三角函数试题
- 格式:doc
- 大小:298.46 KB
- 文档页数:4
三角函数专项练习一.选择题(共6小题)1.已知角θ的终边过点P(﹣4k,3k)(k<0),则2sinθ+cosθ的值是()A.B.﹣C.或﹣D.随着k的取值不同其值不同2.若sin2α>0,且cosα<0,则角α是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.若α为第三象限,则的值为()A.3 B.﹣3 C.1 D.﹣14.已知:在△ABC中,,则此三角形为()A.直角三角形 B.等腰直角三角形C.等腰三角形D.等腰或直角三角形5.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.已知函数f(x)=sin(2ωx﹣)(ω>0)的最小正周期为4π,则()A.函数f(x)的图象关于点(,0)对称B.函数f(x)的图象关于直线x=对称C.函数f(x)的图象在(,π)上单调递减D.函数f(x)的图象在(,π)上单调递增二.解答题(共20小题)7.已知函数.(Ⅰ)若点在角α的终边上,求f(α)的值;(Ⅱ)若,求f(x)的值域.8.已知角α的终边经过点P(﹣4,3),(1)求的值;(2)求sinαcosα+cos2α﹣sin2α+1的值.9.已知函数f(x)=2cos2x+2sinxcosx.(1)求的值;(2)求函数f(x)的最小正周期和最小值.10.已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中.(1)若,求角α的值;(2)若,求的值.11.函数称为“双曲正弦函数”,类似地,函数称为“双曲余弦函数”.(Ⅰ)判断双曲正弦函数的奇偶性,并证明你的结论;(Ⅱ)双曲函数的恒等变形多具有与三角函数的恒等变形相似甚至相同的形式,请判断下列等式恒成立的是.(填写序号)①sinh2x+cosh2x=1;②sinh2x=2sinhx•coshy;③cosh2x=cosh2x﹣sinh2x.(Ⅲ)请合理定义“双曲正切函数”y=tanhx,写出用tanhx表示tanh2x的恒等变形式,并证明之.12.已知函数f(x)=sin(π﹣x)sin(﹣x)+cos2x(1)求函数f(x)的最小正周期;(2)当x∈[﹣,]时,求f(x)的最值.13.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(I)求f(x)的解析式,并求函数f(x)在[﹣,]上的值域;(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.14.已知函数f(x)=2x2﹣3x+1,g(x)=Asin(x﹣)(A≠0).(1)当0≤x≤时,求y=f(sinx)的最大值;(2)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?15.已知函数.(1)求f(x)的定义域和值域;(2)若的值.(3)若曲线f(x)在点P(x0,f(x0))处的切线平行直线,求x0的值.16.设函数f(x)=2sin(ωx+ϕ)(﹣π<ϕ<0),若函数y=f(x)的图象与x轴相邻两个交点间的距离为,且图象的一条对称轴是直线x=.(1)求ω,ϕ的值;(2)求函数y=f(x)的单调增区间;(3)画出函数y=f(x)在区间[0,π]上的图象.17.已知:函数f(x)=的最小正周期为3π(ω>0),且当x∈[0,π]时,函数f(x)的最小值为0,(1)求函数f(x)的表达式;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.18.已知函数f(x)=a﹣bcos(2x+)(b>0)的最大值为,最小值为﹣.(1)求a,b的值;(2)求函数的最小值并求出对应x的集合.19.已知向量=(sin2x,﹣),=(,cos2x),函数f(x)=•.(Ⅰ)试用五点作图法画出函数f(x)在一个周期内的图象(要求列表);(Ⅱ)求方程f(x)=m(0<m<1)在[﹣,]内的所有实数根之和.20.函数f(x)=Asin(ϖx+φ)(A>0,0<ϖ<4,|φ|<)过点(0,),且当x=时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.21.已知函数f(x)=sinx+cosx(x∈R).(Ⅰ)若a∈[0,π]且f(a)=2,求a;(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x=对称,求θ的最小值.22.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<满足下列条件:①周期T=π;②图象向左平移个单位长度后关于y轴对称;③f(0)=1.(Ⅰ)求函数f(x)的解析式;(Ⅱ)设α,β∈(0,),f(α﹣)=﹣,f(β+)=,求cos(2α﹣2β)的值.23.函数f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b(1)若时,求f(sinθ)的最大值;(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.24.已知函数f(x)=2sinx+1.(Ⅰ)设ω为大于0的常数,若f(ωx)在区间上单调递增,求实数ω的取值范围;(Ⅱ)设集合,B={x||f(x)﹣m|<2},若A∪B=B,求实数m的取值范围.25.如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=.管理部门欲在该地从M到D修建小路:在上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.(1)若∠PBC=,求PQ的长度;(2)当点P选择在何处时,才能使得修建的小路与PQ及QD的总长最小?并说明理由.26.节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.(1)将y表示为x的函数;(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).参考答案与试题解析一.选择题(共6小题)1.(2011•番禺区校级模拟)已知角θ的终边过点P(﹣4k,3k)(k<0),则2sinθ+cosθ的值是()A.B.﹣C.或﹣D.随着k的取值不同其值不同【分析】根据角的终边所过的一个点,写出这点到原点的距离,注意字母的符号,根据三角函数的定义,写出角的正弦和余弦值,代入要求的算式得到结果即可.【解答】解:∵角θ的终边过点P(﹣4k,3k),(k<0),∴r==5|k|=﹣5k,∴sinθ==﹣,cosθ==,∴2sinθ+cosθ=2(﹣)+=﹣故选B.【点评】本题是一个对于任意角的三角函数的定义的考查,解题时若没有字母系数的符合,我们就得讨论两种情况,在两种情况下,分别做出角的三角函数值,再进行运算.2.(2015•天津模拟)若sin2α>0,且cosα<0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【分析】cosα<0,确定α的象限,sin2α>0,确定sinα的范围,再确定α的范围;然后推出结论.【解答】解:由cosα<0,可知α是二,三象限角;由sin2α=2sinαcosα>0,可得sinα<0可知:α是三、四象限角;所以α是第三象限角故选C.【点评】本题考查象限角、轴线角,任意角的三角函数的定义,二倍角的正弦,考查分析问题解决问题的能力,是基础题3.(2013•衡水校级模拟)若α为第三象限,则的值为()A.3 B.﹣3 C.1 D.﹣1【分析】对于根号内的三角函数式,通过平方关系sin2α+cos2α=1,去掉根号,注意三角函数值的正负号,最后化简即得.【解答】解:∵α为第三象限,∴sinα<0,cosα<0则=.故选:B.【点评】本题考查三角函数的同角公式,同角三角函数的基本关系主要是指:平方关系和商数关系,它反映了同一个角的不同三角函数间的联系,其精髓在“同角”.4.(2016春•内江期末)已知:在△ABC中,,则此三角形为()A.直角三角形B.等腰直角三角形C.等腰三角形D.等腰或直角三角形【分析】由条件可得sinCcosB=cosCsinB,故sin(C﹣B)=0,再由﹣π<C﹣B<π,可得C﹣B=0,从而得到此三角形为等腰三角形.【解答】解:在△ABC中,,则ccosB=bcosC,由正弦定理可得sinCcosB=cosCsinB,∴sin(C﹣B)=0,又﹣π<C﹣B<π,∴C﹣B=0,故此三角形为等腰三角形,故选C.【点评】本题考查正弦定理,两角差的正弦公式,得到sin(C﹣B)=0 及﹣π<C﹣B<π,是解题的关键.5.(2016•福建模拟)下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【分析】由条件利用诱导公式化简函数的解析式,再根据三角函数的奇偶性和周期性得出结论.【解答】解:由于函数y=sin(2x+)=cos2x为偶函数,故排除A;由于函数y=cos(2x+)=﹣sin2x为奇函数,且周期为,故B满足条件;由于函数y=sin2x+cos2x=sin(2x+)为非奇非偶函数,故排除C;由于函数y=sinx+cosx=sin(x+)为非奇非偶函数,故排除D,故选:B.【点评】本题主要考查三角函数的奇偶性和周期性,诱导公式的应用,属于基础题.6.(2015秋•潍坊校级期末)已知函数f(x)=sin(2ωx﹣)(ω>0)的最小正周期为4π,则()A.函数f(x)的图象关于点(,0)对称B.函数f(x)的图象关于直线x=对称C.函数f(x)的图象在(,π)上单调递减D.函数f(x)的图象在(,π)上单调递增【分析】根据三角函数的周期性求出ω,结合三角函数的图象和性质进行判断即可.【解答】解:∵函数f(x)的最小正周期为4π,∴T==4π,即ω=,则函数f(x)=sin(2×x﹣)=sin(x﹣),则f()=sin(×﹣)=sin(﹣)≠0,且f()≠±1,则函数f(x)的图象关于点(,0)不对称,且关于直线x=不对称,当<x<π时,<x<,<x﹣<,此时函数f(x)为增函数,故选:D.【点评】本题主要考查三角函数的周期的应用,根据条件求出ω是解决本题的关键.结合三角函数的单调性和对称性进行求解是解决本题的关键.二.解答题(共20小题)7.(2015•抚州校级一模)已知函数.(Ⅰ)若点在角α的终边上,求f(α)的值;(Ⅱ)若,求f(x)的值域.【分析】(Ⅰ)因为点在角α的终边上,所以,,化简f(α)=2sinαcosα﹣2sin2α,把,代入运算得到结果.(Ⅱ)化简f(x)=,根据x的范围得到,从而求得f(x)的值域.【解答】解:(Ⅰ)因为点在角α的终边上,所以,,所以=.(Ⅱ)==,因为,所以,所以,所以f(x)的值域是[﹣2,1].【点评】本题考查任意角的三角函数的定义,三角函数的恒等变换及化简求值,正弦函数的单调性和值域,三角恒等变换是解题的关键.8.(2015秋•丰城市校级期末)已知角α的终边经过点P(﹣4,3),(1)求的值;(2)求sinαcosα+cos2α﹣sin2α+1的值.【分析】(1)由条件利用任意角的三角函数的定义,求得sinα、cosα的值,再利用诱导公式求得所给式子的值.(2)由条件利用同角三角函数的基本关系,求得sinαcosα+cos2α﹣sin2α+1的值.【解答】解:(1)∵角α的终边经过点P(﹣4,3)∴r=5,sinα=,cosα=,∴===.(2)sinαcosα+cos2α﹣sin2α+1=sinαcosα+2cos2α=×(﹣)+2×=.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,诱导公式,属于基础题.9.(2015•龙川县校级模拟)已知函数f(x)=2cos2x+2sinxcosx.(1)求的值;(2)求函数f(x)的最小正周期和最小值.【分析】(1)利用二倍角、两角和的正弦函数化简函数为一个角的一个三角函数的形式,代入求出函数的值即可.(2)结合(1)的结论,利用周期公式求出函数的最小正周期,求出最小值即可.【解答】解:(1)f(x)=cos2x+1+sin2x=,(6分)∴.(8分)(2)由(1)可知,∴函数f(x)的最小正周期.(10分)函数f(x)的最小值为.(12分)【点评】本题是基础题,考查三角函数的化简求值,周期的求法,最值的求法,考查计算能力,常规题目.10.(2016秋•雁峰区校级月考)已知A,B,C三点的坐标分别为A(3,0),B(0,3),C(cosα,sinα),其中.(1)若,求角α的值;(2)若,求的值.【分析】先由A、B、C三点的坐标,求出的坐标,再根据,列出一个关于α的方程,可将问题转化为简单的三角函数化简求值问题.【解答】解:(1)∵,,∴,.由得sinα=cosα.又,∴.(2)由,得(cosα﹣3)cosα+sinα(sinα﹣3)=﹣1,∴,∴.又由,∴,∴.故=.【点评】解决此题的关键是:熟练掌握向量数量积公式以及三角函数的变换方法.已知某三角函数值、求其它三角函数的值.一般先化简,再求值.化简三角函数的基本方法:统一角、统一名通过观察“角”“名”“次幂”,找出突破口,利用切化弦、降幂、逆用公式等手段将其化简.11.(2014秋•北京校级期末)函数称为“双曲正弦函数”,类似地,函数称为“双曲余弦函数”.(Ⅰ)判断双曲正弦函数的奇偶性,并证明你的结论;(Ⅱ)双曲函数的恒等变形多具有与三角函数的恒等变形相似甚至相同的形式,请判断下列等式恒成立的是②.(填写序号)①sinh2x+cosh2x=1;②sinh2x=2sinhx•coshy;③cosh2x=cosh2x﹣sinh2x.(Ⅲ)请合理定义“双曲正切函数”y=tanhx,写出用tanhx表示tanh2x的恒等变形式,并证明之.【分析】(Ⅰ)利用奇函数的定义判断双曲正弦函数的奇偶性;(Ⅱ)对选项分别进行判断,即可得出结论;(Ⅲ)(Ⅲ)y=tanhx=,e2x=,即可得出结论.【解答】解:(Ⅰ)∵sin(﹣hx)==﹣sinhx,∴双曲正弦函数是奇函数;(Ⅱ)①sinh2x+cosh2x=+≠1,不正确;②sinh2x═=2sinhx•coshy,正确;③cosh2x﹣sinh2x=﹣≠cosh2x,不正确.(Ⅲ)y=tanhx=,∴e2x=tanh2x===﹣.故答案为:②.【点评】本题为开放题型,考查类比推理,考查分析问题、解决问题的能力.12.(2015春•德宏州校级期中)已知函数f(x)=sin(π﹣x)sin(﹣x)+cos2x(1)求函数f(x)的最小正周期;(2)当x∈[﹣,]时,求f(x)的最值.【分析】(1)由三角函数公式化简可得f(x)=sin(2x+)+,由周期公式可得;(2)由x∈[﹣,]和三角函数的值域可得.【解答】解:(1)由三角函数公式化简可得f(x)=sin(π﹣x)sin(﹣x)+cos2x=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+,∴函数f(x)的最小正周期T==π;(2)当x∈[﹣,]时,2x+∈[0,π],∴sin(2x+)∈[0,1],∴sin(2x+)+∈[,],∴f(x)的最小值为,最大值为【点评】本题考查三角函数的最值,涉及三角函数公式周期性,属基础题.13.(2016•潍坊二模)函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示.(I)求f(x)的解析式,并求函数f(x)在[﹣,]上的值域;(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.【分析】(1)由函数图象可得周期,进而由周期公式可得ω值,代点(,2)可得φ值,可得解析式,再由x∈[﹣,]和三角函数的值域可得;(2)由(1)的解析式和三角形的知识可得A=,由余弦定理可得BC,再由余弦定理可得cosB,进而可得sinB,代入sin2B=2sinBcosB,计算可得.【解答】解:(1)由函数图象可知函数的周期T满足T=﹣=,解得T=π,∴ω===2,故f(x)=2sin(2x+φ),又函数图象经过点(,2),故2sin(2×+φ)=2,故sin(+φ)=1,结合0<φ<π可得φ=,故f(x)的解析式为f(x)=2sin(2x+),由x∈[﹣,]可得2x+∈[0,],∴sin(2x+)∈[0,1],∴2sin(2x+)∈[0,2],故函数的值域为[0,2];(2)∵在△ABC中,AB=3,AC=2,f(A)=1,∴f(A)=2sin(2A+)=1,即sin(2A+)=,结合三角形内角的范围可得2A+=,A=,由余弦定理可得BC2=32+22﹣2×3×2×,BC=,∴cosB==,故sinB==,∴sin2B=2sinBcosB=2××=【点评】本题考查正弦函数的图象和性质,涉及正余弦定理解三角形以及三角函数的值域,属中档题.14.(2014秋•宿豫区校级期中)已知函数f(x)=2x2﹣3x+1,g(x)=Asin(x﹣)(A≠0).(1)当0≤x≤时,求y=f(sinx)的最大值;(2)问a取何值时,方程f(sinx)=a﹣sinx在[0,2π)上有两解?【分析】(1)用换元法,设t=sinx,x∈[0,],化为求关于t的函数在闭区间上的最大值即可;(2)用换元法,设t=sinx,化为t∈[﹣1,1]上讨论方程2t2﹣2t+1=a解的情况,从而求出a的取值范围.【解答】解:(1)∵y=f(sinx)=2sin2x﹣3sinx+1,设t=sinx,x∈[0,],则0≤t≤1;∴,∴当t=0时,y取得最大值y max=1;…(6分)(2)方程2sin2x﹣3sinx+1=a﹣sinx化为2sin2x﹣2sinx+1=a,该方程在[0,2π]上有两解,设t=sinx,则方程2t2﹣2t+1=a在[﹣1,1]上解的情况如下:①当在(﹣1,1)上只有一个解或相等解,x有两解,(5﹣a)(1﹣a)<0或△=0;∴a∈(1,5)或;②当t=﹣1时,x有惟一解,③当t=1时,x有惟一解,综上,当a∈(1,5)或时,方程f(sinx)=a﹣sinx在[0,2π)上有两解.…(16分)【点评】本题考查了函数的性质与应用问题,解题时应利用换元法,把三角函数化为研究普通函数在某一区间上的性质问题,是中档题.15.(2013春•船营区校级期中)已知函数.(1)求f(x)的定义域和值域;(2)若的值.(3)若曲线f(x)在点P(x0,f(x0))处的切线平行直线,求x0的值.【分析】(1)根据分式有意义的条件可得,cosx≠0,求解即可得函数的定义域;利用二倍角公式及辅助角对函数化简可得f(x)=,结合正弦函数性质可求函数的值域,(2)由于cos2x=sin(2x+)=sin[2(x+)],故需要求sin(x+),cos(x+),代入可求sin(x+),结合已知条件中x的范围可求cos(x+),然后代入可求,(3)对函数求导可得,f/(x)=cosx﹣sinx代入已知可得,=从而可得结合可求.【解答】解(1)=(2分)由,∴(4分)(6分)(2)∵,∴.∴(7分)∵,∴∴(8分)∴=2sin(x+)cos(x+)=(10分)(3)f/(x)=cosx﹣sinx由题意得=(12分)∴又∵∴(14分)【点评】本题主要考查了正弦函数的定义域及值域的求解,辅助角公式的应用,导数的基本运算,及由三角函数值求解角等知识的综合运用.16.(2016春•长治校级期中)设函数f(x)=2sin(ωx+ϕ)(﹣π<ϕ<0),若函数y=f(x)的图象与x轴相邻两个交点间的距离为,且图象的一条对称轴是直线x=.(1)求ω,ϕ的值;(2)求函数y=f(x)的单调增区间;(3)画出函数y=f(x)在区间[0,π]上的图象.【分析】(1)利用正弦函数的图象的周期性求得ω的值,利用正弦函数的图象的对称性求得φ,可得函数的解析式.(2)利用正弦函数的单调性,求得函数y=f(x)的单调增区间.(3)利用五点法作图,作出函数y=f(x)在区间[0,π]上的图象.【解答】解:(1)函数y=f(x)的图象与x轴的两个相邻交点间的距离为,∴=,∴ω=2.又函数图象的一条对称轴是直线,∴2×+φ=kπ+,k∈Z,∵﹣π<ϕ<0,∴φ=﹣,f(x)=2sin(2x﹣).(2)由(1)可知,令2kπ﹣≤2x﹣≤2kπ+求得:kπ+≤x≤kπ+,可得函数y=f(x)的单调增区间是[kπ+,kπ+],k∈Z.(3)∵x∈[0,π],则2x﹣∈[﹣,],列表:X0 π0 π﹣2 2.【点评】本题主要考查正弦函数的图象和性质,五点法作图,属于中档题.17.(2013秋•和平区校级月考)已知:函数f(x)=的最小正周期为3π(ω>0),且当x∈[0,π]时,函数f(x)的最小值为0,(1)求函数f(x)的表达式;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.【分析】(1)利用三角函数公式将函数进行化简,利用最小周期和最小值即可求函数f(x)的表达式;(2)根据条件f(C)=1,建立方程关系,求出C的值,然后根据三角公式即可求出sinA的值.【解答】解:(1)f(x)==,∵函数f(x)的周期为3π,即,∴,因此,函数f(x)的解析式是,∵x∈[0,π],∴,,∴,即f(x)的最小值为m,即m=0,∴.(2)∵,∴,∵C∈(0,π),∴,即,解得C=.∵在Rt△ABC中,A+B=,有2sin2B=cosB+cos(A﹣C)∴2cos2A﹣sinA﹣sinA=0,即sin2A+sinA﹣1=0,解得,∵0<sinA<1,∴.【点评】本题主要考查了三角恒等变换、三角函数的图象与性质和同角三角函数的基本关系等知识点,要求熟练掌握三角函数的公式,属于中档题.18.(2014秋•高邮市校级期末)已知函数f(x)=a﹣bcos(2x+)(b>0)的最大值为,最小值为﹣.(1)求a,b的值;(2)求函数的最小值并求出对应x的集合.【分析】(1)根据余弦函数的性质可分别表示出函数的最大和最小值,进而联立方程气的a和b的值.(2)根据(1)中求得a和b的值,得到函数的解析式,根据x的范围确定x﹣的范围,利用正弦函数的性质求得最小值和对应的x的集合.【解答】解:(1),∵b>0,∴﹣b<0,;∴;(2)由(1)知:∴,∴g(x)∈[﹣2,2],∴g(x)的最小值为﹣2,对应x的集合为.【点评】本题主要考查了三角函数的最值问题,三角函数的单调性和值域问题.考查了学生综合分析问题和基本的运算能力.19.(2015春•南安市校级期中)已知向量=(sin2x,﹣),=(,cos2x),函数f(x)=•.(Ⅰ)试用五点作图法画出函数f(x)在一个周期内的图象(要求列表);(Ⅱ)求方程f(x)=m(0<m<1)在[﹣,]内的所有实数根之和.【分析】(Ⅰ)利用向量的数量积求出f(x)的表达式,然后利用五点作图法画出函数f(x)在一个周期内的图象;(Ⅱ)利用函数f(x)=m在[﹣,]内对称性,求出相应的对称轴,进行求解即可.【解答】解:(Ⅰ)f(x)=•=sin2x﹣cos2x=sin(2x﹣),…(2分)2x﹣xf(x)0 1 0 ﹣1 0…(4分)通过描出五个关键点,再用光滑曲线顺次连接作出函数f(x)在一个周期内的图象如下图所示:…(6分)(Ⅱ)∵y=sin(2x﹣)的周期t=π,∴y=sin(2x﹣)在[﹣,]内有3个周期.…(7分)令2x﹣=kπ+,k∈Z,∴x=+,k∈Z,即函数y=sin(2x﹣)的对称轴为x=+,k∈Z.…(8分)又x∈[﹣,],则2x﹣∈[﹣,],且0<m<1,∴f(x)=m(0<m<1)在[﹣,]内有6个实根,…(9分)不妨从小到大依次设为x i,(i=1,2,3,4,5,6),则,=,=即x1+x2=,x3+x4=,x5+x6=,∴所有实数根之和=x1+x2+x3+x4+x5+x6=++=.…(12分)【点评】本题主要考查三角函数的图象做法,要掌握五点法作图,同时利用三角函数的对称性是解决本题的关键.20.(2016秋•铁岭月考)函数f(x)=Asin(ϖx+φ)(A>0,0<ϖ<4,|φ|<)过点(0,),且当x=时,函数f(x)取得最大值1.(1)将函数f(x)的图象向右平移个单位得到函数g(x),求函数g(x)的表达式;(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.【分析】(1)由函数的最值求出A,由特殊点的坐标求出φ的值,由五点法作图求出ω,可得f(x)的解析式,再根据y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式.(2)由条件利用正弦函数的最值以及周期性,求得|x1﹣x2|的最小值.【解答】解:(1)由题意A=1,将点(0,)代入解得,,再根据,结合0<ϖ<4,所以ϖ=2,.将函数f(x)的图象向右平移个单位得到函数的图象.(2)函数h(x)=f(x)+g(x)+2cos2x﹣1=2sin(2x+),故函数的周期T=π.对于∀x1,x2∈R,都有h(x1)≤h(x)≤h(x2),故|x1﹣x2|的最小值为.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由特殊点的坐标求出φ的值,由五点法作图求出ω,y=Asin(ωx+φ)的图象变换规律,属于中档题.21.(2016•湖北模拟)已知函数f(x)=sinx+cosx(x∈R).(Ⅰ)若a∈[0,π]且f(a)=2,求a;(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x=对称,求θ的最小值.【分析】(Ⅰ)有条阿金利用辅助角公式化简函数f(x)的解析式,再利用f(a)=2,求得a的值.(Ⅱ)根据y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得θ的最小值.【解答】解:(Ⅰ)∵函数f(x)=sinx+cosx=2sin(x+),∵a∈[0,π],∴a+∈[,],∵f(a)=2sin(a+)=2,∴sin(a+)=,∴a+=,∴a=.(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到y=2sin(2x+)的图象;再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到y=2sin(2x﹣2θ+)的图象,再结合得到的图象关于直线x=对称,可得﹣2θ+=kπ+,求得θ=﹣,k∈Z,故θ的最小值为.【点评】本题主要考查辅助角公式,y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于中档题.22.(2016•临沂一模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<满足下列条件:①周期T=π;②图象向左平移个单位长度后关于y轴对称;③f(0)=1.(Ⅰ)求函数f(x)的解析式;(Ⅱ)设α,β∈(0,),f(α﹣)=﹣,f(β+)=,求cos(2α﹣2β)的值.【分析】(Ⅰ)根据f(x)的周期求出ω的值,根据f(x)的图象平移以及g(x)的图象关于y轴对称,求出φ的值,再由f(0)=1求出A的值,即得f(x)的解析式;(Ⅱ)根据f(α﹣)与f(β+)的值求出cos2α、cos2β,再根据α、β的范围求出sin2α、sin2β,从而求出cos(2α﹣2β)的值.【解答】解:(Ⅰ)∵f(x)的周期为T==π,∴ω=2;又函数f(x)的图象向左平移个单位长度,变为g(x)=Asin[2(x+)+φ],由题意,g(x)的图象关于y轴对称,∴2×+φ=+kπ,k∈Z;又|φ|<,∴φ=,∴函数f(x)=Asin(2x+);又f(0)=1,∴Asin=1,解得A=2,∴函数f(x)=2sin(2x+);(Ⅱ)由f(α﹣)=﹣,f(β+)=,得2sin(2α﹣+)=﹣,2sin(2β++)=,∴cos2α=,cos2β=;又α、β∈(0,),∴2α、2β∈(0,),∴sin2α=,sin2β=,∴cos(2α﹣2β)=cos2αcos2β+sin2αsin2β=×+×=.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的恒定变换应用问题,是基础题目.23.(2015•东阳市模拟)函数f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b(1)若时,求f(sinθ)的最大值;(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.【分析】(1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2﹣2bt﹣a+b在t∈[0,1]的最大值,由二次函数区间的最值可得;(2)令sinθ=t∈[﹣1,1],由恒成立和最大值可得可得二次函数的顶点坐标为(0,﹣1),进而可得ab的值,可得解析式.【解答】解:(1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2﹣2bt﹣a+b在t∈[0,1]的最大值,∵a>0,抛物线开口向上,二次函数的对称轴,由二次函数区间的最值可得(2)令sinθ=t∈[﹣1,1],则|f(t)|≤1可推得|f(0)|≤1,|f(1)|≤1,|f(﹣1)|≤1,∵a>0,∴g(sinθ)max=g(1)=2,而g(1)=2a﹣2b=2而f(0)=b﹣a=﹣1而t∈[﹣1,1]时,|f(t)|≤1,即﹣1≤f(t)≤1,结合f(0)=﹣1可知二次函数的顶点坐标为(0,﹣1)∴b=0,a=1,∴f(x)=2x2﹣1.【点评】本题考查二次函数的性质,涉及三角换元和等价转化,属中档题.24.(2013秋•延庆县期末)已知函数f(x)=2sinx+1.(Ⅰ)设ω为大于0的常数,若f(ωx)在区间上单调递增,求实数ω的取值范围;(Ⅱ)设集合,B={x||f(x)﹣m|<2},若A∪B=B,求实数m的取值范围.【分析】(Ⅰ)由题意,f(ωx)=2sinωx+1,由ωx∈[﹣,],ω>0,可得x∈[﹣,],利用f(ωx)在区间上单调递增,可得不等式组,解不等式组,即可求实数ω的取值范围;(Ⅱ)求出函数的值域,根据A∪B=B,可得A⊆B,从而可得不等式组,解不等式,即可求出实数m的取值范围.【解答】解:(Ⅰ)由题意,f(ωx)=2sinωx+1,由ωx∈[﹣,],ω>0,可得x∈[﹣,],∵f(ωx)在区间上单调递增,∴,∴0<ω≤;(Ⅱ)∵A∪B=B,∴A⊆B,∵|f(x)﹣m|<2,∴m﹣2<f(x)<m+2,∵,∴,∴2≤f(x)≤3,∴,∴1<m<4.【点评】本题考查三角函数的性质,考查函数的值域,考查集合知识,考查学生分析解决问题的能力,正确运用正弦函数的单调性是关键.25.(2016秋•句容市期中)如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=.管理部门欲在该地从M到D修建小路:在上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.(1)若∠PBC=,求PQ的长度;(2)当点P选择在何处时,才能使得修建的小路与PQ及QD的总长最小?并说明理由.【分析】(1)作出辅助线,根据梯形的性质求出PQ的长即可;(2)设∠PBP1=θ,求出PQ的长,得到总路径长f(θ)的表达式,通过求导得到函数的单调性,从而求出去最小值时θ的值,即P点的位置即可.【解答】解.(1)如图示:,连接BP,过P作PP1⊥BC,垂足为P1,过Q作QQ1⊥BC垂足为Q1,在Rt△PBP1中,,PQ=1;(2)设∠PBP1=θ,,∴,在Rt△QBQ1中,,∴总路径长f(θ)=﹣θ+4﹣cosθ﹣sinθ,(0<θ<),f′(θ)=sinθ﹣cosθ﹣1=2sin(θ﹣)﹣1,令f'(θ)=0,,当时,f'(θ)<0,当时,f'(θ)>0,所以当时,总路径最短.答:当BP⊥BC时,总路径最短.【点评】本题考查了数形结合思想,考查三角函数问题以及导数的应用,是一道中档题.26.(2016•徐汇区一模)节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.(1)将y表示为x的函数;(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).【分析】(1)直接由已知条件求出AO、BO、OP的长度,即可得到所求函数关系式;(2)记,则sinx+pcosx=2,求出p的范围,即可得出结论.【解答】解:(1)由已知得,即(其中)(2)记,则sinx+pcosx=2,则有,解得或﹣(10分)由于y>0,所以,当,即点O在CD中垂线上离点P距离为km处,y取得最小值(km).11。
三角函数综合测试题(含答案)三角函数综合测试题一、选择题(共18小题,每小题3分,共54分)1.(08全国一6)函数y=(sinx-cosx)-1的最小正周期为π的奇函数。
2.(08全国一9)为得到函数y=cos(x+π/3)的图象,只需将函数y=sinx的图像向左平移π/3个长度单位。
3.(08全国二1)若sinα0,则α是第二象限角。
4.(08全国二10)函数f(x)=sinx-cosx的最大值为2.5.(08安徽卷8)函数y=sin(2x+π/3)图像的对称轴方程可能是x=-π/6.6.(08福建卷7)函数y=cosx(x∈R)的图象向左平移π/2个单位后,得到函数y=g(x)的图象,则g(x)的解析式为-sinx。
7.(08广东卷5)已知函数f(x)=(1+cos2x)sinx,则f(x)是以π为最小正周期的奇函数。
8.(08海南卷11)函数f(x)=cos2x+2sinx的最小值为-2,最大值为3/3π。
9.(08湖北卷7)将函数y=sin(x-θ)的图象F向右平移π/3个单位长度得到图象F′,若F′的一条对称轴是直线x=5π/12,则θ=π/4.10.(08江西卷6)函数f(x)=(sinx+2sin2x)/x的最小正周期为2π的偶函数。
11.若动直线x=a与函数f(x)=sinx和g(x)=cosx的图像分别交于M,N两点,则MN的斜率为tan(a-π/4)。
19.若角 $\alpha$ 的终边经过点 $P(1,-2)$,则$\tan2\alpha$ 的值为 ________。
20.函数 $f(x)=\cos(\omega x-\frac{\pi}{6})$ 的最小正周期为 $\frac{\pi}{5}$,其中 $\omega>0$,则 $\omega=$ ________。
21.设 $x\in\left(0,\frac{\pi}{2}\right)$,则函数$y=\frac{2\sin2x+1}{\cos x}$ 的最小值为 ________。
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
三角函数练习题含答案一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 5.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.6.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④13.已知点P 是曲线e 3xy =+α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知,a b Z ∈,满足)98sin 50sin 50a b -︒︒=,则a b +的值为( )A .1B .2C .3D .415.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则91()()44t t --( )A .1B .27764C .1693192D .9816.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④17.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数18.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围. 22.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.23.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.26.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?27.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 28.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数2()2cos 23cos f x x x x =+. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若()f x 在区间,6m π⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,求m 的取值范围.【参考答案】一、填空题1.6π2.23⎛ ⎝⎭33(21)+ 475.3+36.1π-##1π-+7.80π 8.9[,4]4-9.1或2##2或110.( 二、单选题 11.A 12.B 13.A 14.B 15.B 16.A 17.A 18.C 19.B 20.C 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点,令()()222204x Q x x-'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e-+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+,()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.23.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可; (2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤.因为()33f x m -≤-≤,所以()3m f x m ≤+, 所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题. 26.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题27.(1)34C π=(2)sin A =1c = 【解析】 【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值. 【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sinA C =∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin abC A B=2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题. 28.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】 【分析】(1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】 (1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭,解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1-【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】 【分析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题.30.(Ⅰ) (),,36ππππ⎡⎤-+∈⎢⎥⎣⎦k k k Z (Ⅱ) 62ππ≤≤m【解析】 【分析】(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为π2sin 216x ⎛⎫++ ⎪⎝⎭,利用正弦函数的单调性解不等式,可得到函数()f x 的递增区间;(Ⅱ) 要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,,可得7 2266m πππ≤+≤,从而可得结果.【详解】(Ⅰ)()22f x cos x =+πcos212sin 216x x x ⎛⎫=+=++ ⎪⎝⎭,由()222,262k x k k Z πππππ-≤+≤+∈得(),36k x k k Z ππππ-≤≤+∈所以,()f x 的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(Ⅱ)由(Ⅰ)知()π2sin 216f x x ⎛⎫=++ ⎪⎝⎭.因为π,6x m ⎡⎤∈-⎢⎥⎣⎦,所以π2,2666x m ππ⎡⎤+∈-+⎢⎥⎣⎦.要使得()f x 在π,6m ⎡⎤-⎢⎥⎣⎦上的值域为[]0,3,即πsin 26x ⎛⎫+ ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的值域为112⎡⎤-⎢⎥⎣⎦,. 所以72266m πππ≤+≤,即62m ππ≤≤. 【点睛】本题主要考查二倍角公式、辅助角公式的应用以及三角函数的单调性、三角函数的值域,属于中档题. 函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间.。
4 2 ) 三角函数1.已知函数 f (x ) = 4 c os x s in(x +(Ⅰ)求 f (x ) 的最小正周期;) -1.6(Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值.6 42、已知函数 f (x ) = sin(2x + ) 3+ sin(2x - 3 + 2 cos 2 x - 1, x ∈ R .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值.4 43、已知函数 f (x ) = tan(2x +),4(Ⅰ)求 f (x ) 的定义域与最小正周期;⎛ ⎫(II )设∈ 0, ⎪ ,若 f ( ) = 2 cos 2, 求的大小⎝ ⎭4、已知函数 f (x ) =(sin x - cos x ) sin 2x.sin x(1) 求 f (x ) 的定义域及最小正周期;(2) 求 f (x ) 的单调递减区间.5、 设函数 f (x ) = cos(2x + + sin 2x .24(I )求函数 f (x ) 的最小正周期;( II ) 设 函 数 1g (x ) 对 任 意 x ∈ R , 有g (x + 2 = g (x ) , 且 当x ∈[0, ] 时 , 2g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式.22 ) )3 + = 6、函数 f (x ) = A sin(x -称轴之间的距离为 ,2) +1(A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6(1)求函数 f (x ) 的解析式;(2)设∈(0, ) ,则 f ( ) = 2 ,求的值.2 27、设 f ( x ) = 4cos( ωx -π)sin ωx + cos 2ωx ,其中> 0.6(Ⅰ)求函数 y = f ( x ) 的值域(Ⅱ)若 y = f ( x ) 在区间⎡- 3π ,π⎤上为增函数,求 的最大值.⎣⎢ 2 2 ⎥⎦8、函数 f (x ) = 6 cos 2x + 23 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且∆ABC 为正三角形.(Ⅰ)求的值及函数 f (x ) 的值域;8 3 (Ⅱ)若 f (x 0 ) 5,且 x 0 ∈(- 10 2, ) ,求 f (x 0 1) 的值.3 39、已知 a , b , c 分别为∆ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0(1)求 A ;(2)若 a = 2 , ∆ABC 的面积为 ;求b , c .10、在 ∆ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C .= 2,sin B = 53(Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求∆ ABC 的面积.3 2 2 ) max+ = - (x )答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为 f (x ) = 4 cos x sin(x + 1) -1 = 4 cos x ( sin x + cos x ) -1622= 3 sin 2x + 2 cos 2 x -1 = 3 sin 2x + cos 2x = 2 s in(2x +,所以 f (x ) 的最小正周期为.62(Ⅱ)因为- ≤ x ≤ 6 4 ,所以- ≤ 2x + ≤ 6 6 3 .于是,当2x + = 6 2 ,即 x =6时, f (x ) 取得最大值 2;当2x + = - 6 6 ,即 x = - 时, f (x ) 取得最小值-1.62、【解析】 (1)2f (x )= sin (2x + )+sin(2x - )+2cos x -1 = 2 s in 2x cos + cos 2x = 2 sin(2x + )3 3 3 42函数 f (x ) 的最小正周期为T = =23 (2) - ≤ x ≤ ⇒ - ≤ 2x + ≤ ⇒ - ≤ sin(2x +4 4 4 4 4 2 4) ≤ 1 ⇔ -1 ≤ f (x ) ≤当 2x + = (x = ) 时 , 4 2 8 f (x )min = -1f (x ) = , 当 2x = - 时 , 4 4 4【点评】该试题关键在于将已知的函数表达式化为 y =A sin (x +) 的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.k【精讲精析】(I)【解析】由2x +≠ + k , k ∈ Z , 得 x ≠ + , k ∈ Z . 4 2 8 2k为 .2所以 f (x ) 的定义域为{x ∈ R | x ≠ + 8 2, k ∈ Z } , f (x ) 的最小正周期(II)【解析】由 f ( ) = 2 cos 2, 得tan(+2) = 2 cos 2,42) ) )1 sin(+ 4 = 2(cos2 - s in 2 ), cos(+整理得4 sin + coscos - sin= 2(cos + sin )(cos - sin ). 21 1 因为∈(0, ) ,所以sin + cos ≠ 0.因此(cos - s in ) 4= ,即sin 2= .2 2由∈(0, ) ,得2∈(0, ) .所以2= ,即= .4 2 6 124、解(1): sin x ≠ 0 ⇔ x ≠ k(k ∈ Z ) 得:函数 f (x ) 的定义域为{x x ≠ k , k ∈ Z }f (x ) =(sin x - cos x ) sin 2x= (sin x - cos x ) ⨯ 2 cos xsin x= sin 2x - (1+ cos 2x ) = 2 sin(2x --14 2得: f (x ) 的最小正周期为T = = ;2(2)函数 y = sin x 的单调递增区间为[2k - , 2k + 2 2](k ∈ Z )3则2k - ≤ 2x - ≤ 2k + ⇔ k - ≤ x ≤ k +2 4 2 8 8得: f (x ) 的单调递增区间为[k - , k ),(k , k + 3](k ∈ Z )8 85、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【 解 析 】1 1f (x ) = cos(2x + + sin 2 x = 1 cos 2x - 1 sin 2x + 1 (1- cos 2x )2 4 2 2 2= - sin 2x , 2 22(I )函数 f (x ) 的最小正周期T = =21 1(II )当 x ∈[0, ] 时, g (x ) = - f (x ) = sin 2x2 当 x ∈[-2 21 1 sin 2x 当 x ∈[-, - ) 时, (x +) ∈[0, )2 2 g (x ) = g (x +) = sin 2(x +) = 2 2sin 2x⎧- 1 sin 2x (x ≤ 0) - ≤ ⎪ 22 得函数 g (x ) 在[-, 0] 上的解析式为 g (x ) = ⎨ .⎪ sin 2x (-≤ x <⎩⎪ 2 22 ) ) , 0] 时, (x + ) ∈[0, ] g (x ) = g (x + ) = 1 sin 2(x + ) = - 1 2 2 2 2 2 2 23 ⎢ ⎥ 6、【解析】(1)∵函数 f ( x ) 的最大值是 3,∴ A +1 = 3,即 A = 2 .∵函数图像的相邻两条对称轴之间的距离为 ,∴最小正周期T =,∴= 2 .2故函数 f ( x ) 的解析式为 f (x ) = 2 s in(2x -) +1.61(2)∵ f ( ) = 2 s in(- 2) +1 = 2 ,即sin(- 6 ) = ,6 2∵ 0 << ,∴ - <- < ,∴- = ,故= .2 6 63 6 6 3⎛ 3 1⎫ 7、解:(1) f ( x ) = 4 2 cos x + 2 sin x ⎪⎪s in x + cos 2x ⎝ ⎭= 2 3 sin x cos x + 2 sin 2 x + cos 2 x - sin 2 x =3 sin 2x +1因-1 ≤ sin 2x ≤ 1,所以函数 y = f ( x ) 的值域为⎡1- 3,1+ 3⎤⎣⎦⎡ ⎤(2)因 y = sin x 在每个闭区间 ⎢⎣2k - 2 , 2k + 2 ⎥⎦ (k ∈ Z ) 上为增函数,故 f ( x ) = 3 sin 2x +1 (> 0) 在每个闭区间⎡ k - 4 , k + ⎤(k ∈ Z ) 上 4为增函数.⎡ 3 ⎤⎡ kk ⎤⎣⎦依题意知⎢- , ⎥ ⊆ ⎢ -, + ⎥ 对某个 k ∈ Z 成立,此时必有 k = 0 ,于是 ⎣ 2 2 ⎦ ⎣ 4 4⎦⎧- 3≥ -⎪ 2 41 1⎨⎪ ≤⎩ 2 4,解得≤ ,故的最大值为 . 6 6 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得: f (x ) = 6 cos2x+ 23 cos x - 3(> 0)=3cosωx+ 3 sin x = 2 3 s in(x + )3又由于正三角形 ABC 的高为 2 ,则 BC=42 所以,函数 f (x )的周期T = 4 ⨯ 2 = 8,即= 8,得= 4所以,函数 f (x )的值域为[-2 3,2 3] .......................... 6 分 (Ⅱ)因为 f (x 0 ) =853,由(Ⅰ)有1 - ( 4)2 57 6 53 1 c os 2A5 561f (x ) = x 08 3x 0 42 3sin( 4 + ) =3 , 即sin( 54 + ) = 35 由 x 0∈(- 10 2x 0 + ∈ (-,),得( ) , )3 34 3 2 2所以,即 x 0 3 cos( 4 + ) = =3 5 故 f (x + 1) = x 0= x 0 + + 02 3sin( = 4 x 0 + + ) 2 4 33sin[( ) ] 4 3 4x 0 2 3[sin( 4 + ) cos 3 4 + cos( 4 + ) s in3 4 = 2 3( 4⨯ 2 + 3 ⨯ 2 )5 2 5 2=12 分9..解:(1)由正弦定理得:a cos C + 3a sin C -b -c = 0 ⇔ sin A c os C - 3 sin A sin C = sin B + sin C⇔ sin A cos C + 3 sin A sin C = sin(a + C ) + sin C⇔ 3 sin A - cos A = 1 ⇔ sin( A - 30︒ ) = 12⇔ A - 30︒ = 30︒ ⇔ A = 60︒(2) S = bc sin A = ⇔ bc = 4 , 2a 2 =b 2 +c 2 - 2bc cos A ⇔ b + c = 410. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A 2 0,∴sin A = ,= >33又2 sin C .35 cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5 cos C +3整理得:tan C = 5 .(Ⅱ) 由图辅助三角形知: sin C =. 又由正弦定理知:a sin A c ,sin C故c 3 . (1)b 2c 2 a 2 2对角 A 运用余弦定理:cos A =2bc . (2) 3 解(1) (2)得: b 3 or b = 3 (舍去). ∴∆ ABC 的面积为:S = 5. 3 2。
三角函数1.已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xxx x x f sin 2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()5f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos (sin cos )122x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x ,当2()444x x πππ+=-=-时,m i n ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;(2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co242f x x π=++11sin222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A=cos C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C =,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b=or b舍去).∴∆ABC的面积为:S.。
一、选择题1 .若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 ( )A .0B .33C .1D .32 .若角α的终边经过点M (5,2--),则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3 .若角α的终边经过点()3,4λλ-,且0λ≠,则sin cos sin cos αααα+-等于( )A .17-B .17 C .-7D .74 .已知α是第四象限角,5tan()12πα-=,则sin α=( ).15 B .15-C .513D .513-5 .623sin π等于( )A .23-B .21-C .21 D .23 6 .记k =︒-)80cos(,那么=︒100tan( )A .kk 21-B .-kk 21- C .21kk - D .-21kk -7 .已知),0(,137cos sin πααα∈=+,则αtan 等于 ( )A .512B .512-C .125D .125-8 .已知α是第四象限角,5tan()12πα-=,则sin α=( )A .15B .15-C .513D .513-9 .已知1sin 2x >,且[]0,2x π∈,则x 的取值范围是( )A .5,66ππ⎡⎤⎢⎥⎣⎦ B .5,66ππ⎛⎫⎪⎝⎭C .2,33ππ⎡⎤⎢⎥⎣⎦ C .2,33ππ⎛⎫⎪⎝⎭10.已知函数)0)(6sin(2)(>+=ωπωx x f 的最小正周期为π4,则该函数的图象 ( )A .关于点⎪⎭⎫⎝⎛0,3π对称 B .关于点⎪⎭⎫⎝⎛0,35π对称 C .关于直线3π=x 对称D .关于直线35π=x 对称 11.函数()sin()4f x x π=-的一个单调增区间为( )A .37(,)44ππB .3(,)44ππ-C .(,)22ππ- D .3(,)44ππ-12.函数x cos 4x sin 3y 2--=的最小值为( )A .-2B .-1C .-6D .-3二、填空题13.已知扇形的周长为8cm ,则该扇形面积的最大值为________cm 2。
三角函数单元测试题一、选择题:(12ⅹ5分=60分)1.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为( )A )sin ,cos (αα-B )sin ,(cos ααC )sin ,(cos αα-D );sin ,cos (αα--2.已知角α的终边经过点P (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-3.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对 4.函数)62sin(5π+=x y 图象的一条对称轴方程是( ))(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x 5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B6.已知函数()2sin()f x x ωϕ=+对任意x 都有()(),66f x f x ππ+=-则()6f π等于( )A. 2或0B. 2-或2C. 0D. 2-或07.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A. 1D.2- 8.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )A .35(,)(,)244ππππ B.5(,)(,)424ππππC.353(,)(,)2442ππππD.33(,)(,)244ππππ9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为( )A .1个B .2个C .3个D .4个10.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,则这个多边形是( )A .正六边形B .梯形C .矩形D .含锐角菱形 11.同时具有性质“(1)最小正周期是π;(2)图像关于直线3π=x 对称;(3)在]3,6[ππ-上是增函数”的一个函数是( ) A .)62sin(π+=x y B . )32cos(π+=x y C . )62sin(π-=x y D . )62cos(π-=x y12.已知函数f (x )=f (π-x ),且当)2,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b二、填空题(4x4分=16分)13.函数y =的定义域是14. 函数]0,[)(62sin(2ππ-∈+=x x y 的单调递减区间是 15.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移2π,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________.16.关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝⎛+=π有下列命题: ① 由()()021==x f x f 可得21x x -必是π的整数倍; ② ()x f y =的表达式可改写为()⎪⎭⎫ ⎝⎛-=62cos 4πx x f ;③ ()x f y =的图象关于点⎪⎭⎫ ⎝⎛-0,6π 对称; ④ ()x f y =的图象关于直线6π-=x 对称.以上命题成立的序号是__________________.三.解答题:(5ⅹ12分+14分=74分)17.(本题共12分)化简:)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(απαπαπαπαπαπαπαπ+-----++-18.(本题共12分)已知αsin 、αcos 是方程06242=++m x x 的两实根,求:(1) m 的值; (2)αα33cos sin +的值.19.(本题共12分)已知函数12sin()63y x π=-,(1)求它的单调区间;(2)当x 为何值时,使1>y ?20.(本题共12分)函数)2,0,0(),sin()(πθθ<>>+=w A wx A x f 的图象如右,求出它的解析式,并说出它的周期、振幅、初相。
三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若ta nθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。
必修四第一章三角函数单元测试 一、选择题1.设A ={小于90°的角},B ={第一象限的角},则A ∩B 等于( ). A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{α|k ·360°<α<k ·360°+90°(k ∈Z ,k ≤0)} 2.终边在直线y =-x 上的角的集合是( ). A .{α|α=45°+k ·180°(k ∈Z )} B .{α|α=135°+k ·180°(k ∈Z )} C .{α|α=45°+k ·360°(k ∈Z )}D .{α|α=-45°+k ·360°(k ∈Z )}3. 已知sin α=54,α∈(0,π),则tan α等于( ). A .34B .43 C .34±D .43±4.已知角 α 的终边经过点P (4,-3),则2sin α+cos α的值等于( ). A .-53 B .54 C .52 D .-52 5.已知sin α=-22,2π<α<23π,则角 α 等于( ). A .3πB .32πC .34πD .45π6.已知tan 14°≈41,则tan 7°约等于( ). A .17+4B .17-4C .17+2D .17-27.α是三角形的内角,则函数y =cos 2α-3cos α+6的最值情况是( ). A .既有最大值,又有最小值 B .既有最大值10,又有最小值831 C .只有最大值10 D .只有最小值831 8.若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ). A .sin xB .cos xC .sin 2xD .cos 2x9.设4π<α<2π,sin α=a ,cos α=b ,tan α=c 则a ,b ,c 的大小关系为( ). A .a <b <cB .a >b >cC .b >a >cD .b <a <c10.已知sin α>sin β,那么下列命题成立的是( ). A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β 二、填空题11.已知扇形的半径是1,周长为π,则扇形的面积是 . 12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4}, 求A ∩B = .13.已知点P (tan α,cos α)在第三象限,则角 α 的终边在第 象限. 14.已知cos (π+α)=-53,sin αcos α<0,则sin (α-7π)的值为 . 15.函数y =x sin log 21的定义域是 .16.函数y =a +b sin x 的最大值是23,最小值是-21,则a = ,b = . 三、解答题17.设 α 是第二象限的角,sin α=53,求sin (637π-2α)的值.18.求下列函数的周期: (1)y =cos 2(πx +2),x ∈R ; (2)y =cos 4x -sin 4x ,x ∈R ; (3)y =sin x ·cos x +3cos 2x -23,x ∈R .19.已知x ∈[-3π,4π],f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出相应的x 值.20.求函数y =1tan tan 1tan tan 22+++-x x x x 的值域.第一章 三角函数参考答案一、选择题 1.D解析:A 集合中包含小于90°的正角,还有零角和负角,而B 集合表示终边落在第一象限的角.二者的交集不是A ,B ,C 三个选项.2.B解析:先在0°~360°内找终边在直线y =-x 上的角分别为135°或315°,所以终边在直线y =-x 上的所有角为k ·360°+135°,或k ·360°+315°,k ∈Z .k ·360°+135°=2k ·180°+135°,k ·360°+315°=(2k +1)180°+135°,由此得答案为B . 3.C解析:∵sin α=54,α∈(0,π),∴cos α=±53,∴tan α=±34. 4.D解析:∵r =22)3(4-+=5,∴sin α=ry =-53,cos α=r x =54.∴2sin α+cos α=2×(-53)+54=-52. 5.D 解析:∵sin 45π=sin (π+4π)=-sin 4π=-22,且2π<45π<23π,∴α=45π. 6.B解析:设tan 7°=x ,则tan 14°=2-12xx ≈41. 解得x ≈-4±17(负值舍去), ∴x ≈17-4. 7.D解析:∵y =cos 2α-3cos α+6=2cos 2α-3cos α+5=2(cos α-43)2+831,又 α 是三角形的内角,∴-1<cos α<1. 当cos α=43时,y 有最小值831.8.B解析:取f (x )=cos x ,则f (x )·sin x =21sin 2x 为奇函数,且T =π. 9.D解析:在单位圆中做出角 α 的正弦线、余弦线、正切线得b <a <c . 10.D解析:若α,β是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β的终边,故选D .二、填空题 11.答案:12-π. 12.答案:A ∩B ={α|-4≤α≤-π 或0≤α≤π }.解析:在集合A 中取k =…,-1,0,1,…得到无穷个区间…,[-2π,-π],[0,π],[2π,3π],…将这些区间和集合B 所表示的区间在数轴上表示如图:由图可知A ∩B ={α|-4≤α≤-π 或0≤α≤π }. 13.答案:二.解析:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧ ,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以 α 为第二象限角.即角 α 的终边在第二象限.14.答案:54. 解析:∵cos (π+α)=-cos α=-53,∴cos α=53. 又∵sin αcos α<0,∴sin α<0,α为第四象限角,∴sin α=-54=-cos 12α-,∴sin (α-7π)=sin (α+π-8π)=sin (π+α)=-sin α=54. 15.答案:(2k π,2k π+π)(k ∈Z ).解析:由x sin log 21≥0,得0<sin x ≤1,∴2k π<x <2k π+π(k ∈Z ).tan α<0cos α<0(第12题)(第10题`)16.答案:21,±1. 解析:当b >0时,得方程组⎪⎩⎪⎨⎧21=--23=+b a b a 解得⎪⎩⎪⎨⎧1=21=b a 当b <0时,得方程组⎪⎩⎪⎨⎧21=-+23=-b a b a 解得⎪⎩⎪⎨⎧1=-21=b a 三、解答题 17.答案:32512+507. 解:∵sin α=53,α是第二象限角, ∴cos α=-54,sin 2α=2sin αcos α=-2524, ∴cos 2α=1-2sin 2α=257, 故sin (637π-2α)=sin (6π-2 α)=21×257-23(-2524)=32512507+.18.答案:(1)1;(2)π;(3)π. 解:(1)y =cos 2(πx +2)=21[1+cos (2πx +4)] =21cos (2πx +4)+21. ∴T =ππ22=1. (2)y =cos 4x -sin 4x=(cos 2x +sin 2x )(cos 2x -sin 2x ) =cos 2x -sin 2x =cos 2x . ∴T =22π=π. (3)y =sin x ·cos x +3cos 2x -23 =21sin 2x +3·22cos +1x-23=21sin 2x +23cos 2x=sin (2x +3π).∴T =22π=π. 19.答案:x =-4π时y min =1,x =4π时y max =5.解析:f (x )=tan 2x +2tan x +2=(tan x +1)2+1.∵x ∈[-3π,4π],∴tan x ∈[-3,1]. ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1;当tan x =1,即x =4π时,y 有最大值,y max =5.20.答案: [31,3].解析:将原函数去分母并整理得(y -1)tan 2x +(y +1)tan x +y -1=0. 当y ≠1时,∵tan x ∈R ,∴方程是关于tan x 的一元二次方程,有实根. ∴判别式△=(y +1)2-4(y -1)2≥0, 即3y 2-10y +3≤0.解之31≤y ≤3.而tan x =0时,y =1,故函数的值域为[31,3].。
三角函数(一)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1、在平面直角坐标系xOy 中,角与均以Ox 为始边,它们的终边关于x 轴对称,若=
αsin 5
4
,则=βsin (
A .
5
3
B .
5
4
C .5
3-
D .-
5
4 2.(2020全国 Ⅱ卷)若α为第四象限角,则( ) A .cos 20α> B .cos 20α< C .sin 20α>
D .sin 20α<
3..设α是第二象限角,P(x ,4)为其终边上的一点,且cos α=1
5x ,则tan α=( ) A .43
B .34
C .-34
D .-43
4. 一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A .
2
π B .
3
π C 2
D 3
5.若4sin cos 3θθ-=
,且3π,π4θ⎛⎫
∈ ⎪⎝⎭
,则sin(π)cos(π)θθ---=( ) A .2
B 2
C .43
-
D .
43
6.(2020全国III 卷)已知2tan tan()74
π
θθ-+=,则tan θ=( )
A .2-
B .1-
C .1
D .2
7.若2cos 23
πα⎛⎫
-=
⎪⎝⎭()cos 2πα-=( ) A . 2
9-
B .
2
9
C . 5
9-
D . 59
8 (2020海南卷改编)右图是函数sin()y x ωϕ=+的部分图像,则sin()x ωϕ+=( )
A .sin()3
x π
+
B .sin(
2)3x π
- C .)6
2cos(π
-
x
D .5cos(2)6
x π
- 9. (2020全国卷I )已知(0,)απ∈,且3cos28cos 5αα-=,则sin α=( )
A 5
B .
2
3
C .
1
3
D 510. 设函数()sin()3)f x x x ωϕωϕ=++(0,2
π
ωϕ><)的最小正周期为π,且()f x 为偶函数,
则( ) A .()f x 在(0,)2
π
单调递减 B .()f x 在3(
,
)44ππ
单调递减
C .()f x 在(0,
)2
π
单调递增
D .()f x 在3(,)44
ππ
单调递增 11. 若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝ ⎛
⎭⎪⎫α+β2=( )
A .3
3
B .-3
3
C .539
D .-6
9
12. 设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )
A .π
B .3π
4
C .3π2
D .7π4
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13. (2020江苏卷)将函数3sin(2)4
y x π
=+的图象向右平移
6
π
个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .
14. (2020北京) 若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________. 15. (2020江苏卷)已知2
2
sin (
)4
3
π
α+=
,则sin2α的值是________.
16.(2020天津卷改编)已知函数()sin 3f x x π⎛⎫
=+ ⎪⎝
⎭
.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫
⎪⎝⎭
是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3
π
个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是________
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知π02α<<
,4sin 5
α=. (1)求tan α及sin 2α的值; (2)求πcos 2sin()2
αα++的值.
18.(12分)已知f(α)=.
(1)化简f(α);
(2)若f(α)=,且<α<,求cos α-sin α的值;
(3)若α=-,求f(α)的值.
19. (12分)(2020·湖北武汉高一期末)一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间.
(1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数;
(2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米? 20.(12分)【2020·天津高三二模】已知函数()()2
1
cos 3sin cos 2
f x x x x x =+-
∈R (1)求()f x 的最小正周期; (2)讨论()f x 在区间,44ππ⎡⎤
-
⎢⎥⎣⎦
上的单调性;
21. (12分)(本小题满分12分)已知α,β为锐角,sin α=17,cos(α+β)=3
5. (1)求sin ⎝ ⎛⎭⎪⎫α+π6的值; (2)求cos β的值.
22.(12分) 已知函数f(x)=sin2x -2sin2x.
(1)求函数f(x)的最大值; (2)求函数f(x)的零点的集合.。