
4.练习巩固:设计相关的练习题,让学生运用所学的知识进行计算,巩固学习成果。
5.拓展提高:引导学生思考实际问题,运用弧长和扇形面积的知识解决问题,提高学生的应用能力。