离散型随机变量的期望与方差
- 格式:pdf
- 大小:139.02 KB
- 文档页数:4
期望与方差公式离散型随机变量连续型随机变量概述:在概率论和数理统计中,期望和方差是两个重要的统计量。
它们用于描述随机变量的集中程度和离散程度。
本文将介绍期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。
一、离散型随机变量的期望和方差公式:离散型随机变量是指在有限或可数的样本空间内取值的随机变量。
对于一个离散型随机变量X,其期望和方差的公式如下:1. 期望公式:期望是用来衡量随机变量取值的中心位置,常表示为E(X)。
对于离散型随机变量X,其期望的计算公式为:E(X) = ∑[x * P(X = x)]其中,x表示随机变量X取到的每个可能值,P(X = x)表示相应取值的概率。
2. 方差公式:方差是用来衡量随机变量取值的离散程度,常表示为Var(X)或σ²。
方差的计算公式为:Var(X) = ∑[(x - E(X))² * P(X = x)]其中,x表示随机变量X的每个可能值,P(X = x)表示相应取值的概率,E(X)表示X的期望。
二、连续型随机变量的期望和方差公式:连续型随机变量是指取值在某一连续区间内的随机变量。
对于一个连续型随机变量X,其期望和方差的公式如下:1. 期望公式:连续型随机变量的期望的计算公式为:E(X) = ∫[x * f(x)] dx其中,f(x)表示随机变量X的概率密度函数。
2. 方差公式:连续型随机变量的方差的计算公式为:Var(X) = ∫[(x - E(X))² * f(x)] dx其中,f(x)表示随机变量X的概率密度函数,E(X)表示X的期望。
总结:本文介绍了期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。
对于离散型随机变量,期望的计算公式为E(X) = ∑[x * P(X = x)],方差的计算公式为Var(X) = ∑[(x - E(X))² * P(X = x)]。
对于连续型随机变量,期望的计算公式为E(X) = ∫[x * f(x)] dx,方差的计算公式为Var(X) = ∫[(x - E(X))² * f(x)] dx。
岚山一中导学学案学习改写人生,反思启迪智慧离散型随机变量的期望和方差【怎么考】1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题.【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题. 【知识梳理】1、离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )= 为随机变量X 的均值或 ,它反映了离散型随机变量取值的 . (2)方差称D (X )= i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 的 ,其 为随机变量X 的标准差. 2、三种分布(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p );(2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p );(3)若X 服从超几何分布,则E (X )=n MN. 3、六条性质(1)E (C )=C (C 为常数)(2)E (aX +b )=aE (X )+b (a 、b 为常数)(3)E (X 1+X 2)=EX 1+EX 2(4)D (aX +b )=a 2·D (X ) 【基础自测】1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .2 2、已知X 的分布列为设Y =2X +3,则E (Y )的值为( ).A.73 B .4 C .-1 D .13、(2010·湖北)某射手射击所得环数ξ的分布列如下: 已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.94.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 【考向透析】【例1】(2012济南一模)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第k 号卡片恰好落入第k 号小盒中,则称其为一个匹对,用ξ表示匹对的个数. (1)求第2号卡片恰好落入第2号小盒内的概率; (2)求匹对数ξ的分布列和数学期望ξE .【例2】(2012日照一模)某校高二年级甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名乒乓球选手,学校计划从甲、乙两班各选2名选手参加体育交流活动。
离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。
期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。
在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。
期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。
离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。
方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。
运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。
可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。
总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。
以上就是关于离散型随机变量期望和方差的主要内容。
离散随机变量的期望与方差离散随机变量是概率论中的一个重要概念,它在描述随机现象中的离散取值时起到了关键作用。
离散随机变量的期望与方差是两个重要的统计量,对于揭示随机变量的特征及其分布有着重要意义。
本文将详细介绍离散随机变量的期望与方差的计算方法及其应用。
一、离散随机变量的期望离散随机变量的期望指的是随机变量取各个值时的加权平均值,也可以理解为该变量的平均值。
假设离散随机变量X的取值为{x1, x2, x3, ..., xn},相应的概率为{p1, p2, p3, ..., pn},则离散随机变量的期望可用以下公式表示:E(X) = x1*p1 + x2*p2 + x3*p3 + ... + xn*pn其中,E(X)表示离散随机变量X的期望值。
举个例子来说明,假设X表示一枚均匀骰子的点数,它可以取1、2、3、4、5、6这六个值,并且每个值的概率都是1/6。
那么X的期望为:E(X) = 1*(1/6) + 2*(1/6) + 3*(1/6) + 4*(1/6) + 5*(1/6) + 6*(1/6) = 3.5这意味着,如果我们不断地进行均匀骰子的试验,并记录每次试验的点数,那么这些点数的平均值会接近于3.5。
二、离散随机变量的方差离散随机变量的方差是用来衡量随机变量的取值对其期望的偏离程度。
方差的计算方法如下:Var(X) = E((X-E(X))^2) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn其中,Var(X)表示离散随机变量X的方差。
继续以均匀骰子的点数为例,我们计算其方差:Var(X) = (1-3.5)^2*(1/6) + (2-3.5)^2*(1/6) + (3-3.5)^2*(1/6) + (4-3.5)^2*(1/6) + (5-3.5)^2*(1/6) + (6-3.5)^2*(1/6) ≈ 2.92方差的平方根被称为标准差,它度量了离散随机变量的取值波动程度。
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。