江苏省苏州市昆山市2017学年七年级下第二次月考数学试卷含答案解析
- 格式:doc
- 大小:261.50 KB
- 文档页数:14
2017年5月七年级数学月考试卷(杭州启正中学)启正中学2016学年第二学期月份教学质量检测七年级数学试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法选取正确答案.1.已知某种植物花粉的直径为00002米,用科学记数法表示该种花粉的直径是()A.米B.米.米D.米2.下列各式的计算中,正确的是()A.﹣3﹣2=﹣9 B..(﹣a2)3= a6 D.(2+1)0=13.要了解全校学生的外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查九年级全体学生B.调查七、八、九年级各30名学生.调查全体女生D.调查全体男生4.如图,能判定AB∥D的条是()A.∠=∠DBB.∠D=∠DBA.∠=∠ABDD.∠D=∠ABE.方程的根是()A.﹣1B.2.﹣1或2D.06.下列代数式变形中,是因式分解的是()A.3ab(b﹣2)=3ab2﹣6ab B.4x2﹣12x+3=4x(x﹣3)+3.3x﹣6+6=3(x﹣2)D.﹣4x2+4x﹣1=﹣(2x﹣1)27.若分式方程有增根,则a的值为()A.4 B.2 .1 D.08.计算的结果是()A.﹣2﹣2﹣1 B.2(﹣1)2 .22﹣4﹣2 D.﹣22+4﹣29已知,则f2017化简的结果是()A.B..D.无法确定10 桌上A,B两个大小相同的量杯内分别装有21L,23L的水现在同时对A,B两个量杯注水,注入的水量之比为2:3,接着又同时倒水,倒出的水量之比为2:3,此时A,B两个量杯的水位高度相等,则B 量杯注水前与倒水后相差()A.2L B4L 6L D8L二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条和要填写的内容,尽量完整地填写答案.11.分解因式:(1)=;(2)18x3+24x2+8 x =.12.如果x2﹣4(﹣1)x+16是一个完全平方式,则=.13(1)已知甲队有x人,乙队有人,若从甲队调出10人到乙队,则乙队人数是甲队人数的2倍,调整后两队人数间的数量关系用等式表示为_____ _;(2)已知,则r=________14.四条直线两两相交,且任意三条不相交于同一点,则四条直线共可构成的同位角有组1.两个一模一样的梯形纸片如图(1)摆放,将梯形纸片ABD沿上底AD方向向右平移得到图(2).已知AD=4,B=8,若阴影部分的面积是四边形A′B′D的面积的13 ,则图(2)中平移距离A′A= __________.16已知三个数,x,,z,满足,则的值为__________。
2016-2017学年度第一学期第二次月考模拟试题六年级数学(满分120分 考试时间90分钟)第一卷一、填空题(每题3分,共36分)1、在代数式中:7,,1,1,43,4,3,21232xyn x x ab xy a π---单项式的个数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、下列说法正确的是( ) A 、单项式43abc 的系数和次数都是3 B 、单项式334r π的系数是π34,次数是3 C 、单项式4322y x 的次数是9 D 、单项式z y x 225.0-的系数是-0.5,次数是4 3、下列说法正确的有( )①π的相反数是14.3-; ②符号相反的数互为相反数; ③()8.3--的相反数是3.8; ④一个数和它的相反数不可能相等; ⑤正数与负数互为相反数.4、点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论: 甲:0<-a b 乙:0>+b a 丙:b a < 丁:0>ab正确的是( )A 、甲乙B 、丙丁C 、甲丙D 、乙丁 5、方程1273422--=--x x 去分母得( ) A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7 C 、12-2(2x -4)=-(x -7) D 、12-4x +4=-x +7 6、若21=x 是方程x a x 33-=-的解,则a=( ) A 、2 B 、25C 、4D 、67、一个四次多项式与一个五次多项式的和一定是( )A 、九次多项式B 、五次多项式C 、四次多项式D 、无法确定 8、已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( ) A :a a b b >+>->-11 B :b b a a ->->>+11 C :b a b a ->>->+11 D :a b a b >->+>-11 9、若,0≠ab 则bba a +的取值不可能是( ) A 、0 B 、1 C 、2 D 、-210、某品牌商品,按标价九折出售,仍可获得20%的利润。
福建省福州市七年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分) (2016七下·滨州期中) 下列各式正确的是()A . =3B . (﹣)2=16C . =±3D . =﹣42. (2分)下列各式中计算正确的是()A . =-9B .C .D .3. (2分)如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是()A . 点AB . 点BC . 点CD . 点D4. (2分) a和b是两个连续的整数,a˂˂b,那么a和b分别是()A . 3和4B . 2和3C . 1和2D . 不能确定5. (2分)化简:(a+1)2-(a-1)2=()A . 2B . 4C . 4aD . 2a2+26. (2分)设M=(x-3)(x-7),N=(x-2)(x-8),则M与N的关系为()A . M<NB . M>NC . M=ND . 不能确定7. (2分) (2019七下·武昌期中) 如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A . 南偏西50°B . 北偏东50°C . 南偏西40°D . 北偏东40°8. (2分) (2017九上·南漳期末) △ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是()A . ∠BAE=60°B . AC=AFC . EF=BCD . ∠BAF=60°9. (2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A . 70°B . 55°C . 50°D . 40°10. (2分)乘积等于m2-n2的式子是()A . (m-n)2B . (m-n)(-m-n)C . (n -m)(-m-n)D . (m+n)(-m+n)11. (2分)(2017·磴口模拟) 4的平方根是()A . 4B . 2C . ﹣2D . 2和﹣212. (2分)如果一个图形绕着一个点至少需要旋转72°才能与它本身重合,则下列说法正确的是()A . 这个图形一定是中心对称图形B . 这个图形可能是中心对称图形C . 这个图形旋转216°后能与它本身重合D . 以上都不对13. (2分)(2017·长春) 如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A . 3a+2bB . 3a+4bC . 6a+2bD . 6a+4b二、填空题 (共9题;共9分)14. (1分) (2015七下·无锡期中) 已知方程组的解满足x﹣y=2,则k的值是________.15. (1分) (2019八上·平川期中) 的算术平方根是________ ,的相反数是________,-的倒数是________.16. (1分) (2017七下·简阳期中) 若a>b,则 ________ (用“>“或“<“填空)17. (1分)计算am•a3•________=a3m+3 .18. (1分) (2017八上·滕州期末) 的平方根是________;的值是________.19. (1分) (2017八上·江阴开学考) 已知m>0,并且使得x2+2(m﹣2)x+16是完全平方式,则m的值为________.20. (1分)(2017·顺德模拟) 如图,等腰△ABC的周长是36cm,底边为10cm,则底角的正切值是________.21. (1分)如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD=________22. (1分)(2019·平谷模拟) 如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是________.三、解答题 (共4题;共67分)23. (40分) (2019七下·郑州开学考) 计算:(1)−14−(−2)2+(0. 125)100×(−8)101(2) (−1)2016÷(−3)−2−(−2)× +(−2)−2(3) [(2x+y)2−(2x+y)(2x−y)]÷2y(4)24. (10分) (2017八下·高阳期末) 计算(1)(2)25. (10分)小明准备用一段长40米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)求出a的取值范围.(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.26. (7分) (2020七上·温州期末) 如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。
人教版数学七年级下册同步训练: 10.1《统计调查》姓名:________ 班级:________ 成绩:________一、选择题: (共15题;共30分)1. (2分)下列调查中,适宜采用抽样方式的是()A . 调查我省初中学生每天体育锻炼的时间B . 调查奥运会参赛队员兴奋剂的使用情况C . 调查一架隐形战斗机所有零部件的质量D . 调查某班学生对“新闻联播”的知晓率2. (2分) (2020七下·厦门期末) 某初中校学生会为了解本校学生年人均课外阅读量,计划开展抽样调查,下列抽样调查方案中最合适的是()A . 到学校图书馆调查学生借阅量B . 对全校学生暑假课外阅读量进行调查C . 对九年级学生的课外阅读量进行调查D . 在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查3. (2分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A . 方差B . 平均数C . 中位数D . 众数4. (2分)有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A . 4组B . 5组C . 6组D . 7组5. (2分)已知数据:25,24,27,25,21,23,25,29,27,28,25,24,26,28,26,27,30,22,26,25.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A . 0.3B . 0.4C . 0.5D . 0.66. (2分) (2020七上·南山期末) 北京海淀区某中学经过食堂装修后重新营业,同学们很高兴品尝各种美食菜品某同学想要得到本校食堂最受同学欢迎的菜品,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的菜品;②去食堂收集同学吃饭选择的菜品名称和人数;③绘制扇形图来表示各个种类产品所占的百分比;④整理所收集的数据,并绘制频数分布表;正确统计步骤的顺序是()A . ②→③→①→④B . ②→④→③→①C . ①→②→④→③D . ③→④→①→②7. (2分)(2017·石家庄模拟) 小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A . 中位数是3个B . 中位数是2.5个C . 众数是2个D . 众数是5个8. (2分) (2020七下·孟村期末) 为了了解我市参加中考的75000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是()A . 75000名学生是总体B . 1000学生的视力是总体的一个样本C . 每名学生是总体的一个个体D . 上述调查是普查9. (2分) (2021七上·兴庆期末) 在下列调查方式中,较为合适的是()A . 为了解石家庄市中小学生的视力情况,采用普查的方式B . 为了解正定县中小学生的课外阅读习惯情况,采用普查的方式C . 为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调查方式D . 为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式10. (2分) (2020七下·防城港期末) 下列调查中,调查方式选择最合理的是()A . 为了解广西中学生的课外阅读情况,选择全面调查B . 调查七年级某班学生打网络游戏的情况,选择抽样调查C . 为确保第55颗北斗卫星成功发射,应对零部件进行全面调查D . 为了解一批袋装食品是否含有防腐剂,选择全面调查11. (2分) (2016七下·兰陵期末) 要了解某校初中学生的课外作业负担情况,若采用抽样调查的方法进行调查,则下面哪种调查方式具有代表性()A . 调查全体女生B . 调查全体男生C . 调查七、八、九年级各100名学生D . 调查九年级全体学生12. (2分)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本是()A . 每台电视机的使用寿命B . 40台电视机C . 40台电视机的使用寿命D . 4013. (2分) (2018七下·中山期末) 为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()A . 2000名学生B . 2000C . 200名学生D . 20014. (2分) (2020八上·淮阳期末) 元旦联欢会上,王老师购买的香蕉苹果、香梨的总千克数之比为,若制成一个如图所示的扇形统计图,则表示香梨千克数的扇形的圆心角度数为()A .B .C .D .15. (2分)某市社会调查队对城区内一个社区居民的家庭经济状况进行调查。
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
人教版七年级数学下学期第二次数学月考试卷(总分:150分,考试时间:120分钟)一、精心选一选(每小题4分,共40分)1.下列方程中,是二元一次方程的是( )A. B.C. D . 02=-y x 21=-y x 12=-y x 01=-xy 2.“与3的和不大于6”用不等式表示为( )a A. B. C. D .63<+a 63≤+a 63>+a 63≥+a 3.若,则下列不等式不成立的是( )b a <A . B . C . D .11+<+b a b a 22<b a -<-33b a <4.已知单项式 与是同类项,那么的值分别是( )322y xm -m n y x -,m n A . B . C . D .⎩⎨⎧-==13n m ⎩⎨⎧==13n m ⎩⎨⎧=-=13n m ⎩⎨⎧-=-=13n m 5.若,则的值分别为( )0)3(12=--+-+y x y x y x ,A . B . C . D .⎩⎨⎧-==12y x ⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧==03y x 6.二元一次方程的正整数解有( )个72=+y x A .1 B .2 C .3 D .47.若关于的不等式的解集是,则的取值范围是( )x 1)1(->-a x a 1>x a A . B . C . D .0<a 0>a 1<a 1>a 8.不等式的非负整数解有( )个x x -≤-5)1(3A .1 B .2 C .3 D .49.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )支笔A .3B .4C .5D .610.已知三年前,A 的年龄是B 的年龄的5倍,现在A 的年龄是B 的年龄的4倍,则A 现在的年龄是( ) 岁.A .48B .45C .12D .9二、认真填一填(每小题4分,共24分)11.把方程化为用含的代数式来表示:= .42=-y x x y y 12.写出一个解为的二元一次方程组: .⎩⎨⎧=-=21y x13.若关于的方程的解为负数,则的取值范围是 .x 23+=+x mx m 14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对 道题.15.在实数范围内定义新运算“△”,其规则是:△=a b ba -2已知不等式△的解集为,则 .x 1≥m 1-≥x =m 16.已知为整数且关于、的二元一次方程组有整数解,m x y ⎩⎨⎧=+=-7422y x my x 则= .m 三、耐心做一做(共86分)17.(12分)解方程组:(1) (2)⎩⎨⎧=--=533y x x y 233511x y x y +=⎧⎨-=⎩18.(8分)解不等式并在数轴上表示出其解集:63)2(2<-+x x 19.(8分)已知:且当时,;当时,;b kx y +=1-=x 2=y 2=x 7-=y 求:当时,的值;2-=x y 20.(8分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?21.(8分)当为何正整数时代数式的值不小于的值?x 41+x 1312--x 22.(8分)某物流公司要将300吨货物运往某地,现有A 、B 两种型号的车可供调用,已知A型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨货物一次性装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?23.(10分)若关于、的二元一次方程组的解满足,x y ⎩⎨⎧=++=-my x m x y 52322>+y x 求的取值范围m 24.(10分)若关于、的二元一次方程组与有相同的解,x y ⎩⎨⎧=+=+822by ax y x ⎩⎨⎧-=-=-41023ay bx y x 求的值2017)2(b a +25.(14分)某商场销售A、B两种型号的计算器,A型的计算器进价为30元/台,B型的计算器进价为40元/台,商场销售3台A型的计算器和2台B型的计算器,可获利润68元;销售2台A型的计算器和3台B型的计算器,可获利润72元;(1)求A、B两种型号的计算器在该商场的售价分别是多少元/台?(2)某天商场只有2120元的进货资金,王经理又想购进这两种型号的计算器共70台,请问:①王经理有哪几种进货方案?②王经理怎样进货可使商场销售完这70台计算器获得的利润最大?最大利润为多少?并说明理由。
人教版七年级数学上册第二次月考试卷(含答案)第二次月考测试范围:第一~第三时间:120分钟满分:120分班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列各式结果是负数的是( )A.-(-3)B.-|-3| .3 D.(-3)22.下列说法正确的是( )A.x2+1是二次单项式B.-a2的次数是2,系数是1.-23πab的系数是-23 D.数字0也是单项式3.下列方程:①3x-y=2;②x+1x-2=0;③12x=12;④x2+3x-2=0.其中属于一元一次方程的有( )A.1个B.2个 .3个 D.4个4.如果a=b,那么下列等式中不一定成立的是( )A.a+1=b+1B.a-3=b-3.-12a=-12b D.a=b5.下列计算正确的是( )A.3x2-x2=3B.-3a2-2a2=-a2.3(a-1)=3a-1 D.-2(x+1)=-2x-26.若x=-1是关于x的方程5x+2-7=0的解,则的值是( )A.-1B.1 .6 D.-67.如果2x3ny+4与-3x9y6是同类项,那么,n的值分别为( )A.=-2,n=3B.=2,n=3 .=-3,n=2 D.=3,n =28.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A.75×1+(120-75)x=270B.75×1+(120+75)x=270.120(x-1)+75x=270 D.120×1+(120+75)x=2709.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是( )A.100元B.105元.110元 D.115元10.定义运算a b=a(1-b),下列给出了关于这种运算的几个结论:①2 (-2)=6;②2 3=3 2;③若a=0,则ab=0;④若2 x+x -12=3,则x=-2.其中正确结论的序号是( )A.①②③B. ②③④ .①③④ D.①②③④二、填空题(每小题3分,共24分)11.比较大小:-67 -56.12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为.13.若a+12=0,则a3=.14.若方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=.15.若a,b互为相反数,,d互为倒数,的绝对值是2,则2-2017(a+b)-d的值是.16.若关于a,b的多项式3(a2-2ab-b2)-(a2+ab+2b2)中不含有ab项,则=.17.已知一列单项式-x2,3x3,-5x4,7x5,…,若按此规律排列,则第9个单项式是.18.爷爷快八十大寿,小明想在日历上把这一天圈起,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄.”则小明爷爷的生日是号.三、解答题(共66分)19.(12分)计算及解方程:(1)81÷(-3)2-19×(-3)3; (2)-12-12-23÷13×[-2+(-3)2];(3)4x-3(20-x)=-4; (4)2x-13-5-x6=-1.20.(6分)先化简,再求值:4(xy2+xy)-13×(12xy-6xy2),其中x=1,y=-1.21.(8分)某种商品因换季准备打折出售,如果按照原价的七五折出售,每件将赔10元,而按原价的九折出售,每件将赚38元,求这种商品的原价.22.(8分)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)用含a的代数式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.23.(10分)小明解方程2x-13=x+a4-1,去分母时方程右边的-1漏乘了12,因而求得方程的解为x=3,试求a 的值,并正确求出方程的解.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成.硬纸板以如图所示两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)分别求裁剪出的侧面和底面的个数(用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)阅读下列材料,在数轴上A点表示的数为a,B点表示的数为b,则A,B两点的距离可以用右边的数减去左边的数表示,即AB=b-a.请用这个知识解答下面的问题:已知数轴上A,B两点对应的数分别为-2和4,P为数轴上一点,其对应的数为x.(1)如图①,若P到A,B两点的距离相等,则P点对应的数为;(2)如图②,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.参考答案与典题详析1.B2.D3.A4.D5.D6. 7.B 8.B 9.A 10.11.<12.4.28×106 13.-18 14.-215.3或-5 16.-6 17.-17x1018.20 解析:设那一天是x号,依题意得x-1+x+1+x-7+x+7=80,解得x=20.19.解:(1)原式=81÷9+3=9+3=12.(3分)(2)原式=-1+16÷13×(-2+9)=-1+12×7=52.(6分)(3)去括号,得4x-60+3x=-4,移项、合并同类项,得7x=56,系数化为1,得x=8.(9分)(4)去分母,得2(2x-1)-(5-x)=-6,去括号,得4x-2-5+x=-6,移项、合并同类项,得5x=1,系数化为1,得x=0.2.(12分)20.解:原式=4xy2+4xy-4xy+2xy2=6xy2.(4分)当x=1,y=-1时,原式=6.(6分)21.解:设这种商品的原价是x元,根据题意得75%x+10=90%x-38,解得x=320.(7分)答:这种商品的原价是320元.(8分)22.解:(1)这个两位数为10(a+2)+a=11a+20.(3分)(2)新的两位数为10a+a+2=11a+2.(5分)因为11a +2+11a+20=22a+22=22(a+1),a+1为整数,所以新数与原数的和能被22整除.(8分)23.解:由题意得x=3是方程12×2x-13=12×x+a4-1的解,所以4×(2×3-1)=3(3+a)-1,解得a=4.(4分)将a=4代入原方程,得2x-13=x+44-1,去分母得4(2x-1)=3(x+4)-12,去括号,得8x-4=3x+12-12,移项、合并同类项得5x=4,解得x=45.(10分)24.解:(1)因为裁剪时x张用A方法,所以裁剪时(19-x)张用B方法.所以裁剪出侧面的个数为6x+4(19-x)=(2x+76)个,裁剪出底面的个数为5(19-x)=(95-5x)个.(4分)(2)由题意得2(2x+76)=3(95-5x),解得x=7.(8分)则2×7+763=30(个).(9分)答:能做30个盒子.(10分)25.解:(1)1(3分)(2)存在.(4分)分以下三种情况:①当点P在点A左侧时,PA=-2-x,PB=4-x.由题意得-2-x+4-x=10,解得x=-4;(6分)②当点P在点A,B之间时,PA=x-(-2)=x+2,PB=4-x.因为PA+PB=x+2+4-x=6≠10,即此时不存在点P到A,B两点的距离和为10;(8分)③当点P 在点B右侧时,PA=x+2,PB=x-4.由题意得x+2+x-4=10,解得x=6.(10分)综上所述,当x=-4或x=6时,点P到A,B两点的距离和为10.(12分)。
2022-2023学年江苏省苏州市昆山市、常熟市、太仓市、张家港市七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算(−a2)3的结果是( )A. a5B. −a5C. a6D. −a62. 已知空气的单位体积质量为1.24×10−3克/厘米 3,1.24×10−3用小数表示为( )A. 0.000124B. 0.0124C. −0.00124D. 0.001243. 若2m=4,2n=16,则2m−n的值为( )A. −12B. 14C. 12D. 44. 下列各式从左到右的变形,属于因式分解的是( )A. x2−4=(x−2)(x+2)B. (a−1)2=a2−2a+1C. x2−2x−6=x(x−2)−6D. x(x−1)=x2−x5.如图,直线a、b被c、d所截,且a//b,则下列结论中正确的是( )A. ∠1=∠2B. ∠3=∠4C. ∠2+∠4=180°D. ∠1+∠4=180°6. 下列四个命题:①若a2=1,则a=1;②同位角相等;③在△ABC中,若∠A+∠B=∠C,则△ABC是直角三角形;④如果∠1=∠2,那么∠1与∠2是对顶角;⑤两直线平行,内错角相等.其中真命题的是( )A. ②③B. ③④C. ②⑤D. ③⑤7.某小区有一正方形草坪ABCD如图所示,小区物业现对该草坪进行改造,将该正方形草坪AB边方向的长度增加3米,AD边方向的长度减少3米,则改造后的长方形草坪面积与原来正方形草坪面积相比( )A. 增加6平方米B. 增加9平方米C. 减少9平方米D. 保持不变8.如图,线段AD,BC相交于点O,连接AB,CD,AP平分∠BAD,CP平分∠BCD,则∠P,∠B,∠D满足的关系式是( )A. ∠P=∠B+∠DB. ∠P=∠D−∠BC. ∠P=1(∠D−∠B)2D. ∠P=1(∠B+∠D)2二、填空题(本大题共8小题,共24.0分)9. 3−1=.10. 若a x=1,则a3x=______ .211. 命题“如a=b,那么|a|=|b|”的逆命题是______命题.(填“真”或“假”)12. 已知等腰三角形的两边长分别为2cm和5cm,则它的第三边长为______ cm.13. 如果一个多边形的每个内角都相等,且内角是外角的3倍,那么这个多边形的边数是______.14.如图,直线m//n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于度.15.如图,△ABC的两条中线AD,BE交于点F,若四边形CDFE的面积为16,则△ABC的面积为______ .16.如图①所示,长为m、宽为n(m,n均为定值,且m>n)的小长方形纸片,现将7张这样的小长方形纸片按如图②所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角的阴影部分的面积为S1,右下角的阴影部分的面积为S2,记S=S1−S2,当BC的长度变化时,按照同样的放置方式,此时S的值始终保持不变,则m,n应满足的关系式是m=______ .(用含n的代数式表示m)三、解答题(本大题共11小题,共88.0分。
苏教版数学七年级下册第一次月考测试题(二)(根据第7章、第8章教材编写)一、选择题1.在三角形的三个外角中,锐角最多只有()A.3个 B.2个 C.1个 D.0个2.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540° D.720°3.已知一个多边形内角和为720°,则该多边形的对角线条数为()A.9 B.12 C.15 D.184.若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形5.三角形的高、中线和角平分线都是()A.直线B.射线C.线段D.以上答案都不对6.下列△ABC中,正确画出AC边上的高的是()A.B.C.D.7.下列说法错误的是()A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高所在直线可能相交于外部一点8.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,△ABC中边BC上的高是()A.FC B.BE C.AD D.AE9.x2•x3=()A.x5B.x6C.x8D.x910.计算()2016×(﹣)2017的结果是()A.B.C.D.11.下列运算中正确的是()A.b3•b3=2b3B.x2•x3=x6C.(a5)2=a7D.a2÷a5=a﹣312.在﹣,﹣2,,,3.14,,()0中有理数的个数是()A.2个 B.3个 C.4个 D.5个13.计算(﹣)﹣1的结果是()A.﹣B.C.2 D.﹣214.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=15.(x2﹣1)0=1成立的条件是()A.x≠1 B.x≠﹣1 C.x≠1或x≠﹣1 D.x≠1且x≠﹣1二、填空题16.已知a m=3,a n=9,则a m+n=.17.如图,在一块长为12cm,宽为6cm的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2cm),则空白部分表示的草地面积是.18.如图,点G为△ABC三边的重心,若S△ABC=12,则图中阴影部分的面积是.19.计算(a m)3•a2÷a m=.20.若(n+3)2n的值为1,则n的值为.三、解答题21.(a﹣b)2•(b﹣a)3+(a﹣b)4•(b﹣a)22.如图1,在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;(1)填写下面的表格.(2)试猜想∠A与∠BOC之间存在一个怎样的数量关系,并证明你的猜想;(3)如图2,△ABC的高BE、CD交于O点,试说明图中∠A与∠BOD的关系.23.(1)观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,第④个图中有10个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)(1)中是否存在一个图形,该图形中共有29个三角形?若存在请画出图形;若不存在请通过具体计算说明;(3)图③中,点B线段AC的中点,D为AC延长线上一个动点,记△PDA的面积为S1;△PCB的面积为S2;△PDC的面积为S3.下列两个结论(1)是定值;(2)是定值.有且只有一个结论是正确的,请作出选择并求值.24.如图,每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,四边形ABCD四个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(3,3),D(4,0).(1)画出四边形ABCD;(2)把四边形ABCD向下平移4个单位长度,再向左平移2个单位长度得到四边形A′B′C′D′,画出四边形A′B′C′D′,并写出C′的坐标;(3)求出四边形ABCD的面积.25.60300000÷3000=20100,可改写为(6.03×107)÷(3×103)=2.01×104仿照上面改写的方法,你会发现(a×10m)÷(b×10n)的算法有什么规律吗?请你用发现的规律直接计算(7.329×109)÷(2.1×104)÷(2×102)26.已知(x﹣7)x=1,试探究x的可能取值.答案1.在三角形的三个外角中,锐角最多只有()A.3个 B.2个 C.1个 D.0个【考点】K7:三角形内角和定理.【专题】选择题【难度】易【分析】利用三角形的内角和外角之间的关系分析.【解答】解:根据三角形的内角和是180°可知,三角形内角最多只能有1个钝角,所以在三角形的三个外角中,锐角最多只有1个.故选:C.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.2.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540° D.720°【考点】K7:三角形内角和定理.【专题】选择题【难度】易【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.3.已知一个多边形内角和为720°,则该多边形的对角线条数为()A.9 B.12 C.15 D.18【考点】L3:多边形内角与外角;L2:多边形的对角线.【专题】选择题【难度】易【分析】根据多边形内角和的计算方法(n﹣2)•180°,先求出边数,再求出对角线的条数.【解答】解:依题意有(n﹣2)•180°=720°,解得n=6.该多边形为六边形,故对角线条数为6×(6﹣3)÷2=9条.故选:A.【点评】此类题考查的是多边形内角和的计算方法,难度属简单,考生应识记该公式.4.若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【考点】L3:多边形内角与外角.【专题】选择题【难度】易【分析】先求出每一个外角的度数,再根据边数=360°÷一个外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,故这个多边形的边数是10.故选:D.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.5.三角形的高、中线和角平分线都是()A.直线B.射线C.线段D.以上答案都不对【考点】K2:三角形的角平分线、中线和高.【专题】选择题【难度】易【分析】根据三角形的高、中线和角平分线的定义可知它们都是线段.【解答】解:三角形的高、中线和角平分线都是线段.故选C.【点评】本题考查了三角形的高、中线和角平分线的定义,用到的知识点:从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线;三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.6.下列△ABC中,正确画出AC边上的高的是()A.B.C.D.【考点】K2:三角形的角平分线、中线和高.【专题】选择题【难度】易【分析】根据三角形高线的定义解答即可.【解答】解:△ABC中AC边上的高是过点B垂直于AC边的线段,只有D选项正确.故选D.【点评】本题考查了三角形的高线的定义,是基础题,熟记高线的概念是解题的关键.7.下列说法错误的是()A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高所在直线可能相交于外部一点【考点】K2:三角形的角平分线、中线和高.【专题】选择题【难度】易【分析】三角形的三条中线和三条角平分线都交于三角形的内部,而三条高线可以交在三角形的内部,或外部,或一角的顶点.【解答】解:A、错误,三条高线可以交在三角形的内部,或外部,或一角的顶点;B、正确;C、正确;D正确.故选A.【点评】本题考查了三角形的高线、角平分线、中线的性质.8.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,△ABC中边BC上的高是()A.FC B.BE C.AD D.AE【考点】K2:三角形的角平分线、中线和高.【专题】选择题【难度】易【分析】由于AD⊥BC,根据三角形高的定义即可得到AD为三角形ABC的边BC上的高.【解答】解:∵AD⊥BC,∴AD为三角形ABC的边BC上的高.故选C.【点评】本题考查了三角形的角平分线、中线和高:过三角形的一个顶点引对边的垂线,这个点与垂足的连线段叫三角形的高.9.x2•x3=()A.x5B.x6C.x8D.x9【考点】46:同底数幂的乘法.【专题】选择题【难度】易【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.【解答】解:x2•x3=x2+3=x5.故选:A.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.10.计算()2016×(﹣)2017的结果是()A.B.C.D.【考点】47:幂的乘方与积的乘方.【专题】选择题【难度】易【分析】根据积的乘方和幂的乘方进行计算即可.【解答】解:原式=()2016×(﹣)2016×(﹣)=﹣,故选D.【点评】本题考查了积的乘方和幂的乘方,掌握运算性质是解题的关键.11.下列运算中正确的是()A.b3•b3=2b3B.x2•x3=x6C.(a5)2=a7D.a2÷a5=a﹣3【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】选择题【难度】易【分析】结合选项分别进行同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法等运算,然后选择正确答案.【解答】解:A、b3•b3=b6,原式计算错误,故本选项错误;B、x2•x3=x5,原式计算错误,故本选项错误;C、(a5)2=a10,原式计算错误,故本选项错误;D、a2÷a5=a﹣3,计算正确,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法等知识,掌握运算法则是解答本题的关键.12.在﹣,﹣2,,,3.14,,()0中有理数的个数是()A.2个 B.3个 C.4个 D.5个【考点】6E:零指数幂;12:有理数.【专题】选择题【难度】易【分析】实数的判断,先化简,后根据实数的值和有理数的范围进行判断.【解答】解:有理数有﹣2,=2,3.14,,()0=1.所以有理数的个数是5个.故选D.【点评】(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数;(2)无理数是无限不循环小数,其中有开方开不尽的数,如2,33等,也有π这样的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数.13.计算(﹣)﹣1的结果是()A.﹣B.C.2 D.﹣2【考点】6F:负整数指数幂.【专题】选择题【难度】易【分析】根据负整数指数幂的运算法则计算.【解答】解:原式=﹣=﹣2.故选D.【点评】幂的负整数指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.14.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a=【考点】6F:负整数指数幂;1E:有理数的乘方;2F:分数指数幂;6E:零指数幂.【专题】选择题【难度】易【分析】分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.【解答】解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a=(a>0),故此选项错误.故选:A.【点评】此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.15.(x2﹣1)0=1成立的条件是()A.x≠1 B.x≠﹣1 C.x≠1或x≠﹣1 D.x≠1且x≠﹣1【考点】6E:零指数幂.【专题】选择题【难度】易【分析】根据任何非0数的0次幂都等于1,得x2﹣1≠0,求得x的取值范围即可.【解答】解:∵(x2﹣1)0=1,∴x2﹣1≠0,∴x2≠1,∴x≠±1,即x≠1且x≠﹣1,故选:D.【点评】本题考查了零指数幂的定义和性质,是基础知识要熟练掌握.16.已知a m=3,a n=9,则a m+n=.【考点】46:同底数幂的乘法.【专题】填空题【难度】中【分析】根据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:∵a m=3,a n=9,∴a m+n=a m•a n=3×9=27.故答案为:27.【点评】本题考查了同底数幂的乘法,是基础题,熟记运算法则是解题的关键.17.如图,在一块长为12cm,宽为6cm的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2cm),则空白部分表示的草地面积是.【考点】Q1:生活中的平移现象.【专题】填空题【难度】中【分析】根据矩形面积公式可求矩形的面积;因为柏油小路的任何地方的水平宽度都是2,所以其面积与同宽的矩形面积相等,故可求草地面积.【解答】解:草地面积=矩形面积﹣小路面积=12×6﹣2×6=60(cm 2).故答案为:60cm 2.【点评】此题考查生活中的平移现象,化曲为直是解决此题的关键思路.18.如图,点G 为△ABC 三边的重心,若S △ABC =12,则图中阴影部分的面积是 .【考点】K5:三角形的重心.【专题】填空题【难度】中【分析】根据重心的概念和性质分别求出S △BGF 和S △CGE ,计算即可.【解答】解:∵点G 为△ABC 三边的重心,∴AD 是△ABC 的中线,AF 是△ABC 的中线,AG=2GD ,∴S △ABD =S △ABC =6,∴S △ABG =2S △CBD =4,∴S △BGF =2,同理,S △CGE =2,∴图中阴影部分的面积是4,故答案为:4.【点评】本题考查的是重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.19.计算(a m)3•a2÷a m=.【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】填空题【难度】中【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减进行计算即可得解.【解答】解:(a m)3•a2÷a m,=a3m•a2÷a m,=a3m+2﹣m,=a2m+2.故答案为:a2m+2.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.20.若(n+3)2n的值为1,则n的值为.【考点】6E:零指数幂;1E:有理数的乘方.【专题】填空题【难度】中【分析】分别讨论,①底数为±1,②底数不为零,指数为0的情况,得出n 的值即可.【解答】解:①当n+3=1时,n=﹣2,此时12n=1﹣4=1;②当n+3=﹣1时,n=﹣4,此时(﹣1)﹣8=(﹣1)﹣8=1;③当n+3≠0,2n=0时,n=0,此时30=1;故可得n的值为﹣2,﹣4,0.故答案为:﹣2,﹣4,0.【点评】本题考查了零指数幂的知识,需要分情况讨论,注意不要漏解.21.(a﹣b)2•(b﹣a)3+(a﹣b)4•(b﹣a)【考点】46:同底数幂的乘法.【专题】解答题【难度】难【分析】先将底数化为相同的式子,然后根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:原式=(b﹣a)2•(b﹣a)3+(b﹣a)4•(b﹣a)=(b﹣a)5+(b﹣a)5=2(b﹣a)5.【点评】本题考查了同底数幂的乘法运算,掌握同底数幂的乘法法则是关键.22.如图1,在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;(1)填写下面的表格.(2)试猜想∠A与∠BOC之间存在一个怎样的数量关系,并证明你的猜想;(3)如图2,△ABC的高BE、CD交于O点,试说明图中∠A与∠BOD的关系.【考点】K7:三角形内角和定理.【专题】解答题【难度】难【分析】(1)由∠A=90°+∠BOC,代入数值即可求得答案;(2)由在△ABC中,OB、OC是∠ABC、∠ACB的角平分线,根据三角形的内角和定理即可求得∠OBC+∠OCB的值,然后在△OBC中,再利用三角形的内角和定理,即可求得答案;(3)由△ABC的高BE、CD交于O点,即可得∠BDC=∠BEA=90°,然后利用同角的余角相等,即可求得∠A与∠BOD的关系.【解答】解:(1)(2)猜想:∠BOC=90°+∠A.理由:∵在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠ABC+∠ACB=180°﹣∠A,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+∠A.(3)证明:∵△ABC的高BE、CD交于O点,∴∠BDC=∠BEA=90°,∴∠ABE+∠BOD=90°,∠ABE+∠A=90°,∴∠A=∠BOD.【点评】此题考查了三角形的内角和定理与同角的余角相等,以及角平分线的定义.此题难度适中,解题的关键是整体思想与数形结合思想的应用.23.(1)观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,第④个图中有10个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)(1)中是否存在一个图形,该图形中共有29个三角形?若存在请画出图形;若不存在请通过具体计算说明;(3)图③中,点B线段AC的中点,D为AC延长线上一个动点,记△PDA的面积为S1;△PCB的面积为S2;△PDC的面积为S3.下列两个结论(1)是定值;(2)是定值.有且只有一个结论是正确的,请作出选择并求值.【考点】K3:三角形的面积;K1:三角形.【专题】解答题【难度】难【分析】(1)我们看到后一个图形的三角形的个数与上一个图形中三角形的个数的差是递增的(1,1+2,3+3,6+4,10+5,…),因此我们可得出到第n 个图时,应该有三角形的个数为个;(2)将29代入(1)得出的式子中,看看是否有整数解即可;(3)可根据AB=AC 得出三角形ABP ,BCP 的面积相等,因此三角形BCP 的面积就是三角形APC 的面积的一半,三角形APC 的面积=三角形APD 的面积﹣三角形PCD 的面积,因此=2是成立的.【解答】解:(1)由题意得出规律,第n 个图时,应该有三角形的个数为个;(2)当=29,化简得:n 2+n ﹣58=0,由于这个方程中没有正整数解,因此不管是第几个图形,都不可能有29个三角形;(3)=2,∵AB=BC ,且三角形ABP 和三角形BCP 的底边AB ,CD 上的高相等, ∴S △ABP =S △BCP =S △APC ,因此S △APC =S △APD ﹣S △PCD =S 1﹣S 3=2S 2,即=2.【点评】本题考查了三角形和规律性等知识点,读懂题中给出的条件是解题的关键.24.如图,每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,四边形ABCD 四个顶点的坐标分别为A (﹣2,0),B (﹣1,2),C (3,3),D (4,0).(1)画出四边形ABCD;(2)把四边形ABCD向下平移4个单位长度,再向左平移2个单位长度得到四边形A′B′C′D′,画出四边形A′B′C′D′,并写出C′的坐标;(3)求出四边形ABCD的面积.【考点】Q4:作图﹣平移变换.【专题】解答题【难度】难【分析】(1)在坐标系内描出各点,再顺次连接即可;(2)根据图形平移的性质画出四边形A′B′C′D′,并写出C′点的坐标即可;(3)把四边形分为三个直角三角形和一个矩形,再求其面积即可.【解答】解:(1)如图所示,四边形ABCD即为所求;(2)如图所示,四边形A′B′C′D′即为所求,且C′(1,﹣1);(3)如图所示,S四边形ABCD=×1×2+×4×1+×1×3+4×2=1+2++8=12.5.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.25.60300000÷3000=20100,可改写为(6.03×107)÷(3×103)=2.01×104仿照上面改写的方法,你会发现(a×10m)÷(b×10n)的算法有什么规律吗?请你用发现的规律直接计算(7.329×109)÷(2.1×104)÷(2×102)【考点】48:同底数幂的除法.【专题】解答题【难度】难【分析】根据同底数幂的除法法则找出规律,然后再计算.【解答】根据题意得:(a×10m)÷(b×10n)=(a÷b)×10m﹣n,(7.329×109)÷(2.1×104)÷(2×102)=(7.329÷2.1÷2)×109﹣4﹣2=1.745×103.【点评】本题考查同底数幂的除法,底数不变指数相减,一定要记准法则才能做题.26.已知(x﹣7)x=1,试探究x的可能取值.【考点】6E:零指数幂;1E:有理数的乘方.【专题】解答题【难度】难【分析】分①当x=0时,(x﹣7)x=1成立,②当x=8时,(x﹣7)x=1成立,③当x=6时,(x﹣7)x=1成立,求解即可.【解答】解:①当x=0时,(x﹣7)x=1成立,②当x=8时,(x﹣7)x=1成立,③当x=6时,(x﹣7)x=1成立.综上所述:x的值为0,8,6.【点评】本题主要考查了零指数幂及有理数的乘方,解题的关键是分三种情况讨论.。
2017学年江苏省苏州市昆山市七年级(下)第二次月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列方程中,二元一次方程是()A.xy=1 B.y=3x﹣1 C.x+=2 D.x2+x﹣3=02.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc3.下列多项式中是完全平方式的是()A.2x2+4x﹣4 B.16x2﹣8y2+1 C.9a2﹣12a+4 D.x2y2+2xy+y24.下列多项式中,在有理数范围内不能用平方差公式分解的是()A.﹣x2+y2B.4a2﹣(a+b)2 C.a2﹣8b2D.x2y2﹣15.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣26.若方程组的解x与y相等.则a的值等于()A.4 B.10 C.11 D.127.(x2﹣mx+1)(x﹣1)的积中x的二次项系数为零,则m的值是()A.﹣2 B.﹣1 C.1 D.28.已知,则()A.B.C.D.9.64﹣(3a﹣2b)2分解因式的结果是()A.(8+3a﹣2b)(8﹣3a﹣2b)B.(8+3a+2b)(8﹣3a﹣2b)C.(8+3a+2b)(8﹣3a+2b)D.(8+3a﹣2b)(8﹣3a+2b)10.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C. D.二、填空题(共10小题,每小题3分,满分30分)11.计算:﹣x(2x﹣3y+1)=.12.关于x的方程3x+2a=0的根是2,则a等于.13.利用乘法公式计算:1232﹣124×122=.14.由3x﹣2y=5,得到用x表示y有式子为y=.15.如果多项式x2+kx+4能分解为一个二项式的平方的形式,那么k的值为.16.二元一次方程组的解是.17.是方程3x+ay=1的一个解,则a的值是.18.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为.19.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是.20.对于有理数x、y,定义一种新的运算“*”:x*y=ax+by+7,其中a、b是常数,等式右边为通常的加法和乘法运算.已知3*5=15,4*7=18,则1*(﹣3)=.三、解答题(共8小题,满分60分)21.计算(1)(﹣2a2)(﹣3ab)2(2)(2x﹣1)(x﹣3)(3)(2a+b)2(2a﹣b)2(4)(2x﹣y)2﹣4(x﹣y)(x+2y)22.分解因式(1)m2﹣16n2(2)9x2+18xy+9y2(3)(4a﹣3b)2﹣25b2(4)4x2+3x﹣10.23.解方程组(1)(2).24.已知代数式x2+px+q.(1)当x=1时,代数式的值为2;当x=﹣2时,代数式的值为11,求p、q;(2)当x=时,求代数式的值.25.已知x+y=4,xy=3,求:(1)x2+y2的值;(2)(x﹣y)2的值;(3)x3+y3的值.26.已知关于x,y的方程组和有相同解,求(﹣a)b值.27.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=;(2)代数式为完全平方式,则k=;(3)解方程:=6x2+7.2015-2016学年江苏省苏州市昆山市七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列方程中,二元一次方程是()A.xy=1 B.y=3x﹣1 C.x+=2 D.x2+x﹣3=0【考点】二元一次方程的定义.【分析】解题关键是掌握二元一次方程的定义,根据定义来判断方程是否符合条件.【解答】解:A、xy=1不是二元一次方程,因为其未知数的最高次数为2;B、y=3x﹣1是二元一次方程;C、x+=2不是二元一次方程,因为不是整式方程;D、x2+x﹣3=0不是二元一次方程,因为其最高次数为2且只含一个未知数.故选B.2.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、是整式乘法,故D错误;故选:C.3.下列多项式中是完全平方式的是()A.2x2+4x﹣4 B.16x2﹣8y2+1 C.9a2﹣12a+4 D.x2y2+2xy+y2【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2,形如a2±2ab+b2的式子要符合完全平方公式的形式a2±2ab+b2=(a±b)2才成立.【解答】解:符合完全平方公式的只有9a2﹣12a+4.故选C.4.下列多项式中,在有理数范围内不能用平方差公式分解的是()A.﹣x2+y2B.4a2﹣(a+b)2 C.a2﹣8b2D.x2y2﹣1【考点】因式分解-运用公式法.【分析】利用平方差公式的结果特征判断即可.【解答】解:下列多项式中,在有理数范围内不能用平方差公式分解的是a2﹣8b2,故选C5.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.6.若方程组的解x与y相等.则a的值等于()A.4 B.10 C.11 D.12【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选C.7.(x2﹣mx+1)(x﹣1)的积中x的二次项系数为零,则m的值是()A.﹣2 B.﹣1 C.1 D.2【考点】多项式乘多项式.【分析】直接利用多项式乘法运算法则去括号,进而得出二次项的系数为零,求出答案.【解答】解:∵(x2﹣mx+1)(x﹣1)的积中x的二次项系数为零,∴x3﹣x2﹣mx2+mx+x﹣1=x3﹣(1+m)x2+(1+m)x﹣1,则1+m=0,解得:m=﹣1.故选:B.8.已知,则()A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】先根据非负数的性质列出关于x、y的方程组,求出x、y的值即可.【解答】解:∵,∴,解得.故选C.9.64﹣(3a﹣2b)2分解因式的结果是()A.(8+3a﹣2b)(8﹣3a﹣2b)B.(8+3a+2b)(8﹣3a﹣2b)C.(8+3a+2b)(8﹣3a+2b)D.(8+3a﹣2b)(8﹣3a+2b)【考点】因式分解-运用公式法.【分析】直接利用平方差公式进行分解即可.【解答】解:64﹣(3a﹣2b)2=82﹣(3a﹣2b)2=(8+3a﹣2b)(8﹣3a+2b),故选:D.10.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.二、填空题(共10小题,每小题3分,满分30分)11.计算:﹣x(2x﹣3y+1)=﹣2x2+3xy﹣x.【考点】单项式乘多项式.【分析】单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.【解答】解:﹣x(2x﹣3y+1)=﹣2x2+3xy﹣x.故答案为:﹣2x2+3xy﹣x.12.关于x的方程3x+2a=0的根是2,则a等于﹣3.【考点】一元一次方程的解.【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.【解答】解:把x=2代入3x+2a=0得:3×2+2a=0解得:a=﹣3.故填﹣3.13.利用乘法公式计算:1232﹣124×122=1.【考点】平方差公式.【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=1232﹣×=1232﹣=1232﹣1232+1=1,故答案为:114.由3x﹣2y=5,得到用x表示y有式子为y=.【考点】解二元一次方程.【分析】将x看作已知数,y看作未知数,求出y即可.【解答】解:3x﹣2y=5,移项得:﹣2y=5﹣3x,解得:y=.故答案为:.15.如果多项式x2+kx+4能分解为一个二项式的平方的形式,那么k的值为±4.【考点】完全平方式.【分析】根据完全平方公式得出kx=±2•x•2,求出即可.【解答】解:∵x2+kx+4能分解为一个二项式的平方的形式,∴kx=±2•x•2,解得:k=±4,故答案为:±4.16.二元一次方程组的解是.【考点】解二元一次方程组.【分析】运用加减消元法和代入消元法解方程组.【解答】解:①﹣②得:y=2.把y=2代入①得:x=3.即.17.是方程3x+ay=1的一个解,则a的值是2.【考点】二元一次方程的解.【分析】根据方程的解的定义,将方程的解代入,然后解关于a的一元一次方程即可.【解答】解:∵是方程3x+ay=1的一个解,∴3×3﹣4a=1,解得a=2.故答案为:2.18.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为a+3b.【考点】完全平方公式的几何背景.【分析】1张边长为a的正方形卡片的面积为a2,6张边长分别为a、b的矩形卡片的面积为6ab,9张边长为b的正方形卡片面积为9b2,∴16张卡片拼成一个正方形的总面积=a2+6ab+9b2=(a+3b)2,∴大正方形的边长为:a+3b.【解答】解:由题可知,16张卡片总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴新正方形边长为a+3b.19.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.【考点】公因式.【分析】分别将多项式ax2﹣4a与多项式x2﹣4x+4进行因式分解,再寻找他们的公因式.【解答】解:∵ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2),x2﹣4x+4=(x﹣2)2,∴多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.20.对于有理数x、y,定义一种新的运算“*”:x*y=ax+by+7,其中a、b是常数,等式右边为通常的加法和乘法运算.已知3*5=15,4*7=18,则1*(﹣3)=5.【考点】解二元一次方程组;有理数的混合运算.【分析】根据新定义型运算公式,将条件中的数字代入即可求出a与b的值,然后再将1与﹣3代入公式即可求出答案.【解答】解:由题意可知:3*5=15,4*7=18,∴,∴解得:,∴x*y=x+y+71*(﹣3)=1+(﹣3)+7=5,故答案为5三、解答题(共8小题,满分60分)21.计算(1)(﹣2a2)(﹣3ab)2(2)(2x﹣1)(x﹣3)(3)(2a+b)2(2a﹣b)2(4)(2x﹣y)2﹣4(x﹣y)(x+2y)【考点】整式的混合运算.【分析】(1)原式利用积的乘方运算法则计算,再利用单项式乘单项式法则计算即可得到结果;(2)原式利用多项式乘多项式法则计算即可得到结果;(3)原式利用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果;(4)原式利用完全平方公式,多项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣2a2(9a2b2)=﹣18a4b2;(2)原式=2x2﹣6x﹣x+3=2x2﹣7x+3;(3)原式=(4a2﹣b2)2=16a4﹣8a2b2+b4;(4)原式=4x2﹣4xy+y2﹣4x2﹣4xy+8y2=﹣8xy+9y2.22.分解因式(1)m2﹣16n2(2)9x2+18xy+9y2(3)(4a﹣3b)2﹣25b2(4)4x2+3x﹣10.【考点】提公因式法与公式法的综合运用.【分析】(1)直接利用平方差公式分解因式得出答案;(2)首先提取公因式9,进而利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式进而合并同类项即可;(4)直接利用十字相乘法分解因式得出答案.【解答】解:(1)m2﹣16n2=(m+4n)(m﹣4n);(2)9x2+18xy+9y2=9(x2+2xy+y2)=9(x+y)2;(3)(4a﹣3b)2﹣25b2=(4a﹣3b﹣5b)(4a﹣3b+5b)=(4a﹣8b)(4a+2b)=8(a+2b)(2a+b);(4)4x2+3x﹣10=(x+2)(4x﹣5).23.解方程组(1)(2).【考点】解三元一次方程组;解二元一次方程组.【分析】(1)根据解二元一次方程组的方法先将二元一次方程组转化为一元一次方程,即可解答本题;(2)先将三元一次方程组转化为二元一次方程组,再转化为一元一次方程,本题得以解决.【解答】解:(1)①+②,得3x=6,解得,x=2,将x=2代入①,得y=3,故原方程组的解是;(2)①×3+②,得4x+5y=22④③﹣①,得x﹣2y=﹣1⑤④﹣⑤×4,得13y=26,解得,y=2,将y=2代入⑤,得x=3,将x=3,y=2代入①,得z=1,故原方程组的解是.24.已知代数式x2+px+q.(1)当x=1时,代数式的值为2;当x=﹣2时,代数式的值为11,求p、q;(2)当x=时,求代数式的值.【考点】解二元一次方程组.【分析】(1)将x与y的两对值代入代数式x2+px+q列出p和q的二元一次方程组,求出p 与q的值;(2)由p与q的值确定出解析式,把x=代入计算求出y的值即可.【解答】解:(1)当x=1时,代数式的值为2;当x=﹣2时,代数式的值为11,即,解得:p=﹣2,q=3;(2)由(1)得:代数式x2﹣2x+3,将x=代入得:代数式的值为.25.已知x+y=4,xy=3,求:(1)x2+y2的值;(2)(x﹣y)2的值;(3)x3+y3的值.【考点】完全平方公式.【分析】根据完全平方公式(x±y)2=x2±2xy+y2,x3+y3=(x+y)(x2﹣xy+y2)把原式变形后求值.【解答】解:(1)x2+y2=(x+y)2﹣2xy=16﹣6=10;(2)(x﹣y)2=(x+y)2﹣4xy=16﹣12=4;(3)x3+y3═(x+y)(x2﹣xy+y2)=4×7=28.26.已知关于x,y的方程组和有相同解,求(﹣a)b值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.【解答】解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.27.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.【考点】二元一次方程组的应用.【分析】(1)根据题意可知,本题有两个未知数:平均每分钟一道正门和一道侧门各通过多少名学生.等量关系有两个:当同时开启一道正门和两道侧门时,2min内可以通过560名学生.当同时开启一道正门和一道侧门时,4min内可以通过800名学生.根据以上条件可以列出方程组求解;(2)根据(1)的数据,可以求出拥挤时5min四道门可通过的学生人数,教学大楼最多的学生人数,还可以求出全大楼学生通过这4道门所有的时间,再比较.【解答】解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)解法一:这栋楼最多有学生4×8×45=1440(名),拥挤时5min四道门可通过5×2××(1﹣20%)=1600(名),∵1600>1440.∴建造的4道门符合安全规定.解法二:还可以求出紧急情况下全大楼学生通过这4道门所用时间:=4.5min.4.5<5,因此符合安全规定.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=﹣;(2)代数式为完全平方式,则k=±3;(3)解方程:=6x2+7.【考点】完全平方式.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.2016年11月21日。