2008年全国初中数学竞赛(浙江赛区)_4
- 格式:doc
- 大小:158.50 KB
- 文档页数:3
2008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) )(A 5. )(B 7. )(C 9. )(D 11.【答】B .解 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以,a b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B . 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为 ( ) )(A 185. )(B 4. )(C 215. )(D 245. 【答】D . 解 因为AD ,BE ,CF 为三角形ABC 的三条高,易知,,,B C E F 四点共圆,于是△AEF ∽△ABC ,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt △ABE 中,424sin 655BE AB BAC =∠=⨯=. 故选D . 3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( ))(A 15. )(B 310. )(C 25. )(D 12. 【答】C . 解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个. 所以所组成的数是3的倍数的概率是82205=. 故选C .4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分别是这两个角的外角平分线,且点,M N 分别在直线AC 和直线AB 上,则 ( ))(A BM CN >. )(B BM CN =.)(C BM CN <. )(D BM 和CN 的大小关系不确定.【答】B .解 ∵12ABC ∠=︒,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=︒-︒=︒. 又180********BCM ACB ∠=︒-∠=︒-︒=︒,∴180844848BMC ∠=︒-︒-︒=︒,∴BM BC =. 又11(180)(180132)2422ACN ACB ∠=︒-∠=︒-︒=︒, ∴18018012()BNC ABC BCN ACB ACN ∠=︒-∠-∠=︒-︒-∠+∠168(13224)=︒-︒+︒12ABC =︒=∠,∴CN CB =. 因此,BM BC CN ==.故选B .5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( ))(A 39()8. )(B 49()8. )(C 59()8. )(D 98. 【答】 B .解 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为98(110%)(120%)()()1010k n k k n k a a --⋅-⋅-=⋅⋅,其中k 为自然数,且0k n ≤≤. 要使r 的值最小,五种商品的价格应该分别为:98()()1010i n i a -⋅⋅,1198()()1010i n i a +--⋅⋅, 2298()()1010i n i a +--⋅⋅,3398()()1010i n i a +--⋅⋅,4498()()1010i n i a +--⋅⋅,其中i 为不超过n 的自然数. 所以r 的最小值为44498()()91010()988()()1010i n i i n ia a +---⋅⋅=⋅⋅. 故选B . 6. 已知实数,x y满足(2008x y =,则223233x y x y -+-2007-的值为 ( ))(A 2008-. )(B 2008. )(C 1-. )(D 1.【答】D .解 ∵(2008x y =,∴x y -==y x -==由以上两式可得x y =. 所以2(2008x =,解得22008x =,所以22222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设12a -=,则5432322a a a a a a a+---+=-2-.解 ∵221a a ===-,∴21a a +=, ∴543232323222()2()2a a a a a a a a a a a a a a a a+---++--++=-⋅- 33332221211(1)(11)2(1)1a a a a a a a a a a a--+--===-=-++=-+=-⋅----.2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且AM =135MAN ∠=︒,则四边形AMCN 的面积为52解 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB ==,2MO ===, ∴MB MO OB =-=又135ABM NDA ∠=∠=︒, 13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=︒-︒-∠45=︒-MAB AMB ∠=∠,所以△ADN ∽△MBA ,故AD DNMB BA =,从而12AD DN BA MB =⋅==. 根据对称性可知,四边形AMCN 的面积115222222MAN S S MN AO ==⨯⨯⨯=⨯⨯=△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q +=12解 根据题意,,m n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =. ∵1m n +≤,∴1m n m n +≤+≤,1m n m n -≤+≤. ∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m n b +≤=≤. 22244()()()11b mn m n m n m n ==+--≥+-≥-,故14b ≥-,等号当且仅当12m n =-=时取得; 22244()()1()1b mn m n m n m n ==+--≤--≤,故14b ≤,等号当且仅当12m n ==时取得. 所以14p =,14q =-,于是12p q +=. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 1 .解 21到23,结果都只各占1个数位,共占133⨯=个数位; 24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分) 已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式 (1)(1)()0a x x ax bx b x bx ------≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 整理不等式(1)并将221a b +=代入,得 2(1)(21)0a b x a x a ++-++≥ (2)在不等式(2)中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以224a -=或224a +=. 又因为0a ≥,所以a =a =, 于是方程组(3)的解为4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,44a b ⎧=⎪⎪⎨⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为a b ==a b ==二.(本题满分25分) 如图,圆O 与圆D 相交于,A B 两点,BC为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解 (1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=︒-∠=︒-∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aS l y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC=,即2r a l y =,故2al r y =.所以22223222()4422a l a aS S a S r y y y y ==⋅=⋅≥,即2r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r 三.(本题满分25分)设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ (1)求a ,b 的值.解 (1)式即2634511()509509a b a b ++=,设634511,509509a b a b m n ++==,则 509650943511m a n a b --== (2) 故351160n m a -+=,又2n m =,所以2351160m m a -+= (3)由(1)式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程(3)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去. 综合可知251a =.此时方程(3)的解为3m =或5023m =(舍去). 把251a =,3m =代入(2)式,得5093625173b ⨯-⨯==. 第二试 (B )一.(本题满分20分)已知221a b +=,对于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式 220ay xy bx -+≥ (1)恒成立.当乘积ab 取最小值时,求,a b 的值.解 由1,0x y xy +=≥可知01,01x y ≤≤≤≤.在(1)式中,令0,1x y ==,得0a ≥;令1,0x y ==,得0b ≥.将1y x =-代入(1)式,得22(1)(1)0a x x x bx ---+≥,即2(1)(21)0a b x a x a ++-++≥ (2)易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ (3) 消去b ,得42161610a a -+=,所以2a =2a =0a ≥,所以a =或4a =. 于是方程组(3)的解为,4a b ⎧=⎪⎪⎨⎪=⎪⎩或4a b ⎧=⎪⎪⎨⎪=⎪⎩所以满足条件的,a b 的值有两组,分别为44a b ==44a b == 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩ (1)(2) 求()a b c +的值.解 (1)式即266341022511()509509a b c a b c +-+-=, 设66341022511,509509a b c a b c m n +-+-==,则 5096509423511m a n a b c ---== (3) 故351160n m a -+=,又2n m =,所以 2351160m m a -+= (4)由(1)式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程(4)有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解.④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解. ⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程(4)的解为3m =或5023m =(舍去). 把251a =,3m =代入(3)式,得50936251273b c ⨯-⨯-==,即27c b =-. 代入(2)式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
2008年全国初中数学竞赛浙江初赛试卷作者:来源:《数学金刊·初中版》2008年第06期一、选择题(每小题6分,共30分)1.已知x+y=x-1+y-1≠0,则xy的值为()A. -1B. 0C. 1D. 22.甲、乙、丙、丁四位同学参加校田径运动会4×100 m接力跑比赛,如果任意安排四位同学的跑步顺序,那么恰好由甲将接力棒交给乙的概率是()A. B. C. D.3.如图1,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A. k1+k2B. k1-k2C. k1·k2D.4.在平面直角坐标系中,如果横坐标与纵坐标都是整数的点称为整点,将二次函数y=-x2+6x-的图象与x轴所围成的封闭图形染成红色,则在此红色区域内部及其边界上的整点的个数是()A. 5B. 6C. 7D. 85.如图2,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A. 3B. 4C. 4D. 2二、填空题(每小题6分,共24分)6.△ABC中,∠A和∠B均为锐角,AC=6,BC=3,且sinA=,则cosB的值为_________.7.如图3,四边形ABCD中,∠A=∠BCD=90°,BC=CD,E是AD延长线上一点,若DE=AB=3 cm,CE=4 cm,则AD的长是_________.8. 已知△ABC为钝角三角形,其最大边AC上有一点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三角形与原三角形相似,这样的直线l可作的条数是_________.9.如图4,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4 cm,BC=6 cm,AE=CG=3 cm,BF=DH=4 cm,四边形AEPH的面积为5 cm2,则四边形PFCG的面积为_________cm2.三、解答题(本题3小题,共46分)10.(15分)小王、小李两同学玩“石头、剪刀、布”的划拳游戏.游戏规则为:胜一次得3分,平一次得1分,负一次得0分,一共进行7次游戏,游戏结束时,得分高者为胜.(1)若游戏结束后,小王得分为10分,则小王7次游戏比赛的结果是几胜几平几负?(2)若小王前3次游戏比赛的结果是一胜一平一负,则他在后面4次比赛中,要取得怎样的比赛结果,才能保证胜小李?11.(15分)在直角坐标系xOy中,一次函数y=kx+b+2(k≠0)的图象与x轴、y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.12.(16分)如图5,AB,AC,AD是圆中的三条弦,点E在AD上,且AB=AC=AE.请你说明以下各式成立的理由:(1)∠CAD=2∠DBE;(2)AD2-AB2=BD·DC.参考答案见P60。
丽水市教育局教研室文件
丽教研数字[2008] 73 号
关于公布2008年全国初中数学竞赛(丽水赛区)
获奖名单的通知
各县(市、区)教育局教研室:
2008年全国初中数学竞赛(丽水赛区)的初赛、复赛工作,在各地的大力支持下,已圆满结束。
丽水赛区全市共有324名参赛学生分获一、二、三等奖,其中一等奖47名,二等奖116名,三等奖161名。
对获一等奖学生的指导教师颁布优秀指导教师奖,评出2008年全国初中数学竞赛(丽水赛区)优胜团体5名,现予公布。
附件:1、2008年全国初中数学竞赛(丽水赛区)获奖名单
2、2008年全国初中数学竞赛(丽水赛区)优胜团体奖
二00八年五月十二日
主题词:初中数学竞赛获奖通知
校对:田用杰共印30份
附件1:2008年全国初中数学竞赛(丽水赛区)获奖名单
一等奖(47名)
二等奖(116名)
三等奖(161名)
附件2:
2008年全国初中数学竞赛(丽水赛区)优胜团体名单
市直丽水市实验学校
龙泉市龙泉市育才学校
松阳县松阳县凌霄外国语学校
遂昌县遂昌二中
缙云县缙云县实验中学。
12008年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1.设213a a +=,213b b +=,且a b ≠,则代数式2211a b+的值为 ( ) A .5 B .7 C .9 D .11.【答案】B【解析】 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,所以a ,b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 故选B 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,若6AB =,5BC =,3EF =,则线段BE 的长为( )EFDCBA2A .185B .4C .215D .245【答案】D【解析】 因为AD ,BE ,CF 为三角形ABC 的三条高,易知B ,C ,E ,F 四点共圆,于是AEF ABC △∽△,故35AF EF AC BC ==,即3cos 5BAC ∠=,所以4sin 5BAC ∠=. 在Rt ABE △中,424sin 655BE AB BAC =∠=⨯=.故选D3.从分别写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率是 ( )A .15B .310C .25D .12. 【答案】C【解析】 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个.所以所组成的数是3的倍数的概率是82205=.故选C 4.在ABC △中,12ABC ∠=o ,132ACB ∠=o ,BM 和CN 分别是这两个角的外角平分线,且点M ,N 分别在直线AC 和直线AB 上,则 ( )3A .BM CN >B .BM CN =C .BM CN <D .BM 和CN 的大小关系不确定【答案】B【解析】 ∵12ABC ∠=o ,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=-=o o o.又180********BCM ACB ∠=-∠=-=o o o o ,∴180844848BMC ∠=--=o o o o ,∴BM BC =.又11(180)(180132)2422ACN ACB ∠=-∠=-=o o o o,∴18018012()BNC ABC BCN ACB ACN ∠=-∠-∠=--∠+∠o o o 168(13224)=-+o o o12ABC ==∠o ,∴CN CB =. 因此,BM BC CN ==.故选B5.现有价格相同的5种不同商品,从今天开始每天分别降价10%或20%,若干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,则r 的最小值为 ( )A .398T ⎛⎫ ⎪⎝⎭.B .498⎛⎫ ⎪⎝⎭.C .598⎛⎫⎪⎝⎭. D .98.【答案】B.【解析】 容易知道,4天之后就可以出现5种商品的价格互不相同的情况.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定可以表示为4()()98110%120%1010kn kkn ka a --⎛⎫⎛⎫⋅-⋅-=⋅⋅ ⎪⎪⎝⎭⎝⎭,其中k 为自然数,且0k n ≤≤.要使r 的值最小,五种商品的价格应该分别为:981010in ia -⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,1188(1010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,22991010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭,33981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,44981010i n i a +--⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,其中i 为不超过n 的自然数.所以r 的最小值为44498910108981010i n i i n ia a +---⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭= ⎪⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭.故选B . 6.已知实数x ,y 满足(22200820082008x x y y --=,则223233x y x y -+-2007-的值为( )A .2008-B .2008C .1-D .1.【答案】D .【解析】 ∵(22200820082008x x y y --=,∴222200820082008x x y y y y -=---222200820082008y y x x x x -=---由以上两式可得x y =.所以(2220082008x x -=,解得22008x =,所以522222323320073233200720071x y x y x x x x x -+--=-+--=-=.故选D .二、填空题(本题满分28分,每小题7分)1.设51a -,则5432322a a a a a a a +---+=- . 【答案】 2-【解析】 ∵2251351a a --==-⎝⎭,∴21a a +=, ∴()()32325432322222a a a a a a a a a a a a a a a a+--+++---+=-⋅- ()()333322212111(11)211a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,M ,N 为BD 所在直线上的两点,且5AM 135MAN ∠=o ,则四边形AMCN 的面积为 .【答案】 52【解析】 设正方形ABCD 的中心为O ,连AO ,则AO BD ⊥,2AO OB = ()222223252MO AM AO ⎛⎫-- ⎪ ⎪⎝⎭O MND CBA6∴2MB MO OB =-又135ABM NDA ∠=∠=o ,13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=--∠o o 45MAB AMB =-∠=∠o ,所以ADN MBA △∽△,故AD DN MB BA =,从而212AD DN BA MB =⋅=. 根据对称性可知,四边形AMCN 的面积1122522222222MAN S S MN AO ==⨯⨯⨯=⨯⨯+=⎝△. 3.已知二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分别为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分别为p ,q ,则p q += .【答案】 12【解析】 根据题意,m ,n 是一元二次方程20x ax b ++=的两根,所以m n a +=-,mn b =.∵1m n +≤,∴1m n m n ++≤≤,1m n m n -+≤≤.∵方程20x ax b ++=的判别式240a b ∆=-≥,∴22()1444a m nb +=≤≤. 22244()()()11b mn m n m n m n ==+--+--≥≥,故14b -≥,等号当且仅当12m n =-=时取得;22244()()1()1b mn m n m n m n ==+----≤≤,故14b ≤,等号当且仅当12m n ==时取得.7所以14p =,14q =-,于是12p q +=.4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2008个位置的数字是 .【答案】 1【解析】 21到23,结果都只各占1个数位,共占133⨯=个数位;24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;此时还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.所以,排在第2008个位置的数字恰好应该是2411的个位数字,即为1.第二试 (A )一.(本题满分20分)8已知221a b +=,对于满足条件01x ≤≤的一切实数x ,不等式(1)(1)()0a x x ax bx b x bx ------≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 整理不等式①并将221a b +=代入,得2(1)(21)0a b x a x a ++-++≥ ②在不等式②中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥.由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=. 又因为0a ≥,所以62a -或62a +,9于是方程组③的解为6262a b ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以ab 的最小值为14,此时,a b 的值有两组,分别为 62a -,62b +和62a +=,62b -=.二.(本题满分25分)如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.⑴ 证明:点O 在圆D 的圆周上.⑵ 设△ABC 的面积为S ,求圆D 的的半径r 的最小值.【解析】 ⑴ 连OA ,OB ,OC ,AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为OD AB ⊥,DB BC ⊥,所以9090DOB OBA OBC DBO ∠=-∠=-∠=∠o o ,所以DB DO =,因此点O 在圆D 的圆周上.⑵ 设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知CE OABD10BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以BDO ABC △∽△,所以BD BOAB AC=,即2r a l y =,故2al r y =.所以322222224422a l a aS S a S r y y y y ⎛⎫==⋅=⋅ ⎪⎝⎭≥,即2S r 其中等号当a y =时成立,这时AC是圆O 的直径.所以圆D 的的半径r 2S三.(本题满分25分)设a 为质数,b 为正整数,且()()2925094511a b a b +=+①求a ,b 的值.【解析】 ①式即2634511509509a b a b++⎛⎫= ⎪⎝⎭,设63509a b m +=,4511509a b n +=,则 509650943511m a n ab --== ②故351160n m a -+=,又2n m =,所以2351160m m a -+=③由①式可知,2(2)a b +能被509整除,而509是质数,于是2a b +能被509整除,故m 为整数,即关于m 的一元二次方程③有整数根,所以它的判别式251172a ∆=-为完全平方数.11不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =.此时方程③的解为3m =或5023m =(舍去). 把251a =,3m =代入②式,得5093625173b ⨯-⨯==.第二试 (B )12一.(本题满分20分)已知221a b +=,对于满足条件1x y +=,0xy ≥的一切实数对()x y ,,不等式220ay xy bx -+≥ ①恒成立.当乘积ab 取最小值时,求a ,b 的值.【解析】 由1x y +=,0xy ≥可知01x ≤≤,01y ≤≤.在①式中,令0x =,1y =,得0a ≥;令1x =,0y =,得0b ≥.将1y x =-代入①式,得22(1)(1)0a x x x bx ---+≥,即()()21210a b x a x a ++-++≥ ②易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式②对于满足条件01x ≤≤的一切实数x 恒成立,所以它的判别式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥由方程组221,14a b ab ⎧+=⎪⎨=⎪⎩ ③ 消去b ,得42161610a a -+=,所以223a -或223a +=,13又因为0a ≥,所以62a -或62a +. 于是方程组③的解为6262ab ⎧-=⎪⎪⎨+⎪=⎪⎩或6262a b ⎧+⎪⎪⎨-⎪=⎪⎩所以满足条件的a ,b 的值有两组,分别为62a -=,62b +和62a +,62b -= 二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设a 为质数,b ,c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩①②14求()a b c +的值.【解析】 ①式即266341022511509509a b c a b c+-+-⎛⎫=⎪⎝⎭, 设663509a b c m +-=,41022511509a b cn +-=,则5096509423511m a n ab c ---== ③ 故351160n m a -+=,又2n m =,所以2351160m m a -+= ④由①式可知,2(22)a b c +-能被509整除,而509是质数,于是22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程④有整数根,所以它的判别式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=(t 为自然数),则2272511(511)(511)a t t t =-=+-.由于511t +和511t -的奇偶性相同,且511511t +≥,所以只可能有以下几种情况:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.15⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =. ⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,此时方程④的解为3m =或5023m =(舍去). 把251a =,3m =代入③式,得50936251273b c ⨯-⨯-==,即27c b =-.代入②式得(27)2b b --=,所以5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
中国教育学会中学数学教学专业委员会“《数学周报》杯”2008年全国初中数学竞赛试题参考答案答题时注意:1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是准确的. 请将准确选项的代号填入题后的括号里. 不填、多填或错填都得0分)1.已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为( ).(A )7 (B ) (C ) (D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得21x ==, 2y ==, 所以444y x +=22233y x ++- 2226y x=-+=7. 另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是( ).(A )512 (B )49 (C )1736(D )12(第3题)E【答】(C )解:基本事件总数有6×6=36,即能够得到36个二次函数. 由题意知∆=24m n ->0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P =. 3.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点能够确定的不同直线最少有( ).(A )6条 (B ) 8条 (C )10条 (D )12条【答】(B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线能够确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点能够确定的直线很多于8条.当这6个点如图所示放置时,恰好能够确定8条直线. 所以,满足条件的6个点能够确定的直线最少有8条.4.已知AB 是半径为1的圆O 的一条弦,且1AB a =<.以AB 为一边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的一点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为( ).(A )2 (B )1 (C )2(D )a 【答】(B )解:如图,连接OE ,OA ,OB . 设D α∠=,则 120ECA EAC α∠=︒-=∠.又因为()1160180222ABO ABD α∠=∠=︒+︒-120α=︒-,所以ACE △≌ABO △,于是1AE OA ==. 另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 作⊙B ,因为AB =BC =BD ,则点A ,C ,D 都在⊙B 上,由11603022F EDA CBA ∠=∠=∠=⨯︒=︒所以2301AE EF sim F sim =⨯∠=⨯︒=5.将1,2,3,4,5三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( ).(第4题)(第8题)(A )2种 (B )3种 (C )4种 (D )5种 【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1. 二、填空题(共5小题,每小题6分,满分30分)6.对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,, 解得,0a >,或1a <-.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则 s y x =-66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x =+33. ② 由①,②可得 x s 4=,所以4=xs. 即18路公交车总站发车间隔的时间是4分钟.(第9题答案)8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为 . 【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB . 又//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==. 所以 1122FC FN NC AB AC =+=+=9.另解:如图,过点C 作AD 的平行线交BA 的延长线为E ,延长MF AE 于点N.则E BAD DAC ACE ∠=∠=∠=∠所以11AE AC ==. 又//FN CE ,所以四边形CENF 是等腰梯形, 即11(711)922CF EN BE ===⨯+=9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .【答】163. 解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r , BC 边上的高为a h ,则11()22a ABC ah S abc r ==++△, 所以 a r a h a b c=++. 因为△ADE ∽△ABC ,所以它们对应线段成比例,所以a a h r DEh BC-=, 所以 (1)(1)a a a h r r aDE a a a h h a b c-=⋅=-=-++()a b c a b c +=++, 故 879168793DE ⨯+==++().另解:ABC S rp∆===(第8题答案)(这里2a b c p ++=)所以12r ==2ABC a S h a ===△由△ADE ∽△ABC ,得23a a h r DE BC h -===, 即21633DE BC === 10.关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯, 其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,所以 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,另解:因为222(104)(104)210421632x y -++=⨯= 则有2(104)21632,y +≤ 又y 正整数,所以 143y ≤≤令22|104|,|104|,21632a x b y a b =-=++= 则 因为任何完全平方数的个位数为:1,4,5,6,9由2221632a b +=知22,a b 的个位数只能是1和1或6和6; 当22,a b 的个位数是1和1时,则,a b 的个位数字能够为1或9但个位数为1和9的数的平方数的十位数字为偶数,与22a b +的十位数字为3矛盾。
2008年全国初中数学竞赛浙江赛区初赛模拟试题(本卷满分120分,考试时间120分钟,允许使用科学计算器。
)一、选择题(共8小题,每小题5分,计40分。
每小题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个正确,请将它前面的代号填入题后的括号内,多选、少选、不选皆不得分。
)1.关于x 的方程ax 2+bx+c=0的根为2和3,则方程ax 2-bx -c=0的根为( ) A . -2,-3 B. -6,1 C.2,-3 D. -1,6 2.已知动点P 在边长为2的正方形ABCD 的边上沿着A -B -C -D 匀速运动,x 表示点P 由A 点出发所经过的路程,y 表示△APD 的面积,则y 和x 之间函数关系的图像大致为 ( )A B C D3.将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若所得的和中没有一个数字是偶数,则称这个数为“奇和数”。
那么,所有的三位数中,“奇和数”有多少个? ( ) A.200 B.120 C.160 D.100 4.设a 、b 、c 均为正数,若ac bc b a b a c +<+<+,则a 、b 、c 三个数的大小关系是 ( )A.c<a<b B.b<c<a C.a<b<c D.c<b<a5.三角形的三内角A 、B 、C 的对边长分别是a 、 b 、 c(a 、 b 、 c 都是素数),且满足a +b +c =16,又设∠A 是最小内角。
则cosA 的值是( ) A .71 B .72 C.4947D.条件不足,无法计算 6.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉.如果某女士身高为1.60m ,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为 ( ) A.2.5cm B.5.1cm C.7.5cm D.8.2cm 7.如图2,一个边长分别为3cm 、4cm 、5cm 的直角三角形的一个顶点与正方形的顶点B 重合,另两个顶点分别在正方形的两条边AD 、DC 上,那么这个正方形的面积是( )。
bECDB2008年全国初中数学竞赛(浙江赛区)复赛试题答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共6小题,每小题5分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分) 1.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )(A )7.5秒 (B )6秒(C )5秒 (D )4秒 解:答案:【D 】设高速列车和普通列车的车速分别为x 米/秒和y 米/秒,则100520(/)x y m s -=÷=,所以坐在普通列车上的旅客看见高速列车驶过窗口的时间是:80÷20=4(秒)2.将一张边长分别为a ,b )(b a >的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕的长为( )(A (B(C (D 解:答案:【A 】CPE CBA ∆∆2PE CP CP PE AB AB BC BC a⇒=⇒==2EF PE ⇒==3.如图,设正方体ABCD -A 1B 1C 1D 1的棱长为1,黑、白 两个甲壳虫同时从A 点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→……,白甲壳虫爬行的路线是AB →BB 1→……,并且都遵循如下规则:所爬行的第n n 与第2+条棱所在的直线必须是既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) (A )0 (B )1 (C )2 (D )3 解:答案:【C 】 黑甲壳虫爬行的路径为:111111111......AA A D D C C C CB BA AA A D →→→→→→→→ 白甲壳虫爬行的路径为:111111111......AB BB B C C D D A A A AB BB →→→→→→→→(第3题)ABCD A 1B 1C 1D 1黑、白甲壳虫每爬行6条边后又重复原来的路径,因2008=334×6+4,所以当黑、白两个甲壳虫各爬行完第2008条棱分别停止时,黑甲壳虫停在点C ,白甲壳虫停在点D 1,因此1CD =4.设m ,n 是正整数,满足m +n >mn ,给出以下四个结论:① m ,n 都不等于1; ② m ,n 都不等于2;③ m ,n 都大于1;④ m ,n 至少有一个等于1.其中正确的结论是( ) (A )① (B )② (C )③ (D )④ 解:答案:【D 】 由m n mn +>,得(1)(1)1m n --<,因m ,n 是正整数,所以(1)(1)0m n --=, 即11m n ==或5.小明按如图所示设计树形图,设计规则如下:第一层是一条与水平线垂直的线段,长度为1;第二层在第一层线段的前端作两条与该线段均成120°的线段,长度为其一半;第三层按第二层的方法,在每一条线段的前端生成两条线段;重复前面的作法作到第10层.则树形图第10层的最高 点到水平线的距离为( ) (A )11024 (B )17041024(C )17051024(D )2 解:答案:【C 】设第n 层的最高点到水平线的距离记为:(1,2,,10)n a n =由题意,得224412132435411111;();();();();2222a a a a a a a a a ==+=+=+=+66106576109111();();;();222a a a a a a =+=+=+把这10条式子左右相加,得2468101010111111170512[()()()()()]()2222221024a =+⨯++++-=6.有10条不同的直线n n b x k y +=(n = 1,2,3,…,10),其中369k k k ==,47100b b b ===,则这10条直线的交点个数最多有( )(A )45个 (B )40个 (C )39个 (D )31个 解:答案:【B 】如图,满足已知条件的6条直线至多有10这6条直线最多有6个交点,再增加一条直线与前7交点,……一直增加到第10条直线与前9条直线最多有9个 交点,所以这10条直线的交点个数最多有:10+6+7+8+9=40(个二、填空题(共6小题,每小题6分,满分36分) 7.在平行四边形ABCD 的边AB 和AD 上分别取点E 和F , 使13AE AB =,14AF AD =,连结EF 交对角线AC 于G ,则AC的值是 . 水平线第一层 第二层 第三层 第四层(第5题)x ,y ,zz y x ++11,x z y ++11,yx z ++11 (第10题)M解:答案:17如图,1//33AE AF AB CD DM AE DM FD ⇒==⇒=113367AG AE AE AE AG GC CM CD DM AEAE AC ∴====⇒=++ 8的圆过一个半径为2的圆的圆心,则图中阴影部分的面积为 . 解:答案:2连结OO 1, AB ,则有OO 1⊥AB 于点P ,在1Rt APO Rt APO ∆∆和中,222222222111112)AP AO OP O A O P O P O P O P =-=-⇒-=-⇒即点O 1在AB 上与点P 重合,易知AB 是圆O 1的直径,三角形ABO 是直角三角形. 所以222111=(22)2242S ππ⨯⨯-⨯⨯-⨯=阴影 9.已知y =26x mx +-,当1≤m ≤3时,y <0恒成立,那么实数x 的取值范围是. 解:答案:332x -<<由26<0x mx +-,22mmx +-<<=解得-当1≤m ≤3时,1=3 22m +-则 -的最大值为-; 所以,当1≤m ≤3时,y <0恒成立,即260x mx +-<恒成立时, x 的取值范围是3x -<<. 10.如图是一个数的转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为z y x ++11,x z y ++11,yx z ++11.例如,输入 1,2,3,则输出56,34,23. 那么当输出的新数为31,41,51时,输入的3个数依次为 .(第8题)解:答案:1111 1132,, 2221112=333()1113=4()3(0)425()26111=5x y z kx k x y z xy xz x y z xy k xy yz x y z yz k y k k y z x yz xz x y z xz k z k z x y ++=⎧⎧+=⎪⎪+⎪+=++=⎧⎧⎪⎪⎪⎪⎪+⇒+=++−−−−→=⇒=>⎨⎨⎨⎨+⎪⎪⎪⎪+=++=⎩⎩⎪⎪=+⎪⎪⎩+⎩令1111,,1132k x y z x y z ⇒=++=++=++⇒=== 11.10张卡片上分别写有0到9这10个数,先将它们从左到右排成一排,再采用交换相邻两张卡片位置的方法对它们进行操作,规则如下:当相邻两张卡片左边卡片上的数比右边卡片上的数大时,交换它们的位置,否则不进行交换.若规定将相邻两张卡片交换一次位置称为1次操作,那么无论开始时这10张卡片的排列顺序如何,至多经过 次操作,就能将它们按从小到大的顺序排列. 解:答案:45记2n ≥张卡片至多经过n a 次操作后,能将它们按从小到大顺序排列,则232431091;2;3;............9.a a a a a a a ==+=+=+ 所以10123.....945a =++++=12.设整数a 使得关于x 的一元二次方程255261430x ax a -+-=的两个根都是整数,则a 的值是 .解:答案:18. 由题意,得222255202860(552)156()a a a k k N ∆=-+=-+=∈即22(552)156[(552)][(552)]782262ka k a k a --=⇒+-⨯--=⨯=⨯因为[(552)][(552)]ka k a +---和具有相同的奇偶性且[(552)][(552)]2k a k a k +---=≥+0故(552)=78(552)=26(552)=2(552)=6(552)=2(552)=6(552)=78(552)=26k a k a k a k a k a k a k a k a +-+-+-+-⎧⎧⎧⎧⎨⎨⎨⎨--------⎩⎩⎩⎩或或或 解得,只有=40=18k a ,符合题意。