2018年中考数学总复习 第八单元 统计与概率 专题31 开放型问题试题 新人教版 Word版 含答案
- 格式:doc
- 大小:116.00 KB
- 文档页数:1
海璧:2018 全国中考统计概率题【2018 安徽】“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为(2)赛前规定,成绩由高到低前 60﹪人参赛选手获奖,某参赛选手的比赛成绩为 78 分,试判断他能否获奖,并说明理由(3)成绩前 4 名是 2 名男生和 2 名女生,若从他们中任选 2 人作为获奖代表发言,试求恰好选中 1 男 1 女的概率【2018 北京】某年级共有 300 名学生.为了解该年级学生 A,B 两门课程的学习情况,从中随机抽取 60 名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A 课程成绩的频数分布直方图如下(数据分成 6 组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100):b.A 课程成绩在70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数海壁教育- 1 - 只教数学A 75.8m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中 m 的值(2)在此次测试中,某学生的 A 课程成绩为 76 分,B 课程成绩为 71 分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是(3)假设该年级学生都参加此次测试,估计 A 课程成绩跑过 75.8 分的人数【2018 福建】甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资金+揽件提成” .其中基本工次为 70 元/日,每揽收一件抽成 2 元;乙公司无基本工资,仅揽件提成计算工资.若当日揽件数不超过 40,每件提成 4 元;若当日揽件数超过 40,超过部分每件多提成 2 元.下图是四月份两家公司人均揽件数条形统计图:(1)现从四月份的 30 天中随机抽取 1 于,求这一天甲公司揽件员人均揽件数超过 40(不含 40)的概率;(2)根据以上信息,以四月份的屡依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题①估计甲公司各揽件员的日平均揽件数②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明了理由.海壁教育- 2 - 只教数学【2018 兰州】学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题:(1)a= ,b= 4上上上上(2)该调查统计数据的中位数是,众数是(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数(4)若该校共有 2 000 名学生,根据调查结量,估计该校学生在一周内借阅图书“4次及以上”的人数.海壁教育- 3 - 只教数学【2018 兰州】在一个不透明的布袋里装有 4 个标有 1,2,3,4 的小球,它们形状,大小完全相同.李强从布袋里随机取出一个小球.记下数字为x,王芳在剩下的3 个小球中随机取出一个小球,记下数字为 y,这样确定了点M 的坐标(x,y).(1)画树状图或列表,写出点 M 所有可能的坐标(2)求点 M(x,y)在函数 y=x+1 的图象上的概率【2018 定西】在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【2018 定西】“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不海壁教育- 4 - 只教数学完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C 对应的扇形的圆心角是度(2)补全条形统计图(3)所抽取学生的足球运球测试成绩的中位教会落在等级(4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人?【2018 广东】某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 21-1 图和题 21-2 图所示的不完整统计图.(1)被调查员工人数为人(2)把条形统计图补充完整(3)若该企业有员工 10000 人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?海壁教育- 5 - 只教数学【2018 深圳】某学校为了调查学生的兴趣爱好,抽查了部分学生,并绘制成如下表格和条形统计图。
浙江省2018年中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第八单元统计与概率第32课时数据的分析与应用试题的全部内容。
第八单元统计与概率(建议答题时间:40分钟)1。
(2017宿迁)一组数据:5,4,6,5,6,6,3。
这组数据的众数是()A。
6 B。
5 C. 4 D. 32。
(2017苏州)有一组数据:2,5,5,6,7,这组数据的平均数为()A。
3 B. 4 C。
5 D. 63。
校园文化艺术节期间,有19位同学参加了校十佳歌手比赛,所得的分数互不相同,取前10位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这19位同学的()A。
平均数 B. 中位数C. 众数D. 方差4. (2017黄冈)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为( )A。
12 B。
13 C。
13.5 D. 145。
(2017聊城)为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A。
25元 B. 28.5元 C。
29元 D. 34。
5元6. (2017温州模拟)甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为10。
阶段测评(八)统计与概率时间:90分钟满分:120分一、选择题(每小题3分,共30分)1.(2017重庆中考A卷)下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级(3)班学生肺活量情况的调查2.(2017苏州中考)有一组数据:2,5,5,6,7,这组数据的平均数为(C)A.3 B.4 C.5 D.63.(2017苏州中考)下列成语描述的事件为随机事件的是(B)A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.(2017安顺中考)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是(B)A.16,10.5 B.8,9C.16,8.5 D.8,8.55.(常德中考)下列说法正确的是(D)A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出1个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖概率是千分之一.那么,买这种彩票1 000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上6.(2017苏州中考)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2 400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为(C)A.70 B.720 C.1 680 D.2 3707.(2017德州中考)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码39 40 41 42 43平均每天销售数量/件10 12 20 12 12 该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是(C)A.平均数B.方差C.众数D.中位数8.(2017枣庄中考)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm) 185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择(A)A.甲B.乙C.丙D.丁9.(2017菏泽中考)某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是( D )A .平均数是-2B .中位数是-2C .众数是-2D .方差是710.(乐山中考)现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1,2,3,4,5,6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( C )A .13B .16C .19D .112二、填空题(每小题4分,共24分)11.“明天的太阳从西方升起”这个事件属于__不可能__(选填“必然”“不可能”或“不确定”)事件. 12.(2017天津中考)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__56__.13.(2017长沙中考)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6 m ,方差分别是s 2甲=1.2,s 2乙=0.5,则在本次测试中,__乙__(选填“甲”或“乙” )同学的成绩更稳定.14.(2017益阳中考)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为__48__.15.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是__9__.16.(内江中考)任取不等式组⎩⎪⎨⎪⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为__13__.三、解答题(共66分)17.(8分)如图,韦玲和贾静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果; (2)求韦玲胜出的概率.解:(1)画树状图如图:由树状图可知共有9种等可能的结果;(4分)(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率是13.(8分)18.(8分)(乐山中考)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是______,乙的中位数是______;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定? 解:(1)8;7.5;(2分)(2)x 乙=110(7+10+…+7)=8;(4分)s 2甲=110[(6-8)2+(10-8)2+…+(7-8)2]=1.6, s 2乙=110[(7-8)2+(10-8)2+…+(7-8)2]=1.2, ∵s 2乙<s 2甲,∴乙运动员的射击成绩更稳定.(8分)19.(8分)(2017连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋、投放,其中A 类指废电池、过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾、C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率. 解:(1)甲投放的垃圾恰好是A 类的概率是13;(2分)(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种. 所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23. 即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23. (8分)20.(8分)(岳阳中考)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI 指数 质量等级 天数/天 0~50优m51~100 良44101~150 轻度污染 n151~200 中度污染4201~300 重度污染2300以上严重污染 2(1)统计表中m=________,n=________;扇形统计图中,空气质量等级为“良”的天数占________%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天;(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因.据此,请你提出一条合理化建议.解:(1)20;8;55;(3分)(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天);补全统计图如图;(5分)(3)建议不要燃放烟花爆竹.(8分)21.(8分)(2017长沙中考)为了传承中华民族优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a=________;b=________;(2)请计算扇形统计图中B组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.解:(1)0.3;45;(2分)(2)360°×0.3=108°;(4分)(3)甲乙丙丁甲乙 √ 丙 × × 丁 × × ×由表格可知,甲、乙两名同学都被选中的概率为16.(8分)22.(8分)(2016金华中考模拟)小红想了解她所居住的小区500户居民的家庭月食品支出情况,从中随机调查了40户居民家庭的情况(支出取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图:频数分布表分组 频数 频率 1 600~1 799 2 0.050 1 800~1 999 6 0.150 2 000~2 199 2 200~2 399 9 0.225 2 400~2 599 3 0.075 2 600~2 8002 0.050 合计401.000根据表中提供的信息,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;(3)请你估计该小区居民的家庭月食品支出不足2 000元的户数大约有多少户. 解:(1)18;0.450;(2分) (2)补全的直方图如图所示;(4分)(3)第一组和第二组的频率之和为0.050+0.150=0.2,0.2×500=100(户).该小区居民的家庭月食品支出不足2 000元的户数大约有100户.(8分)23.(9分)(2017苏州中考)七年级(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图:男、女生所选项目人数统计表项目 男生(人数)女生(人数)机器人 7 9 3D 打印 m 4 航模 2 2 其他5n根据以上信息解决下列问题:(1)m=________,n=________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.解:(1)8,3;(2分)(2)144°;(4分)(3)将选航模项目的2名男生编上号码1,2,将2名女生编上号码3,4.用表格列出所有可能出现的结果:第二个第一个1 2 3 41 (1,2) (1,3) (1,4)2 (2,1) (2,3) (2,4)3 (3,1) (3,2) (3,4)4 (4,1) (4,2) (4,3)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能,∴P(1名男生、1名女生)=812=23.(9分)24.(9分)(2017山西中考)从共享单车,共享汽车等共享出行到共享充电宝、共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34 520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是________亿元;②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识;(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A ,B ,C ,D 的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A ,B ,C ,D 表示)解:(1)①2 038;②“知识技能”的增长率为:610-200200=2.05=205%.“资金”的增长率为:20 863-10 00010 000=1.086 3≈109%;对于这两个领域的认识,答案不唯一.例如:知识技能领域交易额较小,但是增长率最高,达到了200%以上,其发展速度惊人;(3分)(2)列表如下:第二张第一张 A B C D A (A ,B)(A ,C) (A ,D) B (B ,A) (B ,C) (B ,D) C (C ,A) (C ,B) (C ,D)D(D ,A)(D ,B)(D ,C)(6分)或画树状图如下:由列表(或树状图)可知一共有12种可能的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种.所以,P(抽到“共享出行”和“共享知识”)=212=。
江西省2018年中考数学总复习第1部分基础过关第八单元统计与概率课时30 概率作业编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省2018年中考数学总复习第1部分基础过关第八单元统计与概率课时30概率作业)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省2018年中考数学总复习第1部分基础过关第八单元统计与概率课时30概率作业的全部内容。
课时30 概率(时间:30分钟分值:60分)评分标准:选择填空每题3分.基础过关1.(2017自贡)下列成语描述的事件为随机事件的是( )A.水涨船高ﻩ B.守株待兔C.水中捞月ﻩD.缘木求鱼2.(2017天水)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为错误!C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1 000次,正面朝上的次数一定是500次3.(2017兰州)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A.20 B.24C.28ﻩD.304.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0,1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为( )A.错误! B.错误!C.错误!D.错误!5.如图1,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是()图1A.错误!ﻩB.错误!C.错误!D.错误!6.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则他第三次抛这枚硬币时,正面向上的概率是__________.7.(2017通辽)毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是__________.8.已知:四边形ABCD的对角线AC,BD相交于点O,给出下列4个条件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC.从中任取两个条件,能推出四边形ABCD是平行四边形的概率是__________.9.(10分)如图2,小明家客厅里装有一种三位单极开关,分别控制着A(楼梯),B(客厅),C(走廊)三盏电灯,在正常情况下,小明按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.图2(1)若小明任意按下一个开关,则下列说法正确的是( )A.小明打开的一定是楼梯灯ﻩB.小明打开的可能是卧室灯C.小明打开的不可能是客厅灯ﻩD.小明打开走廊灯的概率是\f(1,3)(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.10.(10分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)求乙抽到的牌是红桃3的概率;(2)甲、乙两人做游戏,现有两种方案:A方案,若两次抽得相同花色则甲胜,否则乙胜;B 方案,若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜概率更高?拓展提升1.(2017包头)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为( )A.\f(1,4)ﻩB.1 3C.错误!ﻩD.错误!2.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤2,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是__________.3.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用.(使用“求助”可以让主持人去掉其中一题的一个错误选项)(1)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率;(2)如果小明第一题就使用“求助”,求小明顺利通关的概率;从概率的角度分析,你建议小明在第几题使用“求助".课时30 概率基础过关 1.B 2。
专题28图表信息问题
2016~201
8详解详析第35页
1.(2017浙江温州一模,2,3分)为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则书法兴趣小组的频率是(C)
A.0.1
B.0.15
C.0.2
D.0.3
2.(2017湖北宜昌模拟,10,3分)16名运动员的身高如表:
则该校16名运动员身高的平均数和中位数分别是(B)
A.173 cm,173 cm
B.174 cm,174 cm
C.173 cm,174 cm
D.174 cm,175 cm
3.(2018中考预测)如图,一次函数y=ax+b(a≠0)与二次函数y=ax2+bx(a≠0)的图象大致是(B)
〚导学号92034124〛4.(2017湖南衡阳模拟,13,5分)在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有5个.〚导学号92034125〛
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。
本文档仅用于百度文库的上传使用。
2。
单元检测八 统计与概率(时间90分钟 满分120分)一、选择题(每小题4分,共40分) 1.“a 是实数,|a|≥0”这一事件是(A)A.必然事件B.不确定事件C.不可能事件D.随机事件2.下列调查中,①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟十一号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是(B) A.① B.② C.③ D.④3.中秋节前,学校食堂推荐了A ,B ,C 三种不同型号的月饼,对全校师生爱吃哪种型号的月饼进行了调查,以决定采购的型号.下面统计量中,最值得关注的是(B) A.方差 B.众数 C.中位数 D.平均数4.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是(B) A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况5.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是(D) A.购买100个该品牌的电插座,一定有99个合格B.购买1 000个该品牌的电插座,一定有10不个合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格6.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个黑球且摸到黑球的概率为,那么口袋中球的总数为(A) A.12个 B.9个 C.6个 D.3个7.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是(C)A .B .C .D .8.某校九年级(1)班全体学生:成绩/分35 39 42 44 45 48 5人数/人 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是(D) A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分 9.某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是(C)A.扇形甲的圆心角是72°B.学生的总人数是900人C.甲地区的人数比丙地区的人数少180人D.丙地区的人数比乙地区的人数多180人〚导学号92034229〛10.从1,2,3,4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x2上的概率是(B)A.B.C. D.二、填空题(每小题5分,共20分)11.为了了解某区5 500,统计结果列表如下:那么样本中体重在50~55范围内的频率是0.21.12.在开展“国学诵读”活动中,某校为了解全校1 300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图,根据图中数据,估计该校1 300名学生课外阅读时间不少于7小时的人数是520.13.某班七个兴趣小组人数分别为4,4,5,5,x,6,7.已知这组数据的平均数是5,则这组数据的众数和中位数分别是4,5.14.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.三、解答题(共60分)15.(6分)人类的血型一般可分为A,B,AB,O型四种.某市中心血站2017年共有8万人无偿献血,血站统计人员由电脑随机选出20人,血型分别是:O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.(1)请设计统计表分类统计这20人各类血型人数;(2)若每位献血者平均献血200毫升,一年中该市各医院O型血用血量约为6×106毫升,请你估计2017年这8万人所献的O型血是否够用?解(1)统计表格如图:血A B AB O型人6 4 2 8数(2)×8×104×200=6.4×106(毫升),因为6.4×106>6×106,所以O型血够用.16.(8分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率:(1)抽取1名,恰好是甲;抽取2名,甲在其中.解(1)从甲、乙、丙3名同学中随机抽取1名环保志愿者,恰好是甲的概率是.(2)从甲、乙、丙3名同学中随机抽取2名环保志愿者,所有可能出现的结果(甲,乙),(甲,丙),(乙,丙),共有3种,它们出现的可能性相同.所有可能的结果中,满足“甲在其中”(记为事件A)的结果只有2种,所以P(A)=.〚导学号92034230〛17.(8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加.本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐.下图是3×3阶魔方赛A区域30名爱好者完成时间统计图.求:3×3阶魔方赛A区域爱好者完成时间条形图(1)A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).(2)若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后本次大赛进入下一轮角逐的人数.(3)若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱(结果用最简分数表示).解(1)完成时间小于8秒的人数有1+3=4,总人数是30,所以A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例是=;(2)30名中有4名进入下一轮,则可估计600名进入下一轮的人数为600×=80.(3)根据题意得解得所以A区域共有30人,完成时间为8秒的有7人,则该项目赛该区域完成时间为8秒的爱好者的概率是.18.(8分)甲、乙两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示.(1)请你根据图中的数据填写表格:从平均数和方差相结合看,分析谁的成绩好些?从发展趋势来看,谁的成绩好些.如图所示:甲的平均数为(7+8+9+8+8)=8,=[(7-8)2+(8-8)2+(8-8)2+(9-8)2+(8-8)2]=0.4;由图中数据可得:乙组数据的众数为8,填表如下:(2)从平均数和方差相结合看,甲的成绩好些,从发展趋势来看,乙的成绩好些.19.(10分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练.将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图.优秀人数条形统计图优秀率折线统计图请根据以上两图解答下列问题:(1)该班总人数是: ;(2)根据计算,请你补全两个统计图;观察补全后的统计图,写出一条你发现的结论.),故答案为40.(2)第四次的优秀人数=40×85%=34;第三次的优秀率=32÷40=80%.补图如下优秀人数条形统计图优秀率折线统计图(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.20.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人.解(1)①150;②略;③13.3%.(2)两人中至少有一个给“好评”的概率是.〚导学号92034231〛21.(10分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华优秀文化,我市某中学举行“汉字听写”大赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为;(3)组委会确定从本次比赛获得等级A的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知等学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是1名男生和1名女生的概率.由题图可知,成绩为A等级的学生人数占总人数的15%,则参加比赛的学生总人数为=20;故答(2)由题图可知,成绩为C等级的学生人数占总人数的m%,人数为8,×100%=40%,故m的值为40;(3)所选2名学生恰好是1名男生和1名女生的概率是P(1名男生和1名女生)==.〚导学号92034232〛。
第八单元统计与概率数据的收集与统计图A层基础练1.下列调查中,最适宜采用全面调查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查2.每年的4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况3.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少图K30-14.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如图K30-1的扇形统计图,则在被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60C.30,60 D.45,40图K30-25.学校为了解九年级学生参加课外兴趣小组的情况,随机调查了40名学生,将结果绘制成如图K30-2所示的统计图,则九年级学生参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.36.为了了解试验田里水稻的长穗情况,适合采用的调查方式是________.7.某年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图①和图②是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.图K30-38.一个样本的50个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率为________.图K30-49.某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一幅不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是________.10.某校为了了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数直方图图K30-5根据图表信息,(1)表中的a=________,b=________.(2)请把频数直方图补充完整.(画图后请标注相应的数据)(3)若该校共有1 200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?B层能力练11.要对大批量生产的商品进行检验,下列做法比较合适的是()A.把所有商品逐一进行检验B.从中抽取1件进行检验C.从中挑选几件进行检验D.从中按抽样规则抽取一定数量的商品进行检验12.如图K30-6是某手机店1~4月份的两个统计图,分析统计图,对3、4月份某品牌手机的销售情况四位同学得出了以下四个结论,其中正确的为()图K30-6A.4月份该品牌手机销售额为65万元B.4月份该品牌手机销售额比3月份有所上升C.4月份该品牌手机销售额比3月份有所下降D.3月份与4月份的该品牌手机销售额无法比较,只能比较该店销售总额13.爱心图书馆决定给9个贫困山区捐赠图书,管理员小张对各个地区捐赠情况作了统计,并制成了如下图表,下列结论不正确的是()图K30-7A.捐书的总数为200万册B.捐书数据的中位数是16万册C.捐书数据的众数是60万册D.捐书数扇形统计图中表示G的扇形的圆心角为30°图K30-814.[2017·宁夏]某商品四天内每天每斤的进价与售价信息如图K30-8所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天图K30-915.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图K30-9所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为________名.16.某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图(如图K30-10).请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有________人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是________;(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.图K30-10C层拓展练17.某中学为开拓学生视野,开展了“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,如图K30-11,请你根据统计图的信息回答下列问题:图K30-11(1)本次调查的学生总数为________人,被调查学生的课外阅读时间的中位数是________小时,众数是________小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是________;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人.参考答案1.B 2.B 3.D 4.B 5.D6.抽样调查7.6 0008.0.49.40%10.解:(1)由题意可得:a=50×0.24=12(人).∵m=4,∴b=450=0.08,故填12,0.08;(2)如图所示:(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:(1-0.20-0.24)×1 200=672(人).11.D12.B[解析] 从条形统计图可以得到3月份、4月份手机销售总额分别为60万元、65万元,从折线统计图可以得到3月份、4月份该品牌手机销售额占该手机店当月手机销售总额的百分比分别为18%,17%,∴3月份该品牌手机销售额为60×18%=10.8(万元),4月份该品牌手机销售额为65×17%=11.05(万元),10.8<11.05,即4月份该品牌手机销售额比3月份多,故选B.13.D14.B15.6016.解:(1)由扇形统计图和条形统计图可得参加这次跳绳测试的共有20÷40%=50(人).故填50.(2)优秀的人数为50-3-7-10-20=10.补全条形统计图如图所示:(3)“中等”部分所对应的圆心角的度数是1050×360°=72°.故填72°.(4)该校初二年级跳绳成绩为“优秀”的人数为480×1050=96(人).答:该校初二年级跳绳成绩为“优秀”的人数为96人.17.解:(1)∵课外阅读时间为3小时的共10人,占总人数的20%,∴学生总数为1020%=50(人).∵课外阅读时间为4小时的人数占32%,∴课外阅读时间为4小时的人数为50×32%=16(人), ∴课外阅读时间为4小时的男生人数为16-8=8(人),∴课外阅读时间为6小时的男生人数为 50-6-4-8-8-8-12-3=1(人),∴课外阅读时间为3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人, ∴中位数是4小时,众数是5小时. 故填50,4,5. (2)如图所示.(3)∵课外阅读时间为5小时的人数是20人, ∴2050×360°=144°.故填144°. (4)∵课外阅读时间为6小时的人数是4人, ∴700×450=56(人).答:九年级一周课外阅读时间为6小时的学生大约有56人.数据的分析A 层基础练1.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的( )A .平均数B .中位数C .方差D .众数2.下列说法正确的是( )A .数据3,4,4,7,3的众数是4B .数据0,1,2,5,a 的中位数是2C .一组数据的众数和中位数不可能相等D .数据0,5,-7,-5,7的中位数和平均数都是03.若一组数据3,x ,4,5,6的众数是3,则这组数据的中位数为( )A.3 B.4C.5 D.64.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是()A.4 B.7 C.8 D.195.某校男子足球队的年龄分布如图K31-1所示,则根据图中信息可知这些队员年龄的平均数、中位数分别是()图K31-1A.15.5,15.5 B.15.5,15C.15,15.5 D.15,156.[2017·枣庄]下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,A.甲B.乙C.丙D.丁7.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是________(填“平均数”“众数”或“中位数”).8.质检部门为了检测某品牌饮料的质量,从同一批次共5000件产品中随机抽取75件进行检测,结果其中3件有质量问题,由此估计这一批次产品中有质量问题的件数是________.9.则该校女子排球队队员的平均年龄是________岁.10.[2017·巴中]一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是________.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=________.B层能力练12.那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,513.对于不同的x,..A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差14.已知一组数据:x1,x2,x3,x4,x5,x6的平均数是2,方差是3,则另一组数据:3x1-2,3x2-2,3x3-2,3x4-2,3x5-2,3x6-2的平均数和方差分别是()A.2,3 B.2,9C.4,25 D.4,2715.一组数据1,4,6,x的中位数和平均数相等,则x的值是________.图K31-216.若干名同学制作迎校运会卡通图片,他们制作的卡通图片张数的条形统计图如图K31-2所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.17.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:图K31-3(1)图①中a的值为________;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.C层拓展练18.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________.19.某市团委举办了“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表.(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.图K31-4乙校成绩统计表参考答案1.B 2.D 3.B 4.A 5.D 6.A 7.中位数 8.200 9.15 10.5 11.3.6 12.B 13.B 14.D 15.-1或3或9 [解析] 有三种情况: ①四个数中x 最小, 则1+42=11+x 4,解得x =-1.②四个数中x 最大, 则6+42=11+x 4,解得x =9.③四个数中x 既不最小也不最大,则x +42=11+x 4,解得x =3.故填-1或3或9.16.b >a >c17.解:(1)根据题意得:1-20%-10%-15%-30%=25%,则a 的值是25.故填25; (2)观察条形统计图得:x =1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3=1.61(m);∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65 m ;将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60, ∴这组数据的中位数是1.60 m. (3)能.18.6 [解析] 根据题意得⎩⎨⎧3+a +2b +5=24,a +6+b =18,解得⎩⎨⎧a =8,b =4,则新数据为3,8,8,5,8,6,4.排序后可知中位数为6.故填6.19.解:(1)6÷30%=20,3÷20×100%=15%, 360°×15%=54°,故所填的数据为54°. (2)20-6-3-6=5,统计图补充如下:(3)20-1-7-8=4,∴x 乙=70×7+80×4+90×1+100×820=85(分).(4)∵s 甲2<s 乙2,∴甲校20名同学的成绩比较整齐. O =60°,OB =CO ,∴△OBF ≌△COE ,∴BF =OE.概率A 层基础练 1.[2017·自贡]下列成语描述的事件为随机事件的是( ) A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼2.一个均匀的正方体木块,每个面上都分别标有数字1,3,5,7,9,11,任意掷出这个正方体木块,朝上的数字为偶数的可能性是( )A .很可能B .不可能C .不太可能D .可能3.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次奖必有一次抽到一等奖 B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( ) A.15 B.25 C.35 D.45图K32-15.点O 1,O 2,O 3为三个大小相同的正方形的中心,一只小虫在如图K32-1所示的实线围成的区域内爬行,则小虫停留在阴影区域内的概率是( )A.17B.15C.27D.25图K32-26.如图K32-2,在5×5的正方形网格中,从在格点上的点A ,B ,C ,D 中任取三点,所构成的三角形恰好是直角三角形的概率为( )A.13B.12C.23D.347.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是( )A.12B.13C.23D.168.如图K32-3所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.图K32-3图K32-49.[2017·娄底]在如图K32-4所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是________. 10.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中.通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.11.[2017·六盘]水端午节当天,小明带了四个粽子(除味道不同外,其他均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能结果. (2)请你计算小红拿到的两个粽子刚好是同一味道的概率.12.在一个不透明的盒子里装有黑、白两种颜色的球共40个,这些球除颜色外其余完全相同.小颖做摸球试验,搅匀后,她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)(2)若从盒子里随机摸出一个球,则摸到白球的概率的估计值为________; (3)试估算盒子里黑、白两种颜色的球各有多少个.B 层能力练13.在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n 的图象的顶点在坐标轴上的概率为( )A.25B.15C.14D.12图K32-514.如图K32-5,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A.613B.513C.413D.31315.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗16.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是________.17.[2017·福建]一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是________.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x ,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y.(1)用列表法或画树状图法表示出(x ,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x ,y)落在反比例函数y =6x 的图象上的概率;(3)求小兰、小田各取一次小球所确定的数x ,y 满足y <6x 的概率.C 层拓展练 19.[2017·聊城]如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.参考答案1.B 2.B 3.C 4.B 5.B 6.D 7.C 8.12 9.1310.811.解:(1)记两个是大枣味的粽子分别为A 1,A 2,两个火腿味的分别为B 1,B 2. 画树状图如图所示:由树状图可知共有12种等可能的结果,分别为(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,B 1),(A 2,B 2),(B 1,A 1),(B 1,A 2),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,B 1).(2)由(1)可知,一共有12种可能结果,小红拿到的两个粽子刚好是同一味道的有4种结果,所以P(同一味道)=412=13.12.解:(1)根据表中数据,当n 很大时,摸到白球的频率将会接近0.6,故答案为0.6; (2)∵摸到白球的频率为0.6,∴估计摸到白球的概率P =0.6,故答案为0.6; (3)盒子里白、黑两种颜色的球各有40×0.6=24(个),40-24=16(个). 13.A 14.B15.C [解析] ∵刚开始取得白色棋子的概率是25.∴x x +y =25,∵再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,∴x x +y +6=14,联立方程组⎩⎨⎧x x +y =25,x x +y +6=14,解得x =4,y =6.经检验,x =4,y =6是原方程组的解.∴原来盒中有白色棋子4颗,故选C. 16.1417.红球18.解:(1)列表如下:,(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)∵点(x ,y)落在反比例函数y =6x 的图象上的结果有(2,3),(3,2),共2种,∴点(x ,y)落在反比例函数y =6x 的图象上的概率为216=18.(3)∵满足y <6x 的结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(3,1),(4,1),共8种,∴所确定的数x ,y 满足y <6x 的概率为816=12.19.17[解析] ∵m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有:3×7=21(种)结果.∵方程x 2+nx+m=0有两个相等实数根,则Δ=n2-4m=0,有(0,0),(1,2),(1,-2)三种结果,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是321=17,故答案为17.。
专题31开放型问题
2016~201
8详解详析第36页
1.
(2017河北衡水模拟,15,3分)如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是CE=CB(或∠D=∠A或∠E=∠B)(只写出一个条件).
2.(2016河北正定期末,13,3分)写出一个在实数范围内能用平方差公式分解因式的多项式:答案不唯一,如x2-1.
3.(2015吉林长春二模,13,3分)若函数y=的图象在同一象限内,y随x的增大而增大,则m的值可以是答案不唯一,如-1(只需m<1即可).(写出一个即可)
4.(2017广东韶关模拟,18,6分)先化简,再求值÷.其中x是-2,-1,0,2中的一个.
解原式=·=2x+8.
由分式有意义可得x≠-2,0或2,
当x=-1时,原式=2×(-1)+8=6.
5.(2017湖南长沙模拟,19,8分)
如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,
(1)观察图形,写出图中所有与∠AED相等的角;
(2)选择图中与∠AED相等的任意一个角,并加以证明.
解(1)由图可知,∠DAG,∠AFB,∠CDE与∠A ED相等;
(2)选择∠DAG=∠AED,证明如下:
∵四边形ABCD为正方形,∴∠DAB=∠B=90°,AD=AB,
∵AF=DE,在Rt△DAE与Rt△ABF中,
∴△DAE≌△ABF(HL),∴∠ADE=∠BAF.
∵∠DAG+∠BAF=90°,∴∠DAG+∠ADE=90°,
∴∠BAF+∠AED=90°,∴∠DAG=∠AED.
〚导学号92034134〛。