ADS-B系统工作原理
- 格式:doc
- 大小:248.93 KB
- 文档页数:8
adsb方案Ads-B方案随着航空业的不断发展和技术的日新月异,航空安全和航班效率成为热门话题。
在这方面,ADS-B(Automatic Dependent Surveillance-Broadcast,自动依赖监视广播)方案被广泛提及和采用。
本文将介绍ADS-B方案的工作原理、优势和应用,并探讨其在航空领域的未来发展。
一、工作原理ADS-B方案是一种航空交通管理系统,通过航空器上搭载的发射天线和地面接收设备,实现对航空器的准确监视和空中交流。
它基于GPS技术定位航空器的准确位置和速度,并广播这些信息给其他航空器和地面站,实时更新航空器的动态状态。
这种监视和广播机制可以提高空中交通管理的效率,减少空中碰撞和意外事件的发生。
二、优势1. 提高空中交通安全:ADS-B方案提供了更准确和及时的航空器位置信息,减少了空中交叉飞行和碰撞的风险。
航空器之间可以通过ADS-B数据交换避免冲突,增加交通管制员的决策支持和应对能力。
2. 提升航班效率:ADS-B方案使得航空器在空中和地面上的运行更加精确和高效。
通过准确的位置和速度信息,航空器可以更好地遵循航线,进行优化的飞行计划,减少航程时间和燃料消耗。
3. 开放源码和标准化:ADS-B方案采用开放源码和标准化的技术,使得航空安全设备之间的互联互通成为可能。
这种开放性可以促进技术创新和设备之间的兼容性,使得ADS-B方案具备更广泛的适用性和可扩展性。
三、应用1. 空中交通管理:ADS-B方案在空中交通管理领域得到广泛应用。
各个国家和地区的航空交通管理局可以通过建设地面接收站和开发相应的监控软件,实时监控航空器的位置和状态。
2. 航空器运行:航空器可以通过ADS-B方案获取周围航空器的信息,并进行相应的应对措施。
这不仅可以提高飞行安全,还可以优化飞行计划,减少延误和燃料消耗。
3. 航空器维护:ADS-B方案可以提供航空器运行状况和性能参数的实时数据。
维修人员可以根据这些数据进行故障诊断和预防性维护,减少航空器的维修成本和停机时间。
ADS-B技术分析和应用ADS-B技术(Automatic Dependent Surveillance-Broadcast)是一种航空领域使用的追踪飞机位置的技术。
它通过卫星信号和地面传输设备来实时监测飞机位置和飞行状态。
ADS-B技术的应用范围很广,不仅可以提高飞行安全,也可以帮助航空交通管理系统更高效地运作。
本文将对ADS-B技术进行详细分析,并探讨其在航空领域的应用。
一、ADS-B技术原理ADS-B技术的原理是利用飞机上的GPS设备获取位置信息,然后通过无线电信号广播到周围的飞机和地面站。
其他飞机和地面站也会广播自己的位置信息。
所有这些信息都会被接收并处理,从而形成一个实时的飞机位置地图。
在这个地图上,飞行员和空中交通管制员可以清楚地看到每一架飞机的位置和飞行状态。
ADS-B技术的核心是在飞机上安装ADS-B发射器和接收器。
发射器主要用于发送飞机的位置信息,而接收器则用于接收其他飞机和地面站发送的信息。
通过这种方式,每架飞机都可以获得周围飞机和地面站的位置信息,从而大大提高了飞行的安全性。
与传统的雷达监控系统相比,ADS-B技术有许多优势。
ADS-B技术可以提供更高精度的飞机位置信息。
由于GPS设备的使用,飞机可以实时准确地发送自己的位置信息,而无需依赖地面的雷达监控。
ADS-B技术可以提供更快的更新速度。
传统的雷达监控系统通常每几秒更新一次飞机的位置信息,而ADS-B技术可以实现每秒更新一次,从而更快地获取最新的飞行信息。
ADS-B技术还可以提供更多的飞行状态信息,如高度、速度、航向等,这些信息对于飞行员和空中交通管制员来说都非常重要。
ADS-B技术还可以帮助提高飞行的安全性和效率。
通过实时获得飞机的位置信息,飞行员可以更好地避开飞行障碍物,如其他飞机、山脉等。
在空中交通管制方面,ADS-B技术可以帮助空中交通管制员更好地管理飞机的航线和高度,从而避免相撞和提高飞机的运输效率。
ADS-B技术在航空领域有着广泛的应用。
ADS-B技术分析和应用ADS-B是一种航空交通管理技术,全称是自动相关监视广播系统(Automatic Dependent Surveillance-Broadcast),是一种航空器定位系统,它利用卫星进行定位,并向其他飞行器和地面站发送无线信号,实现航空交通管理和飞行安全的目的。
ADS-B技术的原理是:每个飞行器都会搭载一个ADS-B发射器,该发射器会利用GPS 或其他导航系统获取自身的位置信息,并将其通过无线信号广播出去。
这些广播信号会被其他飞行器和地面站接收,从而形成一个实时的航空器交通信息网络。
通过这个网络,飞行员可以实时获取周围飞行器的位置和速度信息,地面交通管理人员也可以通过这个网络监控飞行器的运行状态,提高航空运输的安全性和效率。
ADS-B技术的应用非常广泛,主要有以下几个方面:1.空中交通控制:ADS-B技术可以实现空中交通监视和飞行器位置跟踪,有效提高了航空交通管理的准确性和效率。
航空交通管理人员可以通过ADS-B网络实时监控飞行器位置和运行状态,随时作出调度和控制决策。
2.飞行安全:ADS-B技术可以实时监测周围飞行器的位置和速度,避免了空中碰撞和其他意外事件的发生。
此外,ADS-B技术还可以提供气象数据,帮助飞行员避免天气影响。
3.空域容量提升:ADS-B技术可以使空域容量得到有效提升,因为它可以通过实时定位和跟踪,更好地管理航班之间的距离和速度关系,减少空中拥挤现象,在有限的空域内提高飞行量。
4.环保:ADS-B技术可以减少因航班延误和堵塞而导致的空气污染,也可以降低航班飞行时的燃油消耗,减少二氧化碳排放量,从而实现环保目标。
总之,ADS-B技术在现代航空交通管理中具有重要意义,它提高了航空安全、效率和环保性能,是未来航空运输的发展方向。
同时,随着技术的不断发展和完善,ADS-B技术的应用领域也会不断扩展,为全球航空运输带来更加安全、高效、环保的未来。
ADS-B技术分析和应用
ADS-B(自动侦测广播)技术是一项用于飞行和飞行管理的无线电通信技术,用于自动向空中交通管制单位和飞行操纵员报告飞机位置。
它是一种以处理透明和高效的航行数据传输为目标的航空电子技术,其发展着眼于改善两个主要方面:提高大范围航行数据和安全。
ADS-B技术的基本原理是,它能够自动将射频信号发射出去,被空中监视器接收并记录,从而收集飞机的数据,包括位置、高度、航线等信息,有助于飞行更加安全、高效。
此外,它还可以为飞行员提供有效的实时的位置信息,以便他们可以更好地控制飞机的运行,减少偏离航线的可能性。
ADS-B技术在管制和飞行中可以大幅度改善航空安全和航行系统的性能。
它可以使管制员拥有更多的实时数据,可以更快地解决复杂的管制问题,减少延误,给飞行员提供准确的信息,从而提高多重任务环境中的能力。
此外,ADS-B技术在航空交通管制系统方面也有许多应用。
如使用ADS-B技术设计的无人机系统,可以实现低空空中轨迹监控,无需使用铁路和地面导航系统;使用ADS-B技术,通过航空管制单位共享的数据,可以实现飞行飞机状态的实时监控和诊断,从而实现安全、可靠的航空交通管制。
总之,ADS-B技术是一种全新而重要的航空技术。
它可以改善航空安全,为空中交通管理带来可靠、全面的数据,同时也可以提高飞行员的工作效率和安全,是未来航空领域的一大发展方向。
ADS-B技术分析和应用自动相关监视广播(Automatic Dependent Surveillance-Broadcast,简称ADS-B),是一种基于全球定位系统(GPS)和广播技术的飞行器自动目视跟踪系统。
与传统的雷达监视相比,ADS-B具有更高的准确性、更广的覆盖范围、更低的维护成本和更高的实时性。
在民用航空领域,ADS-B技术已经得到广泛应用,可以实现飞行器的实时飞行监视和通信,以提高航班安全性和效率。
本文将从ADS-B技术的原理、优势和应用等方面进行分析。
ADS-B技术基于全球定位系统,利用GPS接收器获取飞行器的位置和速度信息,并通过广播技术将这些信息传输给地面监视站或其他飞行器。
系统通过自动识别功能,将广播信息分为飞行器的身份信息和飞行参数信息两类,确定航空器的航迹、位置和速度等参数。
由于ADS-B采用多颗GPS卫星进行信号校正和数据验证,因此其精度高、可靠性强、对环境和空气流动的干扰少。
1. 高效准确。
ADS-B技术能够提供更广泛和准确的飞行器监视。
飞行器的位置和速度信息可以在全球范围内实时广播,并通过地面服务站进行中继,以提供更快、更准确的数据。
ADS-B技术对于卫星导航和广播系统的整合,使得其成为一种非常精确和实时的飞行器监视方法。
2. 成本低。
在开发和安装方面,ADS-B技术所需的总体成本不高,特别是在针对相对较小航空器运营的成本方面。
此外,由于其实时性和准确性使得ADS-B系统更加可靠,从而减少了维护和周期性检查的费用。
3. 补充雷达监测。
当飞行器处于无雷达监控区域时,ADS-B适用于广域监视功能。
此外,ADS-B提供的每秒钟多达18次的数据报告,能够通过各种技术实现航路分离和空域监管,进一步提高了航班安全性。
1. 航班跟踪。
ADS-B技术的主要应用之一是在控制塔中提供实时位置和速度信息来跟踪飞行器。
这些数据可以提供更准确的位置和速度更新,使操作员在管制指令或调度的情况下更快地作出决策,并更有效地调度飞行器。
ADS-B技术分析和应用ADS-B即自动相关监视广播(Automatic Dependent Surveillance–Broadcast),是一种航空电子设备,用于飞机的空中交通管理。
该技术通过使用GPS来确定飞机的位置,并将这些数据广播给地面控制站和其他飞机,以提供更准确的空中交通管理。
ADS-B的主要原理是飞机上的广播设备使用GPS接收器获取飞机的位置信息,然后通过广播信号将这些数据发送到指定的地面台站和其他飞机。
地面台站接收到这些数据后,可以实时显示飞机的位置,并将其与其他飞机和地面交通进行协调。
这些数据也可以用于飞行计划、空中交通管制和飞行安全等方面。
ADS-B技术的应用非常广泛。
ADS-B可以提高飞行的安全性。
通过实时获取飞机的位置数据,地面控制站和其他飞机可以更好地进行空中交通规划和避让,减少碰撞的风险。
ADS-B可以提高飞机的效率。
地面控制站可以根据飞机的位置和速度等数据,优化飞行计划,减少飞行时间和油耗。
ADS-B还可以用于飞机的追踪和监控,对于搜索和救援等紧急情况有很大的帮助。
在国内,ADS-B技术的发展也非常迅速。
我国已经启动了ADS-B技术的推广应用工作,按照计划,到2022年,我国特大型及以上机场和拥有80座以上客机的机场将全部完成ADS-B地面站的布设工作。
我国也在研发ADS-B终端设备,以提供更广泛的服务和应用。
ADS-B技术也存在一些挑战和问题。
ADS-B信号的覆盖范围有限,特别是在山区和海洋等复杂地形条件下,信号的传输可能会受到干扰。
ADS-B技术的安全性也存在一定的风险。
由于ADS-B信号是通过广播方式传播的,可能会被非法干扰或伪造,导致飞行数据的不准确性。
在推广和应用ADS-B技术时,需要加强安全性的保障和防范措施。
ADS-B技术分析和应用ADS-B技术(Automatic Dependent Surveillance-Broadcast)是一种新一代的航空交通管理技术,它采用卫星定位与通信技术,可通过实时向飞行器提供周围航空器的状态信息,提高了航空器的监控能力和航空交通管制系统的效率。
本文将对ADS-B技术进行分析,并探讨它在航空领域中的应用前景。
ADS-B技术是基于卫星导航的自动依赖监视广播技术,它借助GPS系统实现航空器的准确定位和速度测算,通过卫星通信系统将飞行器的状态数据广播给周围的航空器和地面控制中心。
这种技术能够实现在全球范围内实时、高精度地监测航空器的位置和状态,可以提供更加安全、高效的航空交通管理服务。
ADS-B技术的核心是飞行器上搭载的ADS-B设备,该设备包括GPS接收器、数据链通信模块和天线等组成部分。
通过这些设备,飞行器能够进行位置定位和数据广播,实现与其他航空器和地面控制中心的信息交换。
ADS-B技术的应用带来了多方面的好处。
它提高了航空交通的安全性。
通过实时监测飞行器的位置和状态,可以避免空中碰撞和其他意外事件的发生。
ADS-B技术提高了航空交通的效率。
地面控制中心可以更加准确地掌握航空器的位置和航线,从而更好地进行空中交通管制,提高了通航能力和空域利用率。
ADS-B技术还可以提供更加精确的气象信息和飞行流量管理,减少了飞行推迟和延误。
在航空领域,ADS-B技术已经开始得到广泛的应用。
很多国家和地区的航空管理部门已经开始推广ADS-B技术,并逐步规定要求飞行器搭载ADS-B设备。
而且,一些国际组织也已经开始针对ADS-B技术的标准和规范进行了统一的制定,为全球范围内的ADS-B应用提供了技术和标准的支持。
未来,随着技术的不断发展和完善,ADS-B技术在航空领域中的应用前景将会更加广阔。
随着卫星导航和通信技术的不断进步,ADS-B技术将会实现更高的定位精度和数据传输速率,从而进一步提高航空交通管理的精细化和实时性。
航空器ADS-B自动相关监视系统是指什么?1.ADS-B概述广播式自动相关监视(ADS-B)是利用空地、空空数据通信完成交通监视和信息传递的一种航行新技术。
与雷达系统相比:ADS-B能够提供更加实时和准确的航空器位置等监视信息;建设投资只有前者的十分之一左右,并且维护费用低,使用寿命长;使用ADS-B可以增加无雷达区域的空域容量,减少有雷达区域对雷达多重覆盖的需求,大大降低空中交通管理的费用;ADS-B可以为航空器提供交通信息,传递天气、地形、空域限制等飞行信息,使机组更加清晰地了解周边交通情况,提高情景意识,并可用于航空公司的运行监控和管理,为安全、高效的飞行提供保障;ADS-B还可以用于飞行区的地面交通管理,是防止跑道侵入的有效方法。
ADS-B的应用将是保障飞行安全、提高运行效率、增大空中交通流量、减少建设投资的重要技术手段。
2.基本原理ADS-B(Automatic Dependent Surveillance - Broadcast)一种监视技术,使航空器、机场机动车辆及其他目标能够自动发送和/或接收数据,例如识别信息、四维位置以及其他适合广播模式的超越数据链之外的附加信息。
对于航空器和机场机动车辆而言,这些信息是从机载导航和定位系统获得的。
包含了以下几层含义:自动(Automatic):数据传送无需人工干预;相关(Dependent):航空器的设备决定了数据的可用性,数据发送依赖于机载系统;监视(Surveillance):提供的状态数据适用于监视的任务;广播(Broadcast):采用广播方式发送数据,所有用户都可以接收这些数据。
根据相对于航空器的信息传递方向,机载ADS-B应用功能可以分为发送(OUT)和接收(IN)两类。
1) ADS-B OUTADS-B OUT是指航空器发送位置信息和其他信息。
机载发射机以一定的周期发送航空器的各种信息,包括:航空器识别信息(ID)、位置、高度、速度、方向、和爬升率等。
ADS-B技术分析和应用ADS-B(Automatic Dependent Surveillance-Broadcast)是一种新型的飞行监控技术,它能够实时地生成并广播飞行器的位置、速度、高度等信息。
这一技术在民航领域应用广泛,能够提高空管的航空流量、优化航班计划、减少事故风险等。
本文将从ADS-B技术原理、技术优点、应用场景等方面进行分析和讨论。
ADS-B技术是基于GPS定位技术和广播式数据链技术的,它通过在飞行器上安装ADS-B 设备,将飞行器的相关信息广播给地面辅助导航设施和其他飞行器,以实现空中交通的异常监控。
具体来说,在ADS-B系统中,飞行器上的ADS-B设备通过GPS系统获取飞行器的位置、速度、高度等信息,并将这些信息转化为数字信号,通过数据链技术传递给地面辅助导航设施和其他飞行器,从而实现对飞行器的广播式监控。
与传统的雷达监控技术不同,ADS-B技术不需要架设地面雷达系统,它仅仅需要在飞行器上安装ADS-B设备即可实现广播式监控,因此大大降低了设备的维护和运营成本。
另外,ADS-B技术具有高精度、高可靠性、高实时性等优点,能够准确地获取飞行器的位置、速度、高度等信息,为空管部门提供更加准确的空中交通信息,提高了空管部门的管理效率和准确性。
1.高精度2.高可靠性ADS-B技术采用数字信号传输,具有大容量、高速率、低误差等优点,能够高效、准确地传输飞行器的相关信息,具有高可靠性的特点。
ADS-B技术的数据链传输能够覆盖广泛的范围,不受天气、气象等自然环境影响,因此具有很高的可靠性。
3.高实时性ADS-B技术是一种实时监控技术,它能够立即生成飞行器的相关信息并广播给空中监管部门和其他飞行器,具有高实时性的特点。
与传统雷达技术相比,ADS-B技术的实时性更加明显,能够支持更加快速、高效的空管管理流程。
ADS-B技术在民航领域的应用非常广泛,下面列举几个明显的应用场景:1.空中交通管理2.空中碰撞预警ADS-B技术能够实时广播飞行器的相关信息,因此能够实现空中碰撞预警功能。
ADS-B系统的工作原理和技术简介(2011-09-14 11:56:11)第一章:ADS-B系统的工作原理和技术简介概述:ADS-B的定义:ADS-B是广播式自动相关监视的英文缩写,它主要实施空对空监视,一般情况下,只需机载电子设备(GPS接收机、数据链收发机及其天线、驾驶舱冲突信息显示器CDTI),不需要任何地面辅助设备即可完成相关功能,装备了ADS-B的飞机可通过数据链广播其自身的精确位置和其它数据(如速度、高度及飞机是否转弯、爬升或下降等)。
ADS-B接收机与空管系统、其它飞机的机载ADS-B结合起来,在空地都能提供精确、实时的冲突信息。
ADS-B是一种全新科技,它将当今空中交通管制中的三大要素通信、导航、监视重新定义。
Automatic——自动,“全天候运行”,无需职守。
Dependent——相关,它只需要于依赖精确地全球卫星导航定位数据。
Surveillance——监视,监视(获得)飞机位置、高度、速度、航向、识别号和其它信息。
Broadcast——广播,无需应答,飞机之间或与地面站互相广播各自的数据信息。
ADS-B系统由多地面站和机载站构成,以网状、多点对多点方式完成数据双向通信。
机载ADS-B通信设备广播式发出来自机载信息处理单元收集到的导航信息,接收其他飞机和地面的广播信息后经过处理送给机舱综合信息显示器。
机舱综合信息显示器根据收集的其他飞机和地面的ADS-B信息、机载雷达信息、导航信息后给飞行员提供飞机周围的态势信息和其他附加信息(如:冲突告警信息,避碰策略,气象信息)。
ADS-B系统是一个集通信与监视于一体的信息系统,由信息源、信息传输通道和信息处理与显示三部分组成。
ADS-B的主要信息是飞机的4维位置信息(经度、纬度、高度和时间)和其它可能附加信息(冲突告警信息,飞行员输入信息,航迹角,航线拐点等信息)以及飞机的识别信息和类别信息。
此外,还可能包括一些别的附加信息,如航向、空速、风速、风向和飞机外界温度等。
这些信息可以由以下航空电子设备得到:(1)全球卫星导航系统(GNSS);(2)惯性导航系统(INS);(3)惯性参考系统(IRS);(4)飞行管理器;(5)其它机载传感器。
ADS-B的信息传输通道以ADS-B报文形式,通过空-空、空-地数据链广播式传播。
ADS-B 的信息处理与显示主要包括位置信息和其它附加信息的提取、处理及有效算法,并且形成清晰、直观的背景地图和航迹、交通态势分布、参数窗口以及报文窗口等,最后以伪雷达画面实时地提供给用户。
ADS-B技术是新航行系统中非常重要的通信和监视技术,把冲突探测、冲突避免、冲突解决、ATC监视和ATC一致性监视以及机舱综合信息显示有机的结合起来,为新航行系统增强和扩展了非常丰富的功能,同时也带来了潜在的经济效益和社会效益。
ADS-B技术应用ADS-B技术用于空中交通管制,可以在无法部署航管雷达的大陆地区为航空器提供优于雷达间隔标准的虚拟雷达管制服务;在雷达覆盖地区,即使不增加雷达设备也能以较低代价增强雷达系统监视能力,提高航路乃至终端区的飞行容量;多点ADS-B地面设备联网,可作为雷达监视网的旁路系统,并可提供不低于雷达间隔标准的空管服务;利用ADS-B技术还在较大的区域内实现飞行动态监视,以改进飞行流量管理;利用ADS-B的上行数据广播,还能为运行中的航空器提供各类情报服务。
ADS-B技术在空管上的应用,预示着传统的空中交通监视技术即将发生重大变革。
ADS-B技术用于加强空-空协同,能提高飞行中航空器之间的相互监视能力。
与应答式机载避撞系统(ACAS/TCAS)相比,ADS-B的位置报告是自发广播式的,航空器之间无须发出问询即可接收和处理渐近航空器的位置报告,因此能有效提高航空器间的协同能力,增强机载避撞系统TCAS的性能,实现航空器运行中即能保持最小安全间隔又能避免和解决冲突的空-空协同目的。
ADS-B系统的这一能力,使保持飞行安全间隔的责任更多地向空中转移,这是实现“自由飞行”不可或缺的技术基础。
ADS-B技术能够真正实现飞行信息共享。
空中交通管理活动中所截获的航迹信息,不仅对于本区域实施空管是必需的,对于跨越飞行情报区(特别是不同空管体制的情报区)边界的飞行实施“无缝隙”管制,对于提高航空公司运行管理效率,都是十分宝贵的资源。
但由于传统的雷达监视技术的远程截获能力差、原始信息格式纷杂、信息处理成本高,且不易实现指定航迹的筛选,难以实现信息共享。
遵循“空地一体化”和“全球可互用”的指导原则发展起来的ADS-B技术,为航迹信息共享提供了现实可行性。
应用概况ADS技术的应用方面,从1998年,中国民用航空为了探索新航行系统发展之路,促进西部地区航空运输发展,在国际航空组织新航行系统发展规划指导下,抓住中国西部地区开辟欧亚新航路的战略机遇,启动了第一条基于ADS技术的新航行系统航路(L888航路)建设。
L888航路装备了FANS 1/A定义的ADS-C监视工作站,并在北京建立了网管数据中心。
2000年,新系统完成了评估和测试并投入运行。
2004年,北京、上海、广州三大区域管制中心相继建成。
为三大区管中心配套的空管自动化系统都具备了ADS航迹处理能力。
经验证,新系统可以处理和显示基于ACARS数据的自动相关监视航迹,也可以实施“航管员/飞行员数据链通信”(CPDLC)。
这标志了中国航空的主要空管设施已经具备了ADS监视能力。
随着我国航空公司机队规模扩大和机型的更新,近年来许多航空器都选装了适合新航行系统的机载电子设备,具备了地空双向数据通信能力。
中国航空在发展新航行系统和改进空中交通监视技术方面开展了建设性的活动,取得了一些成果,但总体上没有突破ADS-C的技术框架。
因此,对解决空管的突出问题,改善安全与效率,效果并不明显。
ADS-B技术的逐步成熟,将为我们寻求新的突破提供了机会。
当今ADS-B技术发展已经进入实用阶段,而我国仍在ADS的概念阶段徘徊不前。
当别人寻求以成本更低、效率更高、用途更广的新航行监视技术取代雷达技术时,我们还在加紧部署雷达网络。
过去十年,航空空管在发展主义的旗帜下实现了规模的扩张,但是,发展质量不容乐观。
一个重要的事实是极具说服力的:澳大利亚全境部署的雷达数量大致与上海飞行情报区可用的雷达资源相当。
澳大利亚同行的优势,很大程度上得益于ADS-B技术的超前规划和大胆应用。
相比之下,我们在ADS-B的实用技术研究、机载设备配备、地面系统建设、飞行和管制人员的操作技能培训等多方面,都还缺乏现实可行的规划安排。
技术体制问题在ADS-C的技术体制内,ADS的航迹报告是有条件选择发送的。
ADS-B与ADS-C之间除合约和通信协议的管理控制方式不同外,目标下传的位置、姿态和航行信息的内容基本一致。
机载ADS报告系统对报告信息的要素选项、重复报告周期、发送选址都是可以预设的。
飞机在收到地面发送的上行申请电文后发送ADS下行电文,将用户约定的报告内容通过空/地数据链和地面传输网络送达用户端。
因此,ADS信息的使用是契约制的。
也就是说,空管或航空公司签派等地面用户要想获得所需的ADS报告,必须逐架飞机、逐条航路(或航段)约定报告信息,同时还必须与经营空-地、地-地数据链传输业务的运营商定制信息传输服务。
用户约定的飞行航迹越多、信息要素越多、重复报告周期越短,支付的信息服务费就越高,而且按照SITA格式电报计量的通信费用特别昂贵。
在这样的技术体制下(附加了“第三方服务”成本),虽然在低密度航路上,基于ADS监视技术的空中交通服务和航空公司运行管理都能够实现,但高额的运行成本却让空管和航空公司等用户望而却步,航空器已配置的先进机载设备、配套建设的空-空数据链、地-空数据链和地面用户设备也只能束之高阁。
技术兼容问题首先是双向通信制式的差异。
ADS-B的通信制式是广播式双向通信,而我国用来进行航迹跟踪和管制数据通信的地空数据链,采用美国ARINC公司的AEEC618/AEEC622协议方式,属应答式双向通信。
此通信制式的数据刷新率受应答协议制约,其同步性和实时性都不能满足高密度飞行管制服务需求,无法与ADS-B技术兼容。
其次是数据链容量的差异。
ADS-B所使用的数据链应能满足高密度飞行监视的要求,因此对数据长度和通信速率都有很高的要求。
国际航空组织推荐的全球可互用的ADS-B的广播数据链-1090MHzS模式扩展电文数据链(1090ES),最大下行数据长度达到112位,最大数据率达到1兆比特/秒。
而我国现用的RGS地-空数据链,最大下行数据长度为32位,最大数据率仅2400比特/秒,显然不能与ADS-B广播电文兼容。
再则是传输技术上的差距。
ADS-B广播电文是面向比特的数据串,下行数据到达地面后,必须透明地传输至航空管制或航空运行签派等地面用户端。
而现有系统中,通过RGS或卫星截获的下行数据,须转换为面向字符的SITA报文格式,经低速的自动转报网传输到用户端。
这种信息传输方式的低效率以及传输时延不确定性,不能适应高密度飞行监视。
解决现有系统与ADS-B技术兼容问题,关键是选择新的空-空、地-空数据链系统。
数据链是ADS-B技术重要的组成部分,当前,许多国家和组织出于不同的开发意图,开发出了多种多样的数据链,从中选择适合我国实际的数据链类型,是确定机载设备性能和发展地面设施的前提。
各国对ADS-B数据链的选择各持己见,但主流意见基本倾向于以下三种:(1)甚高频数据链模式4(VDLMode4)--欧洲较流行;其核心技术为SOTDMA协议,不足是现在VHF频段资源紧张。
(2)万能电台数据链(UAT)--美国较流行,多用于通用航空飞机;采用二进制连续相移键控CP-FSK,不足是和DME地面设备的互相干扰严重。
(3)1090MHzS模式扩展电文数据链(1090ES)--国际民航组织推荐;采用选择性询问、双向数据通信,不足是已出现频谱过度使用的危机。
国际航空组织一直在努力倡导使各成员国能够执行一个统一的数据链标准,从而提高数据链设备在全球范围的通用性。
如果空中的每架飞机都执行同一个数据链标准,通过ADS-B系统,每个飞行员都能看到其周围一定范围内所有航空器的位置和动态。
这将显著提高飞行员对其周围飞行态势的感知度,从而可以在保证飞行安全的前提下,进一步缩小飞机间的安全间隔,优化飞行路线,提高空域资源的利用率。
欧洲是"广播式自动相关监视"(ADS-B)技术的策源地。
世界上第一次机载"飞行情报舱显器"(CDTI)与ADS-B技术的联合演示,就是1991年2月瑞典民航局在首都Bromma机场进行的。
但是在欧洲,ADS-B技术的应用似乎更艰难些。
相比美国和澳大利亚,欧洲各国要统一推广某种技术标准,难度大得多了。