八年级数学上学期期中试题苏科版2
- 格式:doc
- 大小:1.51 MB
- 文档页数:9
苏科版八年级上册数学期中考试试卷一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.一个等腰三角形的两边长分别是2cm 和5cm ,则它的周长为()A .9cm B .12cm C .7cm D .9cm 或12cm 3.如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO DO =,则再添加一个条件,仍不能证明AOC △≌BOD 的是()A .A B∠=∠B .ADE BCE ∠=∠C .AC BD =D .AD BC=4.如图,点A 、B 、C 都在方格纸的“格点”上,请找出“格点”D ,使点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有()个.A .1B .2C .3D .45.根据下列已知条件,能画出唯一的ABC ∆的是()A .90C ∠=︒,6AB =B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =6.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE²的最小值为()A.1B.2C.3D.4二、填空题7.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.8.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为_____.9.等腰三角形的一个内角为100°,则它的一个底角的度数为______.10.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为___.11.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是_____.12.如图,在△ABC中,∠C=90°,BD平分∠ABC,DC=5,则点D到AB的距离为___.13.如图所示,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为______.14.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=9,AD=6,则△AED的周长为___.15.如图,∠ADB=90°,正方形ABCG和正方形AEFD的面积分别是100和36,则以BD 为直径的半圆的面积是___.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是___.17.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC 沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是A、M 的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为___.18.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE =___.三、解答题19.已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.20.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=;(3)在AE上找一点P,使得PC+PD的值最小.22.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.23.如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD =ED=12.(1)求证:△CDE≌△BDA;(2)判断△ACE的形状,并证明;(3)求△ABC的面积.24.尺规作图:如图,射线OM ⊥射线ON ,A 为OM 上一点,请以OA 为一边作两个大小不等的等腰直角三角形.保留作图痕迹,标上顶点字母,并写出所画的三角形.25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >.(1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B ,D ,E 在同一直线上,连接CE ,容易发现:①∠BEC 的度数为;②线段BD 、CE 之间的数量关系为;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点B ,D ,E 在同一直线上,连接CE ,试判断∠BEC 的度数及线段BE 、CE 、DE 之间的数列关系,并【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=3,OB=6,AC=BC,则OC2的值为.参考答案1.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.不是轴对称图形,故A不符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D符合题意.故选:D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠2.B【解析】【分析】根据已知条件和三角形三边关系可知,等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得三角形的周长.【详解】本题只知道等腰三角形的两边的长,并不知道腰和底,所以需要分两种情况讨论,当腰长为2cm时,由于2+2<5,所以此时三角形不存在;当腰长为5cm时,5+5>2,所以此三角形满足题意,此时三角形的周长为:5+5+2=12cm.故答案为B.【点睛】本题考查了等腰三角形的概念,注意三角形两边之和大于第三边是解题的关键.3.C【解析】【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【详解】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;C、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有4个.故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.5.C【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6.B【解析】在AB 上截取AQ=AO=1,利用SAS 证明△AQD ≌△AOE ,推出QD=OE ,当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,利用勾股定理即可求解.【详解】解:如图,在AB 上截取AQ=AO=1,连接DQ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD=∠CAE ,在△AQD 和△AOE 中,AQ AOQAD OAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE(SAS),∴QD=OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得∴线段OE²有最小值为2,故选:B .【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.7.WL027【解析】【详解】解:关于水面对称的图形为W L027,∴该汽车牌照号码为WL027.8.9【解析】【分析】根据直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半,即可得出答案.【详解】在△ABC中,∵∠ACB=90°,D是AB边的中点,∴CD=12AB=9.故答案为9.【点睛】本题考查的是直角三角形的性质.掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.40°【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】解:①当100°这个角是顶角时,底角=(180°-100°)÷2=40°;②当100°这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.10.10【解析】【分析】根据勾股定理列式计算即可得解.【详解】解:∵直角三角形的两直角边长分别为8和6,∴斜边长=10.故答案为:10.【点睛】本题主要考查了勾股定理,比较简单,熟练掌握勾股定理是解题的关键.11.AB=AC【解析】【分析】根据角平分线定义求出∠BAD=∠CAD ,根据SAS 推出两三角形全等即可.【详解】解:AB=AC ,理由是:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故答案为AB=AC .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.5【解析】【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD .【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,BD 平分∠ABC ,∴DE=CD=5,即点D 到AB 的距离是5.故答案为:5.13.62【分析】根据C ∠和AEB DFC V V ≌可得28B ∠=︒,再根据AE CB ⊥和三角形的内角和定理即可求解.【详解】解:∵AEB DFC V V ≌,28C ∠=︒,∴28B C ∠=∠=︒.∵AE CB ⊥,∴90AEB =︒∠.∴18062A AEB B ∠=︒-∠-∠=︒.故答案为:62.14.15【详解】解:∵ED ∥BC ,∴∠EDB=∠CBD ,∵BD 平分∠ABC ,∴∠CBD=∠ABD ,∴∠EDB=∠ABD ,∴DE=BE ,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED 的周长为15,故答案为:15.15.8π【分析】根据勾股定理求出BD ,再利用圆的面积公式求半圆面积即可.【详解】∵正方形ABCG 和正方形AEFD 的面积分别是100和36,∴AB 2=100,AD 2=36,∵∠ADB =90°,∴在Rt ABD △中,8BD =,∴半圆面积:218822ππ⎛⎫⨯= ⎪⎝⎭.故答案为:8π.16.30°【分析】由折叠的性质可得出:∠CAE=∠DAE ,∠ADE=∠C=90°,结合点D 为线段AB 的中点,利用等腰三角形的三线合一可得出AE=BE ,进而可得出∠B=∠DAE ,再利用三角形内角和定理,即可求出∠B 的度数.【详解】解:由折叠,可知:∠CAE=∠DAE ,∠ADE=∠C=90°,∴ED ⊥AB .∵点D 为线段AB 的中点,ED ⊥AB ,∴AE=BE ,∴∠B=∠DAE .又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=90°,∴∠B=30°.故答案为:30°.17.10【解析】连接PQ,AM,根据PQ=AM即可解答.【详解】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM2=12+32=10.∴PQ2=AM2=12+32=10.故答案为:10.18.8 3【解析】设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x.当AE=AC′时,作AH⊥EC′,由∠AEF=90°,EF平分∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即8-x=2x,解方程即可.【详解】解:∵四边形ABCD是矩形,设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x,作AH⊥EC′,如图,∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△EC′F,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′,∴EC′=2EH,即8-x=2x,解得x=8 3,∴BE=8 3.故答案为:8 3.19.见解析【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.【详解】证明:∵点C是AE的中点,∵AB ∥CD ,∴∠A=∠ECD ,在△ABC 和△CDE 中,AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).20.(1)见解析;(2)见解析【解析】(1)求出90EDA FCB ∠=∠=︒,AD=BC ,根据HL 证明Rt AED Rt BFC ∆≅∆即可;(2)根据全等三角形的性质得出∠A=∠B ,根据平行线的判定得出即可.【详解】解:(1)∵ED ⊥AB ,FC ⊥AB ,∴90EDA FCB ∠=∠=︒∵AC =BD ,∴AC CD BD CD +=+,即AD BC=在Rt AED ∆和Rt BFC ∆中,AD BC AE BF=⎧⎨=⎩∴Rt AED Rt BFC∆≅∆(2)由(1)知Rt AED Rt BFC∆≅∆∴∠A=∠B∴AE ∥BF .21.(1)见解析;(2)6;(3)见解析【解析】(1)根据轴对称的性质确定出点B 关于AE 的对称点F 即可;(2)即DC 与EF 的交点为G ,由四边形ADGE 的面积=平行四边形ADCE 的面积-△ECG 的面积求解即可;(3)根据轴对称的性质取格点M ,连接MC 交AE 于点P ,此时PC+PD 的值最小.【详解】解:(1)如图所示,△AEF 即为所求作:(2)重叠部分的面积=S 四边形ADCE-S △ECG =2×4-12×2×2=8-2=6.故答案为:6;(3)如图所示,点P 即为所求作:22.(1)证明见解析;(2)22°.【解析】(1)连接DE .由G 是CE 的中点,DG CE ^得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =.(2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠,由此根据外角的性质来求BCE ∠的度数.【详解】(1)如图,连接DE .∵G是CE的中点,DG CE^,∴DG是CE的垂直平分线,∴DE DC=.∵AD是高,CE是中线,∴DE是Rt ADB的斜边AB上的中线,∴12DE BE AB==.∴DC BE=;(2)∵DC DE=,DEC BCE∴∠=∠,2EDB DEC BCE BCE∴∠=∠+∠=∠,DE BE=,B EDB∴∠=∠,2B BCE∴∠=∠,366AEC BCE∴∠=∠= ,22BCE∴∠= .23.(1)见解析;(2)△ACE是直角三角形,证明见解析;(3)84【解析】(1)根据SAS证明△CDE≌△BDA即可;(2)由全等三角形的性质得出AB=CE=7,利用勾股定理逆定理证得△ACE是直角三角形;(3)求得△ACE的面积,即可得出△ABC的面积.【详解】解:(1)证明:∵AD 是边BC 上的中线,∴BD=CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD ED ⎧⎪∠∠⎨⎪⎩===,∴△CDE ≌△BDA (SAS ),(2)△ACE 是直角三角形,证明如下:∵△ABD ≌△ECD ,∴AB=CE=7,∵AE=AD+ED=24,AC=25,CE=7,∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,(3)∵△CDE ≌△BDA∴CDE BDAS =S ∴△ABC 的面积=△ACE 的面积=12×7×24=84.【点睛】此题考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.24.见解析【分析】以O 为圆心,OA 为半径作圆,与射线ON 交于点B ,则△AOB 是以OA 为腰的等腰直角三角形;作∠MON 的平分线OP ,过点A 作AC ⊥OP 于点C ,则△AOC 是以OA 为斜边的等腰直角三角形.【详解】解:如图:△AOB 和△AOC 即为所作..【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3.【解析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高;(2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯,∴1153422h ⨯⨯=⨯⨯,∴125h =.∴斜边AB 上的高为125.(2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动,①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩,∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =,故答案为:83;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P在线段AB上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴125 CH=,在Rt△BCH中,由勾股定理得:1.8BH==,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则30.52BQ CQ BC ==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ中,由勾股定理得: 2.5BP ==,点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由见解析;(3)92【解析】【分析】(1)根据等边三角形的性质得到AB=AC ,AD=AE ,∠BAC=∠DAE=60°,得到∠BAD=∠CAE ,证明△BAD ≌△CAE ,根据全等三角形的性质证明结论;(2)由“SAS”可证△ABD ≌△ACE ,可得BD=CE ,∠AEC=∠ADB=135°,即可求解;(3)由“AAS”可证△ACF ≌△CBE ,可得BE=CF ,AF=CE ,可求OF=CF=32,由勾股定理可求解.【详解】解:(1)∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD=CE ;∠AEC=∠ADB=180°-∠ADE=120°,∴∠BEC=∠AEC-∠AED=120°-60°=60°,故答案为:60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由如下:∵∠BAC=∠DAE=90°,∴AB=AC ,AD=AE ,∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠AEC=∠ADB=135°,∴∠BEC=∠AEC-∠AED=135°-45°=90°,∵BE=BD+DE ,∴BE=CE+DE ;(3)如图,过点C 作CF ⊥AO 交AO 延长线于F ,过点B 作BE ⊥CF 于E,∵∠ACB=90°=∠E=∠AFC ,∴∠BCE+∠ACF=90°=∠BCE+∠CBE ,∴∠ACF=∠CBE ,又∵AC=BC ,∠AFC=∠E ,∴△ACF ≌△CBE (AAS ),∴BE=CF,AF=CE,∵OA=3,OB=6,∴EC+CF=BO=6,OA=AF-OF=CE-BE=CE-CF=3,∴EC=92,CF=32=OF,∴OC2=CF2+OF2=(32)2+(32)2=92.故答案为:9 2.。
2016-2017学年江苏省苏州市昆山市、太仓市八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数必然是1C.﹣2是4的平方根D.的算术平方根是43.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积别离相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.如图,∠CAB=∠DBA,再添加一个条件,不必然能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D5.在,﹣,,﹣,,…,中无理数有()A.3个B.4个C.5个D.6个6.若是点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.57.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45° B.60° C.55° D.75°8.已知等腰三角形的两边长分別为a、b,且a、b知足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或109.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积别离为50和39,则△EDF的面积为()A.11 B. C.7 D.10.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是.12.如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P到OB的距离是.13.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为.14.已知+=0,那么(a+b)2016的值为.15.若一个正数的两个不同的平方根为2m﹣6和m+3,则m为.16.若等腰三角形的一个外角是80°,则等腰三角形的底角是°.17.如图,在2×2的正方形格纸中,有一个以格点为极点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为极点的三角形,如此的三角形共有个.18.如图,等边△ABC中,AB=4,E是线段AC上的任意一点,∠BAC的平分线交BC于D,AD=2,F是AD上的动点,连接CF、EF,则CF+EF的最小值为.三、解答题(本大题共10小题,共76分,应写出必要的计算进程、推理步骤或文字说明)19.计算或化简:(1)()2﹣﹣(2)﹣+(1﹣)0﹣|﹣2|20.求下列各式中x的值(1)(x+1)2﹣3=0;(2)3x3+4=﹣20.21.已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y的平方根.22.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.23.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.24.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.25.如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.26.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)别离连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.27.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE 相等的线段,并证明.28.问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F别离是BC,CD上的点.且∠EAF=60°.探讨图中线段BE,EF,FD之间的数量关系.小王同窗探讨此问题的方式是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F别离是BC,CD上的点,且∠EAF=∠BAD,上述结论是不是仍然成立,并说明理由.2016-2017学年江苏省苏州市昆山市、太仓市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】按照轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选C.2.下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数必然是1C.﹣2是4的平方根D.的算术平方根是4【考点】立方根;平方根;算术平方根.【分析】利用立方根及平方根概念判断即可取得结果.【解答】解:A、9的立方根为,错误;B、算术平方根等于本身的数是0和1,错误;C、﹣2是4的平方根,正确;D、=4,4的算术平方根为2,错误,故选C3.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积别离相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【考点】全等三角形的应用.【分析】依据全等三角形的概念:能够完全重合的两个三角形.即可求解.【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不必然是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积必然相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不必然是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不必然能完全重合,不必然全等.故错误.故选B.4.如图,∠CAB=∠DBA,再添加一个条件,不必然能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D【考点】全等三角形的判定.【分析】按照全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【解答】解:A、∵AC=BD,∠CAB=∠DBA,AB=AB,∴按照SAS能推出△ABC≌△BAD,故本选项错误;B、∵∠CAB=∠DBA,AB=AB,∠1=∠2,∴按照ASA能推出△ABC≌△BAD,故本选项错误;C、按照AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;D、∵∠C=∠D,∠CAB=∠DBA,AB=AB,∴按照AAS能推出△ABC≌△BAD,故本选项错误;故选C.5.在,﹣,,﹣,,…,中无理数有()A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无穷不循环小数.理解无理数的概念,必然要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无穷循环小数是有理数,而无穷不循环小数是无理数.由此即可判定选择项.【解答】解:,,…是无理数,故选:A.6.若是点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【考点】关于x轴、y轴对称的点的坐标.【分析】按照关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.【解答】解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.7.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45° B.60° C.55° D.75°【考点】全等三角形的判定与性质;等边三角形的性质.【分析】通过证△ABD≌△BCE得∠BAD=∠CBE;运用外角的性质求解.【解答】解:等边△ABC中,有∵∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE∴∠APE=∠BAD+∠ABP=∠ABP+∠PBD=∠ABD=60°.故选:B.8.已知等腰三角形的两边长分別为a、b,且a、b知足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【考点】等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.【分析】先按照非负数的性质求出a,b的值,再分两种情形肯定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积别离为50和39,则△EDF的面积为()A.11 B. C.7 D.【考点】角平分线的性质;全等三角形的判定与性质.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质取得DN=DF,将三角形EDF 的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积别离为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=.故选B.10.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【考点】全等三角形的判定与性质.【分析】易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再按照角平分线的性质可求得∠DAE=∠DCE,即③正确,按照③可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,∵在RT△BEG和RT△BEF中,,∴RT△BEG≌RT△BEF(HL),∴BG=BF,∵在RT△CEG和RT△AFE中,,∴RT△CEG≌RT△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正确.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是±2 .【考点】平方根;算术平方根.【分析】按照平方根的概念,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±212.如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P到OB的距离是 2 .【考点】角平分线的性质.【分析】过点P作PE⊥OB,由角平分线的性质可得PD=PE,进而可得出结论.【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.故答案为2.13.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为65°.【考点】平行线的性质;等腰直角三角形.【分析】按照等腰三角形的性质和三角形内角和定理求出∠ACB,求出∠ACM,按照平行线的性质得出∠2=∠ACM,代入求出即可.【解答】解:∵∠BAC=90°,AB=AC,∴∠ACB=∠B=45°,∵∠1=20°,∴∠ACM=20°+45°=65°,∵直线a∥直线b,∴∠2=∠ACM=65°,故答案为:65°.14.已知+=0,那么(a+b)2016的值为 1 .【考点】非负数的性质:算术平方根.【分析】按照非负数的性质列出算式,求出a、b的值,代入计算即可.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故答案为:1.15.若一个正数的两个不同的平方根为2m﹣6和m+3,则m为 1 .【考点】平方根.【分析】由平方根的性质可求出m的值;【解答】解:由题意可知:(2m﹣6)+(m+3)=0,∴3m=3,∴m=1,故答案为:116.若等腰三角形的一个外角是80°,则等腰三角形的底角是40 °.【考点】等腰三角形的性质.【分析】第一判断出与80°角相邻的内角是底角仍是顶角,然后再结合等腰三角形的性质及三角形内角和定理进行计算.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情形不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故答案为:40.17.如图,在2×2的正方形格纸中,有一个以格点为极点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为极点的三角形,如此的三角形共有 5 个.【考点】利用轴对称设计图案.【分析】按照轴对称图形的概念:若是一个图形沿着一条直线对折,双侧的图形能完全重合,那个图形就是轴对称图形进行画图即可.【解答】解:如图所示:与△ABC成轴对称的有:△FBM,△ABE,△AND,△CMN,△BEC共5个,故答案为:5.18.如图,等边△ABC中,AB=4,E是线段AC上的任意一点,∠BAC的平分线交BC于D,AD=2,F是AD上的动点,连接CF、EF,则CF+EF的最小值为2.【考点】轴对称-最短线路问题;等边三角形的性质.【分析】按照等腰三角形三线合一的性质可得AD⊥BC,BD=CD,从而取得点B、C关于AD对称,再按照垂线段最短,过点B作BE⊥AC于E,交AD于F,连接CF,按照轴对称肯定最短线路问题,点E、F即为使CF+EF的最小值的点,再按照等边三角形的性质求出BE即可.【解答】解:∵AD是等边△ABC的∠BAC的平分线,∴AD⊥BC,BD=CD,∴点B、C关于AD对称,过点B作BE⊥AC于E,交AD于F,连接CF,由轴对称肯定最短线路问题,点E、F即为使CF+EF的最小值的点,∵△ABC是等边三角形,AD、BE都是高,∴BE=AD=2,∴CF+EF的最小值=BE=2.故答案为:2.三、解答题(本大题共10小题,共76分,应写出必要的计算进程、推理步骤或文字说明)19.计算或化简:(1)()2﹣﹣(2)﹣+(1﹣)0﹣|﹣2|【考点】实数的运算;零指数幂.【分析】(1)原式利用平方根及立方根概念计算即可取得结果;(2)原式利用零指数幂法则,和绝对值的代数意义化简,计算即可取得结果.【解答】解:(1)原式=4﹣2﹣5=﹣3;(2)原式=﹣+1﹣2+=﹣1.20.求下列各式中x的值(1)(x+1)2﹣3=0;(2)3x3+4=﹣20.【考点】立方根;平方根.【分析】按照立方根和立方根的性质即可求出x的值.【解答】解:(1)(x+1)2﹣3=0,∴x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)3x3+4=﹣20,∴3x3=﹣24,∴x3=﹣8,解得:x=﹣2.21.已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y的平方根.【考点】立方根;平方根;算术平方根.【分析】按照算术平方根、立方根的概念求出x、y的值,求出4x﹣2y的值,再按照平方根概念求出即可.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.22.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【分析】(1)按照CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)按照SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.23.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【考点】全等三角形的判定与性质.【分析】要证(1)△BAD≌△CAE,现有AB=AC,AD=AE,需它们的夹角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易证得.(2)BD、CE有何特殊位置关系,从图形上可看出是垂直关系,可向这方面尽力.要证BD⊥CE,需证∠BDE=90°,需证∠ADB+∠ADE=90°可由直角三角形提供.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.24.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【考点】线段垂直平分线的性质.【分析】(1)按照线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)按照已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=.25.如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【考点】作图-轴对称变换.【分析】(1)做BO⊥CD于点O,并延长到B′,使B′O=BO,连接AB即可;(2)轴对称图形沿某条直线折叠后,直线两旁的部份能完全重合.【解答】解:所作图形如下所示:26.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)别离连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【考点】线段垂直平分线的性质.【分析】(1)先按照线段垂直平分线的性质得出AD=BD,AE=CE,再按照AD+DE+AE=BD+DE+CE 即可得出结论;(2)先按照线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.【解答】解:(1)∵DF、EG别离是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.27.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE 相等的线段,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)第一按照点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)按照垂直的概念得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再按照AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.28.问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F别离是BC,CD上的点.且∠EAF=60°.探讨图中线段BE,EF,FD之间的数量关系.小王同窗探讨此问题的方式是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF .探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F别离是BC,CD上的点,且∠EAF=∠BAD,上述结论是不是仍然成立,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【解答】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;。
2023-2024学年全国八年级上数学期中试卷考试总分:135 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列图形中,是轴对称图形的有( )A.个B.个C.个D.个2. 下列各点中,位于第四象限内的点是( )A.B.C.D.3. 的平方根是( )A.B.C.D.4. 如图,下列条件不能证明的是 ( )4321(2,1)(2,−1)(−2,1)(−2,−1)16−−√4±4±22△ABC ≅△DCBA.B.C.D.5. 若,则函数的图象可能是( ) A. B. C. D.6. 下列各组数中,能构成直角三角形的是( )A.,,B.,,C.,,D.,,AB =DC,AC =DBAB =DC,∠ABC =∠DCBBO =CO,∠A =∠DAB =DC,OB =OCkb >0y =kx +b 1234562313−−√51215△ABE ≅△ACD BE CD M ∠BAC =∘∠C =∘∠BMD7. 如图,,,相交于点.若,,则的度数为( )A.B.C.D.8. 小明家、食堂、图书馆在同一条直线上,且食堂在小明家和图书馆之间.小明先从家出发去食堂吃早餐,接着去图书馆看报,然后回家,所示图象反映了这个过程中,小明离家的距离()与时间()之间的对应关系.由此给出下列说法:小明家与食堂相距,小明从家去食堂用时.食堂与图书馆相距.小明从图书馆回家的速度是其中正确的是()A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )9. 已知与是的平方根,则的值是________.△ABE ≅△ACD BE CD M ∠BAC =70∘∠C =30∘∠BMD 50∘65∘70∘80∘y km x min ①0.6km 8min ②0.2km ③0.08km/min.①②①③②③①②③2a −1−a +2m m =9210. 如果,那么_______.11. 如果有理数,满足,那么________.12. 如图,在中,点是的中点,连接, ,,,则的长等于________.13. 已知,射线平分,如果射线上的点能满足是等腰三角形,那么的度数为________.14. 在中,,,,在上取一点.使,过点作交的延长线于点,若,则________.15. 如图所示,在中,=,=,=,求的长度.在这个问题中,可求得的长度为________.16. 如图,点在直线上,过点作轴交直线于点,以点为直角顶点,为直角边在的右侧作等腰直角,再过点作轴,分别交直线和于,两点,以点为直角顶点,为直角边,在的右侧作等腰直角,按此规律进行下去,则等腰直角的面积为________.(用含正整数的代数式表示)=9x 2x =a b |a −1|+=0(b +1)2−=a 2019b 2018Rt △ABC D AB CD ∠ACB =90∘BC =3CD =2AC ∠AOB =60∘OC ∠AOB OA E △OCE ∠OEC Rt △ABC ∠ACB =90∘BC =2cm CD ⊥AB AC E EC =BC E EF ⊥AC CD F EF =5cm AB =cm △ABC ∠C 90∘AC +AB 10BC 3AC AC (2,2)A 1y =x A 1//y A 1B 1y =x 12B 1A 1A 1B 1A 1B 1△A 1B 1C 1C 1//y A 2B 2y =x y =x 12A 2B 2A 2A 2B 2A 2B 2△⋯A 2B 2C 2△A n B n C n n三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )17. 计算:;. 18. 如图,点,,,在一条直线上,,,,求证. 19. 求下列各式中的值:;. 20. 如图所示的一块地(图中阴影部分),,,,.求的度数;求阴影部分的面积.21. 如图,这是一个动物园游览示意图,建立适当的平面直角坐标系,并用坐标表示动物园中每个景点位置.(1)−+(−2×−×(−)12)318−27−−−−√319−−√(2)(−+3–√)216−−√−8−−−√3B E C F AB =DE AC =DF BC =EF AB//DE x (1)2−5=27x 2(2)(x −1+6=−119)3∠ACB =90∘AB =13BC =12AD =4CD =3(1)∠ADC (2)22. 实数,互为相反数,,互为倒数,的绝对值为,求代数式的值.23.如图,在 中,为 的弦,,是直线上两点,且 ,求证: . 24.如图,正比例函数的图象与一次函数的图象交于点,一次函数的图象经过点.求一次函数的解析式;请直接写出不等式组的解集. 25. 如图,在正方形网格中,每个小正方形的边长均为,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.请在如图所示的网格平面内画出平面直角坐标系;a b c d x 3–√+−x 2a +b +4−−−−−−−√27cd−−−−√3⊙O AB ⊙O C D AB OC =OD AC =BD y =2x y =kx +b A(m,2)B(−2,−1)(1)(2)−1<kx +b <2x 1ABC A C (−4,5)(−1,3)(1)(2)P (m,n)△ABC BC △A B C P点是边上任意一点,三角形经过平移后得到,点的对应点为.①直接写出点的坐标________;②画出平移后的,并求出的面积. 26. 如图,、、为三个超市,在通往的道路(粗实线部分)上有一点,与有道路(细实线部分)相通.与,与C ,与之间的路程分别为,,.现计划在通往的道路上建一个配货中心,每天有一辆货车只为这三个超市送货.该货车每天从出发,单独为送货次,为送货次,为送货次.货车每次仅能给一家超市送货,每次送货后均返回配货中心,设到的路程为 ;这辆货车每天行驶的路程为 .用含的代数式填空:①当时,货车从到往返次的路程为.货车从到往返次的路程为________,货车从到往返次的路程为________,这辆货车每天行驶的路程_________;②当时,这辆货车每天行驶的路程________;请在图中画出与 的函数图像;配货中心建在哪段,这辆货车每天行驶的路程最短?最短路程是多少? 27. 在菱形中,,是对角线上任意一点,是线段延长线上一点,且,连接,.如图,当是线段的中点时,和的数量关系是________;如图,当点不是线段的中点,其它条件不变时,请你判断中的结论是否成立?若成立,请给予证明;若不成立,请说明理由;如图,当点是线段延长线上的任意一点,其它条件不变时,中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(2)P (m,n)△ABC BC △A 1B 1C 1P (m +6,n −2)P 1B 1△ABC △A 1B 1C 1△A 1B 1C 11A B C A C D D B A D D D B 25km 10km 5km A C H H A 1B 1C 2H H A xkm ykm (1)x 0≤x ≤25H A 12xkm H B 1km H C 2km y =25<x ≤35y =(1)2y x (0≤x ≤35)(2)H ABCD ∠ABC =60∘E AC F BC CF =AE BE EF (1)1E AC BE EF (2)2E AC (1)(3)3E AC (1)参考答案与试题解析2023-2024学年全国八年级上数学期中试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】轴对称图形【解析】此题暂无解析【解答】解:为中心对称图形,不是轴对称图形;为轴对称图形,不是中心对称图形;即为轴对称图形,又为中心对称图形;为轴对称图形,不是中心对称图形.故选.2.【答案】B【考点】点的坐标【解析】此题暂无解析【解答】解:由第四象限内的点的横坐标大于零,纵坐标小于零,故只有选项符合条件,故选.3.【答案】CA B C D B B B【考点】平方根算术平方根【解析】此题暂无解析【解答】解:,的平方根是.故选.4.【答案】D【考点】全等三角形的判定【解析】【解答】解:,,,,符合全等三角形的判定定理,能推出,故本选项错误;,,,,符合全等三角形的判定定理,能推出,故本选项错误;,∵,∴,∵,,符合全等三角形的判定定理,能推出,故本选项错误;,,,,不符合全等三角形的判定定理,不能推出,故本选项正确.故选.5.【答案】=416−−√4±2C A AB =DC AC =DB BC =CB SSS △ABC ≅△DCB B AB =DC ∠ABC =∠DCB BC =CB SAS △ABC ≅△DCB C OB =OC ∠DBC =∠ACB ∠A =∠D BC =CB AAS △ABC ≅△DCB D AB =DC OB =OC ∠AOB =∠DOC △ABC ≅△DCB DA【考点】一次函数的图象【解析】根据,可知,或,,然后分情况讨论直线的位置关系.【解答】解:由题意可知:可知,或,,当,时,直线经过一、二、三象限,当,直线经过二、三、四象限.故选.6.【答案】C【考点】勾股定理的逆定理【解析】此题暂无解析【解答】解:,,∴不能构成直角三角形,故该选项错误;,,∴不能构成直角三角形,故该选项错误;,,∴能构成直角三角形,故该选项正确;,,∴不能构成直角三角形,故该选项错误.故选.7.【答案】A【考点】全等三角形的性质三角形内角和定理【解析】kb >0k >0b >0k <0b <0k >0b >0k <0b <0k >0b >0k <0b <0A A +=5≠122232B +=41≠425262C +=13=(223313−−√)2D +=169≠52122152C利用全等三角形的性质和三角形内角和解答即可.【解答】解:,,,,,∴,,∴,.故选.8.【答案】D【考点】函数的图象【解析】根据题意,分析图象,结合简单计算,可以得到答案.【解答】解:根据图象可知:小明家离食堂,小明从家到食堂用了,故正确;小明家离食堂,食堂离图书馆,故正确;小明从图书馆回家的平均速度为,故正确.故选.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )9.【答案】或【考点】平方根【解析】本题分两种情况讨论:①当与相等时,列出等式进行计算;②根据正数的两个平方根互为相反数列出方程求出,再求解即可.∵△ABE ≅△ACD ∴∠B =∠C∠AEB =∠ADC ∵∠BAC =70∘∠C =30∘∠B =30∘∴∠ADC =−∠BAC −∠C180∘=−−=180∘70∘30∘80∘∠BDM =−∠ADC =180∘100∘∠BMD =−∠B −∠BDM =180∘50∘A ①0.6km 8min ①②0.6km 0.8−0.6=0.2(km)②③0.8÷(68−58)=0.08(km/min)③D 192a −1−a +2a解:①当与相等时,可得,解得,则,故;②当与互为相反数时,,解得,则,故.故答案为:或.10.【答案】【考点】平方根【解析】根据平方根的性质,计算即可.【解答】解:∵,∴.故答案为:.11.【答案】【考点】非负数的性质:偶次方非负数的性质:绝对值【解析】此题暂无解析【解答】解:因为,所以 ,解得 所以,故答案为:12.2a −1−a +22a −1=−a +2a =12a −1=1m =12a −1−a +22a −1+(−a +2)=0a =−12a −1=−2−1=−3m ==9(−3)219±3=9x 2x =±3±30|a −1|+=0(b +1)2a −1=0,b +1=0a =1,b =−1−=−=1−1=0a 2019b 201812019(−1)20180.【考点】勾股定理直角三角形斜边上的中线【解析】首先利用直角三角形斜边中线的性质求出斜边,再根据勾股定理即可解决问题.【解答】解:∵在中,点是的中点,∴,∵,∴.故答案为:.13.【答案】或或【考点】等腰三角形的判定与性质角平分线的定义【解析】求出,根据等腰得出三种情况,,,,根据等腰三角形性质和三角形内角和定理求出即可.【解答】解:如图,∵,平分,∴,①当在时,,∵,∴;7–√AB Rt △ABC D AB AB =2CD =4BC =3AC ===A −B B 2C 2−−−−−−−−−−√−4232−−−−−−√7–√7–√120∘75∘30∘∠AOC OE =CE OC =OE OC =CE ∠AOB =60∘OC ∠AOB ∠AOC =30∘E E 1OE =CE ∠AOC =∠OCE =30∘∠OEC =−−=180∘30∘30∘120∘E E OC =OE②当在点时,,则;③当在时,,则.故答案为:或或.14.【答案】【考点】全等三角形的性质与判定勾股定理【解析】证明进而得到再在中由勾股定理即可求解.【解答】解:因为,所以,因为,所以,所以,又因为,,所以,所以,在中,.故答案为:.15.【答案】【考点】三角形三边关系勾股定理【解析】根据题意得到=,根据勾股定理列出关于的方程,解方程得到答案.【解答】∵=,E E 2OC =OE ∠OCE =∠OEC =(−)=12180∘30∘75∘E E 3OC =CE ∠OEC =∠AOC =30∘120∘75∘30∘29−−√△ABC ≅ΔFCEF =AC =5Rt △ABC ∠ACB =90∘∠ECF +∠DCB =90∘CD ⊥AB ∠DCB +∠B =90∘∠ECF =∠B BC =CE ∠FEC =∠ACB =90∘△ABC ≅△FCE(ASA)EF =CA =5cm Rt △ABC AB ===cmA +BC 2C 2−−−−−−−−−−√+5222−−−−−−√29−−√29−−√9120AB 10−AC AC AC +AB 10AB 10−AC∴=,由勾股定理得,=,即=,解得,,16.【答案】【考点】一次函数图象上点的坐标特点等腰直角三角形规律型:点的坐标【解析】先根据点的坐标以及轴,求得的坐标,进而得到的长以及面积,再根据的坐标以及轴,求得的坐标,进而得到的长以及面积,最后根据根据变换规律,求得的长,进而得出的面积即可.【解答】解:∵点,轴交直线于点,∴,∴,即面积.∵,∴.又∵轴,交直线于点,∴,∴,即面积.以此类推,,即面积,,即面积,∴,即的面积.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )17.AB 10−AC A +B C 2C 2A B 2A +C 232(10−AC )2AC =912032n−222n−1A 1//y A 1B 1B 1A 1B 1△A 1B 1C 1A 2//y A 2B 2B 2A 2B 2△A 2B 2C 2A n B n △A n B n C n (2,2)A 1//y A 1B 1y =x 12B 1(2,1)B 1=2−1=1A 1B 1△A 1B 1C 1=×=121212==1A 1C 1A 1B 1(3,3)A 2//y A 2B 2y =x 12B 2(3,)B 232=3−=A 2B 23232△A 2B 2C 2=×(=1232)298=A 3B 394△A 3B 3C 3=×(=1294)28132=A 4B 4278△A 4B 4C 4=×(=12278)2729128⋯=(A n B n 32)n−1△A n B n C n =×[(=1232)n−1]232n−222n−132n−222n−1【答案】解:..【考点】有理数的乘除混合运算立方根的应用有理数的加减混合运算【解析】此题暂无解析【解答】解:..18.【答案】证明:∵在和中,∴,∴,∴.【考点】全等三角形的性质与判定平行线的判定【解析】(1)−+(−2×−×(−)12)318−27−−−−√319−−√=−1−1+3×(−)13=−1−1−1=−3(2)(−+3–√)216−−√−8−−−√3=3−4−2=−3(1)−+(−2×−×(−)12)318−27−−−−√319−−√=−1−1+3×(−)13=−1−1−1=−3(2)(−+3–√)216−−√−8−−−√3=3−4−2=−3△ABC △DEF AB =DE,AC =DF,BC =EF,△ABC ≅△DEF(SSS)∠B =∠E AB//DE SSS △ABC △DEF ∠B ∠E根据全等三角形的判定,可以判定和全等,然后即可得到=,从而证明.【解答】证明:∵在和中,∴,∴,∴.19.【答案】解:,移项,得,系数化为,得,开方,得 .,移项,得,开立方,得,解得.【考点】算术平方根平方根立方根的性质【解析】暂无暂无【解答】解:,移项,得,系数化为,得,开方,得 .,移项,得,开立方,得,解得.20.【答案】解:∵,SSS △ABC △DEF ∠B ∠E AB//DE △ABC △DEFAB =DE,AC =DF,BC =EF,△ABC ≅△DEF(SSS)∠B =∠E AB//DE (1)2−5=27x 22=32x 21=16x 2x =±4(2)+6=−119(x −1)3=−125(x −1)3x −1=5x =−4(1)2−5=27x 22=32x 21=16x 2x =±4(2)+6=−119(x −1)3=−125(x −1)3x −1=5x =−4(1)∠ACB =,BC =12,AB =1390∘AC ===5−−−−−−−−−−√−−−−−−−−√∴.∵,∴,∴.图中阴影部分土地的面积为.【考点】勾股定理的逆定理勾股定理三角形的面积【解析】(1)先由勾股定理求出,再由勾股定理的逆定理即可求得结果.(2)由三角形面积公式求解即可.【解答】解:∵,∴.∵,∴,∴.图中阴影部分土地的面积为.21.【答案】解:以南门为坐标原点建立如图所示的直角坐标系,则南门的坐标为,两栖动物景点的坐标为,飞禽景点的坐标为,狮子景点的坐标为,马景点的坐标为.【考点】AC ===5A −B B 2C 2−−−−−−−−−−√−132122−−−−−−−−√CD =3,AD =4A +C =A =25D 2D 2C 2∠ADC =90∘(2)AC ⋅BC −AD ⋅CD 1212=×5×12−×4×3=241212AC (1)∠ACB =,BC =12,AB =1390∘AC ===5A −B B 2C 2−−−−−−−−−−√−132122−−−−−−−−√CD =3,AD =4A +C =A =25D 2D 2C 2∠ADC =90∘(2)AC ⋅BC −AD ⋅CD 1212=×5×12−×4×3=241212(0,0)(4,1)(3,4)(−4,5)(−3,−3)位置的确定平面直角坐标系的相关概念【解析】以南门为坐标原点建立如图所示的直角坐标系,然后根据各象限点的坐标特征写出动物园中每个景点位置.【解答】解:以南门为坐标原点建立如图所示的直角坐标系,则南门的坐标为,两栖动物景点的坐标为,飞禽景点的坐标为,狮子景点的坐标为,马景点的坐标为.22.【答案】解:由题意知,,,则原式.【考点】相反数倒数实数的运算列代数式求值绝对值【解析】先根据相反数的性质、倒数和绝对值的定义得出,,,代入计算可得.【解答】解:由题意知,,,则原式(0,0)(4,1)(3,4)(−4,5)(−3,−3)a +b =0cd =1x =±3–√=+−(±)3–√20+4−−−−√27×1−−−−−√3=3+2−3=2a +b =0cd =1x =±3–√a +b =0cd =1x =±3–√=+−(±)3–√20+4−−−−√27×1−−−−−√3=3+2−3.23.【答案】证明:过点作 于点,∴.∵,∴,∴,即.【考点】作线段的垂直平分线垂径定理【解析】此题暂无解析【解答】证明:过点作 于点,∴.∵,∴,∴,即.24.【答案】解:∵点在正比例函数的图象上,∴,解得:,∴点的坐标为.将,代入,=2O OE ⊥AB E AE =BE OC =OD CE =DE CE −AE =DE −BEAC =BD O OE ⊥AB E AE =BE OC =OD CE =DE CE −AE =DE −BEAC =BD (1)A(m,2)y =2x 2=2m m =1A (1,2)A(1,2)B(−2,−1)y =kx +b解得:∴一次函数的解析式为.∵在中,,∴值随值的增大而增大,∴不等式的解集为.观察函数图象可知,当时,一次函数的图象在正比例函数的图象的下方,∴不等式组的解集为.【考点】一次函数图象上点的坐标特点一次函数与一元一次不等式待定系数法求一次函数解析式【解析】(1)由点的纵坐标利用正比例函数图象上点的坐标特征可求出点的坐标,根据点、的坐标,利用待定系数法即可求出一次函数的解析式;(2)根据一次函数的性质结合点的坐标可得出不等式的解集为,再根据两函数图象的上下位置关系,即可得出不等式组的解集为.【解答】解:∵点在正比例函数的图象上,∴,解得:,∴点的坐标为.将,代入,解得:∴一次函数的解析式为.∵在中,,∴值随值的增大而增大,∴不等式的解集为.观察函数图象可知,当时,一次函数的图象在正比例函数的图象的下方,∴不等式组的解集为.25.【答案】解:如图所示;【考点】平面直角坐标系的相关概念作图-平移变换三角形的面积{k +b =2,−2k +b =−1,{k =1,b =1,y =x +1(2)y =x +11>0y x −1<x +1x >−2x >1y =x +1y =2x −1<x +1<2x x >1A A A B B −1<x +1x >−2−1<x +1<2x x >1(1)A(m,2)y =2x 2=2m m =1A (1,2)A(1,2)B(−2,−1)y =kx +b {k +b =2,−2k +b =−1,{k =1,b =1,y =x +1(2)y =x +11>0y x −1<x +1x >−2x >1y =x +1y =2x −1<x +1<2x x >1(1)(4,−1)坐标与图形变化-平移点的坐标【解析】(1)根据、的坐标分别为、先确定原点,即可画图;(2)①根据的对应点确定平移方向和距离,即可求解;②根据平移的方向和距离确定、、的对应点,然后连线即可;再网格图中利用割补法先求得的面积,然后根据题意即可求解.【解答】解:如图所示;①∵,∴先向右平移格,再向下平移格,得到,∵,∴,故答案为:;②如图所示:.26.【答案】,,,当时,,时,;时,,当时,,画出图像如图所示:根据图象可得:当时,恒等于,此时的值最小,得出配货中心建段,这辆货车每天行驶的路程最短,最短路程为.【考点】A C (−4,5)(−1,3)O P (m,n)P (m +6,n −2)ABC △ABC (1)(2)P (m,n)(m +6,n −2)P 1△ABC 62△A 1B 1C 1B(−2,1)(4,−1)B 1(4,−1)=3×4−×2×4−×1×2−×2×3S △A 1B 1C 1121212=12−4−1−3=4(60−2x)(140−4x)−4x +200100(2)0 x 25y =−4x +200x =0y =200x =25y =10025<x 35y =100(3)(2)25 x 35y 100km y H CD 100km一次函数的应用函数的图象【解析】()根据当时,结合图象分别得出货车从到,,的距离,进而得出与的函数关系,再利用当时,分别得出从到,,的距离,即可得出;()利用()中所求得出,利用的取值范围,得出与的函数图象以及直线的图象;()结合图象即可得出辆货车每天行驶的路程最短时所在位置.【解答】解:∵当时,货车从到往返次的路程为,货车从到往返次的路程为:,货车从到往返次的路程为:,这辆货车每天行驶的路程为:.当时,货车从到往返次的路程为:,货车从到往返次的路程为:,货车从到往返次的路程为:,故这辆货车每天行驶的路程为:.故答案为:;;;.当时,,时,;时,,当时,,画出图像如图所示:根据图象可得:当时,恒等于,此时的值最小,得出配货中心建段,这辆货车每天行驶的路程最短,最短路程为.27.【答案】结论成立. 证明如下:过点作交于点,如图所示.∵四边形为菱形,∴,,,10 x 25H A B C y x 0<x 25H A B C y =10021x y x y =1003(1)①0 x 25H A 12x H B 12(5+25−x)=60−2x H C 24(25−x +10)=140−4x y =60−2x +2x +140−4x =−4x +200②25<x 35H A 12x H B 12(5+x −25)=2x −40H C 24[10−(x −25)]=140−4x y =2x +2x −40+140−4x =100(60−2x)(140−4x)−4x +200100(2)0 x 25y =−4x +200x =0y =200x =25y =10025<x 35y =100(3)(2)25 x 35y 100km y H CD 100km BE =EF (2)E EG//BC AB G ABCD AB =BC ∠BCD =120∘AB//CD ∠ACD =∘∠DCF =∠ABC =∘∴,,∴.∵,∴是等边三角形,∴,.∵,∴.∵,∴是等边三角形,∴,∴,.∵,∴,∴,∴.结论成立.证明如下:过点作交延长线于点,如图所示.∵四边形为菱形,∴.∵,∴是等边三角形,∴,,∴.∵,∴.∵,∴是等边三角形,∴,,∴,.∵,∴,∴,∴.【考点】菱形的性质等边三角形的性质与判定等腰三角形的性质全等三角形的性质与判定【解析】(1)由菱形的性质和已知条件得出是等边三角形,得出 ,由等边三角形的性质和已知条件得出,由等腰三角形的性质和三角形的外角性质得出,即可得∠ACD =60∘∠DCF =∠ABC =60∘∠ECF =120∘∠ABC =60∘△ABC AB =AC ∠ACB =60∘EG//BC ∠AGE =∠ABC =60∘∠BAC =60∘△AGE AG =AE =GE BG =CE ∠BGE ==∠ECF 120∘CF =AE GE =CF △BGE ≅△ECF(SAS)BE =EF (3)E EG//BC AB G ABCD AB =BC ∠ABC =60∘△ABC AB =AC ∠ACB =60∘∠ECF =60∘EG//BC ∠AGE =∠ABC =60∘∠BAC =60∘△AGE AG =AE =GE ∠AGE =60∘BG =CE ∠AGE =∠ECF CF =AE GE =CF △BGE ≅△ECF(SAS)BE =EF △ABC |∠BCA =60∘CE =CF ∠CBE =∠F出结论;(2)过点作交延长线于点,先证明是等边三角形,得出,,再证明是等边三角形,得出,,然后证明,即可得出结论;(3)过点作交延长线于点,证明同(2).【解答】解:∵四边形是菱形,∴.∵,∴是等边三角形,∴.∵是线段的中点,∴, .∵,∴,∴,∴,∴.故答案为:.结论成立. 证明如下:过点作交于点,如图所示.∵四边形为菱形,∴,,,∴,,∴.∵,∴是等边三角形,∴,.∵,∴.∵,∴是等边三角形,∴,∴,.∵,∴,∴,∴.结论成立.证明如下:过点作交延长线于点,如图所示.E EG//BC AB G △ABC AB =AC ∠ACB =60∘△AGE AG =AE =GE ∠AGE =60∘△BGE ≅△ECF E EG//BC ABG (1)ABCD AB =BC ∠ABC =60∘△ABC ∠BCA =60∘E AC ∠CBE =∠ABE =30∘AE =CE CF =AE CE =CF ∠F =∠CEF =∠BCA =1230∘∠CBE =∠F =30∘BE =EF BE =EF (2)E EG//BC AB G ABCD AB =BC ∠BCD =120∘AB//CD ∠ACD =60∘∠DCF =∠ABC =60∘∠ECF =120∘∠ABC =60∘△ABC AB =AC ∠ACB =60∘EG//BC ∠AGE =∠ABC =60∘∠BAC =60∘△AGE AG =AE =GE BG =CE ∠BGE ==∠ECF 120∘CF =AE GE =CF △BGE ≅△ECF(SAS)BE =EF (3)E EG//BC AB G∵四边形为菱形,∴.∵,∴是等边三角形,∴,,∴.∵,∴.∵,∴是等边三角形,∴,,∴,.∵,∴,∴,∴.ABCD AB =BC ∠ABC =60∘△ABC AB =AC ∠ACB =60∘∠ECF =60∘EG//BC ∠AGE =∠ABC =60∘∠BAC =60∘△AGE AG =AE =GE ∠AGE =60∘BG =CE ∠AGE =∠ECF CF =AE GE =CF △BGE ≅△ECF(SAS)BE =EF。
2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.在下列数中,π,,3.14.0.101010,4,(π﹣1)0,无理数有( )个.A.1个B.2个C.3个D.4个2.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A.B.C.D.3.如图,∠1=∠2,∠3=∠4,则判定△ABD≌△ACD的依据是( )A.角角角B.角边角C.边角边D.边边边4.已知等腰三角形三边的长分别为4,x,10,则x的值是( )A.4B.10C.4 或10D.6 或105.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25B.5,12,13C.12,16,20D.4,7,86.把边长为1的正方形ABCD按如图所示放置在数轴上,以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,则点F对应的数值是( )A.2B.C.D.7.如图,若△ABE≌△ACF,且AB=7cm,AE=3cm,则EC的长为( )A.3cm B.4cm C.5cm D.7cm8.如图,把直角△ABC沿AD折叠后,使点B落在AC边上点E处,若AB=6,AC=10,则S△CDE=( )A.15B.12C.9D.6二.填空题(共8小题,满分24分,每小题3分)9.用四舍五入法将3.694精确到0.01,所得到的近似数为 .10.定义新运算“△”:对于任意实数a,b都有a△b=ab﹣a﹣b+2.(1)若3△x值不大于3,则x的取值范围是 ;(2)若(﹣2m)△5的值大于3且小于9,则m的整数值是 .11.若+y2﹣4y+4=0,则x= ,y= .12.如图,由两个直角三角形和三个正方形组成的图形.其中两正方形面积分别是S1=22,S2=14,AC=10,则AB= .13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于 .14.三角形的三边长分别为cm,cm,cm,这个三角形的周长是 cm.15.如图,将长方形ABCD沿对角线AC折叠,点B的对应点为点E,连接CE交AD于点F,且AD=2AB=8,则△AFC的面积为 .16.若三边均不相等的三角形三边a、b、c满足a﹣b>b﹣c(a为最长边,c为最短边),则称它为“不均衡三角形”.例如,一个三角形三边分别为7,5,4,因为7﹣5>5﹣4,所以这个三角形为“不均衡三角形”.(1)以下4组长度的小木棚能组成“不均衡三角形”的为 (填序号).①4cm,2cm,1cm;②19cm,20cm,19cm;③13cm,18cm,9cm;④9cm,8cm,6cm.(2)已知“不均衡三角形”三边分别为2x+2,16,2x﹣6,直接写出x的整数值为 .三.解答题(共11小题,满分82分)17.计算:×﹣|﹣2|+(﹣)﹣1.18.计算下列各式的值.(1)±;(2);(3);19.求下列各式中x的值:(1)x2=2;(2)(x﹣3)3=﹣8.20.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形△ABC,使它的三边长分别为AB=、BC=2、CA=;(2)在图中建立正确的平面直角坐标系,并写出△ABC各顶点的坐标;(3)作△ABC关于y轴的轴对称图形△A′B′C′(不要求写作法);(4)直接写出△ABC的面积为 .21.如图,已知AC,BD相交于点O,BO=DO,CO=AO,EF过点O分别交BC、AD于点E、F.(1)根据所给的条件,写出图中所有的全等三角形;(2)请说明BE=DF的理由.22.如图,河岸上A、B两点相距25km,C、D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A、B,已知AD=15km,BC=10km,现要在河岸AB上建一水厂E向C,D两村输送自来水,要求水厂到两村的距离相等,且DE⊥EC,则水厂E应建在距A点多少千米处?23.如图,在四边形ABCD中,AD∥BC,∠A=∠C=90°,点E、F分别在AB、DC上,连接DE,BF,若AE=CF;求证:DE=BF.24.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.已知+2=a,且与互为相反数,求a,b的值.26.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB以每秒4cm的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB交射线BC于点Q,以PQ为一边向上作正方形PQMN,设点P的运动时间为t(秒).(1)求线段PQ的长.(用含t的代数式表示)(2)求点Q与点C重合时t的值.(3)设正方形PQMN与△ABC的重叠部分周长为1(cm),求l与t之间的函数关系式.(4)作点C关于直线QM的对称点C',连接PC'.当PC′与△ABC的边垂直或重合时,直接写出t的值.27.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,将线段BC绕点B顺时针旋转一定角度得到线段BD.连接AD交BC于点E,过点C作线段AD的垂线,垂足为点F,交BD于点G.(1)如图1,若∠CBD=45°.①求∠BCG的度数;②求证:CE=DG;(2)如图2,若∠CBD=60°,当AC﹣DE=6时,求CE的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:无理数有π,共1个.故选:A.2.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.3.解:在△ADB和△ADC中,,∴△ADB≌△ADC(ASA),故判定两个三角形全等最直接的依据是角边角.故选:B.4.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.5.解:A、72+242=252,此三角形能组成直角三角形;B、52+122=132,此三角形能组成直角三角形;C、122+162=202,此三角形能组成直角三角形;D、(4)2+(7)2≠(8)2,此三角形不能组成直角三角形.故选:D.6.解:根据勾股定理得正方形的对角线==,∴OC=,∵以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,∴点F对应的数是.故选:D.7.解:∵△ABE≌△ACF,∴AB=AC=7cm.∴EC=AC﹣AE=7﹣3=4(cm).故选:B.8.解:在Rt△ABC中,由勾股定理得,BC===8,由翻折变换的性质可知,AB=AE=6,∠B=∠AED=90°,∴EC=AC﹣AE=10﹣6=4,在Rt△DEC中,设DE=x,则BD=x,DC=8﹣x,由勾股定理得,DE2+EC2=CD2,x2+42=(8﹣x)2,解得x=3,即DE=3,∴S△DEC=DE•EC=×3×4=6,故选:D.二.填空题(共8小题,满分24分,每小题3分)9.解:将3.694精确到0.01,所得到的近似数为3.69.故答案为3.69.10.解:(1)∵3△x值不大于3,∴3x﹣3﹣x+2≤3,∴3x﹣x≤3+3﹣2,∴2x≤4,∴x≤2,即x的取值范围是x≤2,故答案为:x≤2;(2)∵(﹣2m)△5的值大于3且小于9,∴,解不等式①,得m<﹣,解不等式②,得m>﹣,所以不等式组的解集是﹣<m<﹣,即整数m为﹣1,故答案为:﹣1.11.解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x﹣y=0,y﹣2=0,解得x=2,y=2,故答案为:2,2.12.解:∵S1=22,S2=14,∴S3=S1+S2=22+14=36,∴BC==6,∵AC=10,∴AB===8,故答案为:8.13.解:∵∠C=90°,FD⊥AB,而∠AED=∠CEF,∴∠A=∠F=30°,∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∴DE=BE=×4=2.故答案为2.14.解:根据题意得:++=4+5+5=(9+5)cm;故答案为:9+5.15.解:由折叠的性质,可知:AE=AB=4,CE=CB=8,∠E=∠B=90°,∠ACE=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACE,∴AF=CF.设AF=x,则EF=8﹣x.在Rt△AEF中,AE=4,AF=x,EF=8﹣x,∠E=90°,∴42+(8﹣x)2=x2,∴x=5,∴S△AFC=AF•AB=×5×4=10.故答案为:10.16.解:(1)①∵1+2<4,∴4cm,2cm,1cm不能组成三角形,也就不能组成“不均衡三角形”;②∵19=19,∴19cm,20cm,19cm不能组成“不均衡三角形”;③∵18﹣13>13﹣9,∴13cm,18cm,9cm能组成“不均衡三角形”;④∵9﹣8<8﹣6,∴9cm,8cm,6cm不能组成“不均衡三角形”.故答案为:③;(2)①16﹣(2x+2)>2x+2﹣(2x﹣6),解得:x<3,∵2x﹣6>0,解得:x>3,故不合题意,舍去;②2x+2>16>2x﹣6,解得:7<x<11,2x+2﹣16>16﹣(2x﹣6),解得:x>9,∴9<x<11,∵x为整数,∴x=10,经检验,当x=10时,22,16,14可构成三角形;③2x﹣6>16,解得:x>11,2x+2﹣(2x﹣6)>2x﹣6﹣16,解得:x<15,∴11<x<15,∵x为整数,∴x=12或13或14,都可以构成三角形;综上所述,x的整数值为10或12或13或14,故答案为:10或12或13或14.三.解答题(共11小题,满分82分)17.解:原式=×2﹣(2﹣)﹣8=2﹣2+﹣8=3﹣10.18.解:(1)∵(±)2=,∴=;(2)∵0.33=0.027,∴=0.3;(3)∵(﹣1)3=﹣1,∴=﹣1.19.解:(1)∵x2=2,∴x2=6,∴;(2)∵(x﹣3)3=﹣8,∴x﹣3=﹣2,∴x=1.20.解:(1)如图,△ABC即为所求;(2)平面直角坐标系如图所示.A(﹣3,4),B(﹣4,2),C(﹣2,0)(答案不唯一);(3)如图,△A′B′C′即为所求;(4)S△ABC=2×4﹣×1×2﹣×2×2﹣×1×4=3.故答案为:3.21.解:(1)图中所有的全等三角形:△ADO≌△CBO,△AFO≌△CEO,△DFO≌△BEO;(2)在△CBO和△ADO中,,∴△CBO≌△ADO(SAS),∴∠B=∠D,在△BEO和△DFO中,,∴△BEO≌△DFO(ASA),∴BE=DF.22.解:E站应建在离A站10km处,即AE=BC=10km,∵AB=25km、AD=15km,∴BE=AB﹣AE=15km=AD,∵CB⊥AB、DA⊥AB,∴∠A=∠B=90°,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴DE=CE.23.证明:∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠A=90°,∴∠ADC+∠A=180°,∴AB∥CD,∴四边形ABCD为平行四边形,∴AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,即BE=DF,∵AB∥CD,∴四边形EDFB为平行四边形,∴DE=BF.24.解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,S△ABC=28,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=28,即DE(6+8)=28,∴DE=4.25.解:∵,∴,∴a﹣2=1或a﹣2=0或a﹣2=﹣1,∴a=3或2或1,当a=3时,,∴,∴b=2,当a=2时,,∴,∴,当a=1时,,∴=1,∴b=,综上所述,,.26.解:(1)∵在Rt△ABC中、∠C=90°,∴AB===10,∴AP=4t,BP=10﹣4t,PQ=BP•tan B=BP•=(10﹣4t)×=﹣3t;(2)当点Q与点C重合时,如图1所示:∵cos A==,cos A===,∴=,∴t=(s);(3)当0<t≤时,如图2所示:BN=AB﹣AP﹣PN=10﹣4t﹣+3t=﹣t,∵tan B==,∴NH===(﹣t),cos B==,∴BH===(﹣t),∴CH=BC﹣BH=8﹣(﹣t),∵tan A==,∴PD===t,∵cos A==,∴AD===t,∴CD=AC﹣AD=6﹣t,∴l=PN+NH+CH+CD+PD=﹣3t+(﹣t)+8﹣(﹣t)+6﹣t+t=﹣t+;当<t<时,如图3所示:同理:NH=(﹣t),BH=(﹣t),BQ=(10﹣4t),∴HQ=BQ﹣BH=(10﹣4t)﹣(﹣t),∴l=2PQ+NH+HQ=2(﹣3t)+(﹣t)+(10﹣4t)﹣(﹣t)=﹣t+;(4)①当C′与C重合时,PC′⊥AB,如图4所示:由(2)得:t=s;②当PC′⊥AC时,如图5所示:则PC′∥BC,连接C′E,∵点C关于直线QM的对称点C',∴CC′⊥MQ,CE=C′E,∴CC′∥PQ,∴四边形CC′PQ是平行四边形,∴CQ=C′P,CC′=PQ=﹣3t,由(3)得:BQ=(10﹣4t),∴C′P=CQ=8﹣(10﹣4t)=﹣+5t,∵PD∥BC,∴==,即==,∴PD=t,AD=t,∴C′D=PD﹣C′P=t﹣(﹣+5t)=﹣t,∵MQ∥AB,∴=,即=,∴CE=﹣+t=C′E,∴DE=AC﹣AD﹣CE=6﹣t﹣(﹣+t)=﹣t,∵C′D2+DE2=C′E2,即(﹣t)2+(﹣t)2=(﹣+t)2整理得:27t2﹣t+=0,解得:t1=(s),t2=(s)(不合题意舍去);③当C′落在AB上时,PC′与AB重合,如图6所示:∵点C关于直线QM的对称点C',∴OC=OC′,∵四边形PQMN是正方形,∴MQ∥AB,∴AD=CD=AC=3,∴DQ是△CAB的中位线,∴CQ=BQ=BC=4,由(3)得:BQ=(10﹣4t),∴(10﹣4t)=4,∴t=(s),综上所述,当PC′与△ABC的边垂直或重合时,t的值为s或s或s.27.(1)①解:∵BA=BC,∠ABC=90°,∴∠ACB=∠CAB=45°,∵∠CBD=45°,∴∠ACB=∠CBD,∴AC∥BD,∴∠CAD=∠D,∵BD=BC=BA,∴∠D=∠BAD,∴∠CAD=∠BAD=∠CAB=22.5°,∵CG⊥AD,∴∠CFD=90°,∴∠ACF=90°﹣22.5°=67.5°,∴∠BCG=∠ACF﹣∠ACB=22.5°;②证明:延长CG,AB交于T,如图:∵∠ABE=∠CBT=90°,AB=BC,∠BAE=∠BCT=22.5°,∴△ABE≌△CBT(ASA),∴BE=BT,∠AEB=∠T,∵∠BAE=22.5°,∴∠AEB=90°﹣∠BAE=67.5°=∠T,∵∠EBG=∠TBG=45°,∴∠TGB=180°﹣∠T﹣∠TBG=67.5°,∴∠T=∠TGB,∴BT=BG,∴BE=BT=BG,∵BC=BD,∴BC﹣BE=BD﹣BG,即CE=DG;(2)解:连接CD,过点D作DH⊥BC于H,在DH上取一点J,使得EJ=DJ,设CF=a,如图:∵CB=BD,∠CBD=60°,∴△BCD是等边三角形,∵AB=BC,∠ABC=90°,∴∠ABD=90°+60°=150°,∠BAC=∠ACB=45°,∴∠BAD=∠BDA=15°,∴∠CAF=30°,∵CG⊥AD,∴∠CFA=90°,∴AC=2CF=2a,∵∠CDB=60°,∠BDA=15°,∴∠FDC=∠FCD=45°,∴FC=DF=a,DC=BC=BD=a,∵DH⊥BC,∴CH=BH=a,DH=CH=a,∠HDB=30°,∴∠JDE=∠HDB﹣∠BDA=15°,设EH=x,∵JE=JD,∴∠JED=∠JDE=15°,∴∠EJH=∠JED+∠JDE=30°,∴EJ=2EH=DJ=2x,HJ=x,DE===(+)x,∵DH=a=HJ+DJ,∴x+2x=a,∴x=(﹣)a,∴DE=(3﹣)a,∵AC﹣DE=6,∴2a﹣(3﹣)a=6,∴a=3(+1),∴CE=CH+EH=a+(﹣)a=(﹣)a=(﹣)×3(+1)=6.。
苏科版八年级上册数学期中考试试题一、单选题1.2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是()A .B .C .D .2.在﹣0.101101110111,22,72π0中,无理数的个数是()A .1个B .2个C .3个D .4个3.下列各式中,正确的是()A4=±B .(24=C 5=-D 3=-4.已知等腰三角形中的一个内角为40°,则这个等腰三角形的顶角为()A .40°B .100°C .40°或100°D .40°或80°5.如图,在等腰三角形ABC 中,AB =AC ,∠A =50°,直线MN 垂直平分边AC ,分别交AB ,AC 于点D ,E ,则∠BCD =()A .10°B .15°C .20°D .25°6.在下列各组条件中,不能说明△ABC ≌△DEF 的是()A .AB =DE ,∠B =∠E ,∠C =∠F B .AB =DE ,BC =EF ,AC =DF C .AB =DE ,∠B =∠E ,BC =EFD .AC =DF ,∠B =∠F ,∠A =∠D7.下列说法中:①关于某直线成轴对称的两个图形一定能完全重合;②线段是轴对称图形;③有一条公共边的两个全等三角形一定关于公共边所在直线对称;④关于某条直线对称的两个图形一定分别位于该直线的两侧.正确的有()A .1个B .2个C .3个D .4个8.如图,在△ABC 中,∠BAC 为钝角,AF 、CE 都是这个三角形的高,P 为AC 的中点,若∠B =40°,则∠EPF 的度数为()A .90°B .95°C .100°D .105°9.在等边ABC 中,D ,E 分别为,AB AC 边上的动点,2BD AE =,连接DE ,以DE 为边在ABC 内作等边DEF ,连接CF ,当D 从点A 向B 运动(不与点B 重合)时,ECF ∠的变化情况是()A .不变B .变小C .变大D .先变大后变小10.如图,在△ABC 中,∠BAC 和∠ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD ⊥BC 于D ,下列四个结论:①∠AOB =90°+12∠C ;②当∠C =60°时,AF+BE =AB ;③若OD =a ,AB+BC+CA =2b ,则S △ABC =ab .其中正确的是()A .①②B .②③C .①②③D .①③二、填空题11.9的平方根是_________.12.已知:如图,CAB DBA ∠=∠,只需补充条件_______,就可以根据“SAS ”得到ABC BAD ∆≅∆.13.数据1.44×106是四舍五入得到的近似数,其精确的数位是____.14.等腰三角形的两边长分别为2和4,则其周长为_____.15.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若△ABC 的面积为9,DE=2,AB=5,则AC 长是_________.16.等腰三角形一腰上的高与另一腰的夹角为45︒,则其底角为______度.17.如图,ABC 中,AB AC =,DE 垂直平分AB ,BE AC ⊥,EF BF =,则∠=EFC _________︒.18.如图,在△ABC 中,∠ABC =45°,AD ,BE 分别为DC ,AC 边上的高,连接DE ,过点D 作DF ⊥DE 交BE 于点F ,G 为BE 中点,连接AF ,DG .则AF ,DG 关系是____.三、解答题19.计算(111(2-+;(2)221-+-20.如图,点B 、D 、C 在一条直线上,AB =AD ,AC =AE ,∠BAD =∠EAC ;(1)求证:BC =DE ;(2)若∠B =70°,求∠EDC .21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)若有一格点P 到点A 、B 的距离相等(PA =PB ),则网格中满足条件的点P 共有个;(3)在直线l 上找一点Q ,使QB+QC 的值最小.22.如图,在△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,AC =20cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A→B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B→C→A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?23.如图,点D是△ABC中∠BAC的平分线和边BC的垂直平分线DE的交点,DG⊥AB 于点G,DH⊥AC交AC的延长线于点H.(1)求证:BG=CH;(2)若AB=12,AC=8,求BG的长.24.以△ABC的AB、AC为边作△ABD和△ACE,且AE=AB,AC=AD,CE与BD相交于M,∠EAB=∠CAD=α.(1)如图1,若α=40°,求∠EMB的度数;(2)如图2,若G、H分别是EC、BD的中点,求∠AHG的度数(用含α式子表示)(3)如图3,连接AM,直接写出∠AMC与α的数量关系是.25.(1)如图①,△ABC是等边三角形,M为边BC的中点,连接AM,将线段AM顺时针旋转120°,得到线段AD,连接BD;点N在BC的延长线上,且CN=MC,连接AN.求证:BD=AN.(2)若将问题(1)中的条件“M为边BC的中点”改为“M为边BC上的任意一点”,其他条件不变,结论还成立吗?若成立,请画出图形并给出证明;若不成立,请举反例.参考答案1.C【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;B、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;C 、能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,符合题意;D 、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;故选:C .【点睛】此题主要考查了轴对称图形,熟知轴对称图形的定义是解题的关键.2.B 【解析】【分析】根据无理数的定义,即无限不循环小数叫无理数判断即可【详解】,2π是无理数;故选B .【点睛】本题主要考查了无理数的判断,准确分析求解是解题的关键.3.D 【解析】【分析】根据算术平方根的定义、立方根的定义进行判断即可.【详解】解:A 4=,本选项错误;B 、(222==,本选项错误;C 5==,本选项错误;D3=-,本选项正确,故选:D .【点睛】本题考查算术平方根和立方根的定义及性质,熟练掌握定义和性质是解答的关键.4.C【解析】【分析】根据等腰三角形的性质分类计算即可;【详解】∵已知三角形是等腰三角形,∴当40°是底角时,顶角的度数为1804040100︒-︒-︒=︒;当40°是顶角时,符合题意;∴顶角的度数是40°或100°.故选C.【点睛】本题主要考查了等腰三角形的定义,准确计算是解题的关键.5.B【解析】【分析】由AB=AC,∠A=50°得出∠ACB=65°,根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AD=CD,推出∠ACD=∠A=50°,即可得出∠BCD=15°.【详解】解:∵AB=AC,∠A=50°,∴∠ACB=∠B18050652︒-︒==︒,∵直线MN垂直平分边AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD=∠ACB﹣∠ACD=15°,故选:B.【点睛】此题考查了等腰三角形以及垂直平分线的性质,熟练掌握相关基本性质是解题的关键.6.D【解析】【分析】根据三角形全等的判定方法逐项判断即可求解.【详解】解:A.AB=DE,∠B=∠E,∠C=∠F,根据“角角边”即可判断△ABC≌△DEF,不合题意;B.AB=DE,BC=EF,AC=DF,根据“边边边”即可判断△ABC≌△DEF,不合题意;C.AB=DE,∠B=∠E,BC=EF,根据“边角边”即可判断△ABC≌△DEF,不合题意;D.AC=DF,∠B=∠F,∠A=∠D,无法判断△ABC≌△DEF,符合题意.故选:D【点睛】本题考查了三角形全等的判定,熟知全等三角形的判定定理并根据题意灵活应用是解题关键.7.B【解析】【分析】根据轴对称的定义求解即可.轴对称:两个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这两个图形成轴对称.【详解】①关于某直线成轴对称的两个图形一定能完全重合,选项正确,符合题意;②线段是轴对称图形,选项正确,符合题意;③有一条公共边的两个全等三角形不一定关于公共边所在直线对称,选项错误,不符合题意;④关于某条直线对称的两个图形不一定分别位于该直线的两侧,选项错误,不符合题意.∴正确的个数是2个,故选:B.【点睛】此题考查了轴对称的定义,解题的关键是熟练掌握轴对称的定义.轴对称:两个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这两个图形成轴对称.8.C【解析】【分析】根据三角形内角和定理求出BCE ∠,根据直角三角形的性质得到12PF AC PC ==,12PE AC PC ==,根据等腰三角形的性质、三角形的外角的性质计算即可.【详解】解:CE BA ⊥Q ,40B ∠=︒,50BCE ∴∠=︒,AF BC ⊥Q ,CE BA ⊥,P 为AC 的中点,12PF AC PC ∴==,12PE AC PC ==,PFC PCF ∴∠=∠,PEC PCE ∠=∠,222100EPF PCF PCE BCE ∴∠=∠+∠=∠=︒,故选:C .【点睛】本题考查的是直角三角形的性质,三角形外角定理,等腰三角形性质等知识,熟知在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.A 【解析】【分析】在AC 上截取=CN AE ,连接FN ,根据等边三角形的性质证明()SAS ≌ADE NEF ,即可得到结论;【详解】如图,在AC 上截取=CN AE ,连接FN .∵ABC 是等边三角形,∴60A ∠=︒,AB AC =.∵2BD AE =,∴AD EN =.∵DEF 是等边三角形,∴DE EF =,60DEF ∠=︒.∵180********∠=︒-∠-∠=︒-︒-∠=︒-∠ADE A AED AED AED ,180********∠=︒-∠-∠=︒-︒-∠=︒-∠NEF DEF AED AED AED ,∴∠=∠ADE NEF .在ADE 和NEF 中,∵,,,AD EN ADE NEF ED EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ≌ADE NEF ,∴,60=∠=∠=︒AE FN FNE A ,∴=FN CN ,∴∠=∠NCF NFC .∵60∠=∠+∠=︒FNE NCF NFC ,∴30∠=︒NCF ,即30ECF ∠=︒,∴ECF ∠的大小不变,故选A.【点睛】本题主要考查了等边三角形的性质,结合三角形全等求解是解题的关键.10.C【解析】【分析】由角平分线的定义结合三角形的内角和的可求解∠AOB 与∠C 的关系,进而判定①;在AB 上取一点H ,使BH =BE ,证得△HBO ≌△EBO ,得到∠BOH =∠BOE =60°,再证得△HBO ≌△EBO ,得到AF =AH ,进而判定②正确;作OH ⊥AC 于H ,OM ⊥AB 于M ,根据三角形的面积可证得③正确.【详解】解:∵∠BAC 和∠ABC 的平分线相交于点O ,∴∠OBA =12∠CBA ,∠OAB =12∠CAB ,∴∠AOB =180°﹣∠OBA ﹣∠OAB =180°﹣12∠CBA ﹣12∠CAB =180°﹣12(180°﹣∠C )=90°+12∠C,①正确;∵∠C=60°,∴∠BAC+∠ABC=120°,∵AE,BF分别是∠BAC与ABC的平分线,∴∠OAB+∠OBA=12(∠BAC+∠ABC)=60°,∴∠AOB=120°,∴∠AOF=60°,∴∠BOE=60°,如图,在AB上取一点H,使BH=BE,∵BF是∠ABC的角平分线,∴∠HBO=∠EBO,在△HBO和△EBO中,BH BE HBO EBOBO BO=⎧⎪∠=∠⎨⎪=⎩,∴△HBO≌△EBO(SAS),∴∠BOH=∠BOE=60°,∴∠AOH=180°﹣60°﹣60°=60°,∴∠AOH=∠AOF,在△HBO和△EBO中,HAO FAOAO AO AOH AOF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBO≌△EBO(ASA),∴AF=AH,∴AB=BH+AH=BE+AF,故②正确;作OH⊥AC于H,OM⊥AB于M,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OH=OM=OD=a,∵AB+AC+BC=2b∴S△ABC =12×AB×OM+12×AC×OH+12×BC×OD=12(AB+AC+BC)•a=ab,④正确.故选:C.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO≌△EBO,得到∠BOH=∠BOE=60°,是解决问题的关键.11.±3【解析】【分析】根据平方根的定义解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.AC BD=【解析】【分析】已知AB BA=和CAB DBA∠=∠,需要根据“SAS”证明三角形全等,只能补充AC=BD的条件.【详解】解:补充条件AC=BD ,在ABC 和BAD 中,AB BA CAB DBA AC BD =⎧⎪∠=∠⎨⎪=⎩,∴()ABC BAD SAS ≅ .故答案是:AC=BD .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定方法.13.万位【解析】【分析】把题目中数据1.44×106还原为1440000,从而可以得到题目中的数据精确到万位,问题得解.【详解】解:因为1.44×106=1440000,∴近似数01.44×106精确到万位.故答案为:万位.【点睛】本题考查了近似数和科学记数法,熟知近似数的意义并准确将近似数还原为原数是解题关键.14.10【解析】【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【详解】①当2为腰时,另两边为2、4,2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4,2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【点睛】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.15.4【解析】【分析】根据角平分线性质求出DF,根据三角形面积公式求出△ABD的面积,求出△ADC面积,即可求出答案.【详解】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=12AB×DE=12×5×2=5,∵△ABC的面积为9,∴△ADC的面积为9-5=4,∴12AC×DF=4,∴12AC×2=4,∴AC=4故答案为4.【点睛】本题考查了角平分线性质,解题的关键是作出辅助线.16.67.5或22.5【解析】【分析】根据题意可知等腰三角形需要分类讨论,分为锐角三角形和钝角三角形,画出图形解答即可.【详解】解:①如图1所示,当等腰三角形是锐角三角形时,根据题意,45ABM ∠=︒,又∵BM 是AC 边上的高,∴90AMB ∠=︒,∴904545A ∠=︒-︒=︒,∴1(18045)67.52C ∠=︒-︒=︒②如图2,当等腰三角形是钝角三角形时,根据题意,45DEN ∠=︒,∵EN 是DF 边上的高∴90N ∠=︒,∴904545EDN ∠=︒-︒=︒,∴122.52F EDN ∠=∠=︒故答案为67.5或22.5【点睛】本题考查了等腰三角形的分类讨论问题,涉及了三角形内角和和外角和的性质,解题的关键是能够画出图形,根据数形结合的思想求出答案.17.45【解析】【分析】根据线段垂直平分线的性质,由DE 垂直平分AB 可得AE =BE ,又由BE ⊥AC ,可求得∠A =∠ABE =45°,然后由AB =AC ,BF =EF 即可求得答案.【详解】解:∵DE 垂直平分AB ,∴AE =BE ,∴∠A =∠ABE ,∵BE ⊥AC ,∴∠AEB =90°,∴∠A =∠ABE =45°,∵AB =AC ,∴∠ABC =∠C =(180-∠A)÷2=67.5°,∴∠EBC =∠ABC ﹣∠ABE =22.5°,∵BF =EF ,∴∠BEF =∠EBC =22.5°,∴∠EFC =∠EBC+∠BEF =45°.故答案为:45.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.18.2AF DG =,AF DG ⊥##AF DG ⊥,2AF DG=【解析】【分析】延长DG 至M ,使GM DG =,交AF 于H ,连接BM ,根据题意证明DAE DBF ∆≅∆,推出45DEF DFE ∠=∠=︒,利用SAS 证明()BGM EGD SAS ∆∆≌,得出45MBE FED EFD ∠=∠=︒=∠,BM DE DF ==,再利用SAS 证明()BDM DAF SAS ∆∆≌,得出2DM AF DG ==,FAD BDM ∠=∠,证出90AHD ∠=︒,即可得出结论.【详解】解:2AF DG =,且AF DG ⊥;理由如下:如图,延长DG 至M ,使GM GD =,交AF 于H ,连接BM ,AD ,BE 分别为BC ,AC 边上的高,90BEA ADB ∴∠=∠=︒,45ABC ∠=︒ ,ABD ∴∆是等腰直角三角形,AD BD ∴=,90DAC C DBE C ∠+∠=∠+∠=︒ ,DAC DBE ∴∠=∠,即DAE DBF ∠=∠,90ADB FDE ∠=∠=︒ ,ADB ADF FDE ADF ∴∠-∠=∠-∠,即BDF ADE ∠=∠,在DAE ∆和DBF ∆中,DAE DBF AD BD ADE BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()DAE DBF ASA ∴∆∆≌,DE DF ∴=,FDE ∴∆是等腰直角三角形,45DEF DFE ∴∠=∠=︒,G 为BE 中点,BG EG ∴=,在BGM ∆和EGD ∆中,BG EG BGM DGE GM GD =⎧⎪∠=∠⎨⎪=⎩,()BGM EGD SAS ∴∆∆≌,45MBE DEF DFE ∴∠=∠=︒=∠,BM DE DF ==,DAC DBE ∠=∠ ,45MBD MBE DBE DBE ∴∠=∠+∠=︒+∠,45EFD DBE BDF ∠=︒=∠+∠,45BDF DBE ∴∠=︒-∠,ADE BDF ∠=∠ ,9045ADF BDF DBE MBD ∴∠=︒-∠=︒+∠=∠,在BDM ∆和DAF ∆中,BM DF MBD ADF BD AD =⎧⎪∠=∠⎨⎪=⎩,()BDM DAF SAS ∴∆∆≌,2DM AF DG ∴==,FAD BDM ∠=∠,90BDM MDA ∠+∠=︒ ,90MDA FAD ∴∠+∠=︒,∠90AHD ∴=︒,AF DG ∴⊥,2AF DG ∴=,且AF DG ⊥.故答案为:2AF DG =,AF DG ⊥.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.19.(1)6;(24-【解析】【分析】(1)由题意根据算术平方根和立方根性质以及负指数幂的运算法则进行计算即可;(2)由题意根据乘方、二次根式以及去绝对值的运算规则进行计算即可.【详解】解:(111(2-523=-+6=(2)221-++4312=-++-4=【点睛】本题考查实数的运算,熟练掌握算术平方根和立方根性质以及负指数幂的运算法则,乘方、二次根式以及去绝对值的运算规则是解题的关键.20.(1)见详解;(2)40°.【解析】【分析】(1)先证明∠BAC =∠DAE ,再证明△ABC ≌ADE ,问题得证;(2)根据△ABC ≌ADE ,得到∠B=∠ADE=70°,AB=AD ,进而得到∠B=∠ADB=70°,根据平角的定义即可求解.【详解】解:(1)∵∠BAD =∠EAC ,∴∠BAD+∠DAC =∠EAC+∠DAC ,即∠BAC =∠DAE ,在△ABC 和△ADE 中,===AB AD BAC DAE AC AE ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△ADE ,∴BC=DE ;(2)∵△ABC ≌△ADE ,∴∠B=∠ADE=70°,AB=AD ,∴∠B=∠ADB=70°,∴∠EDC=180°-∠ADB-∠ADE=180°-70°-70°=40°.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质等知识,根据题意证明△ABC ≌△ADE 是解题关键.21.(1)见解析;(2)4;(3)见解析.【分析】(1)分别作出A,B,C的对应点A1,B1,C1,再顺次连接即可;(2)在线段AB的垂直平分线性质格点即可;(3)连接BC1交直线l于点Q,连接CQ,此时BQ+CQ的值最小.【详解】解:(1)如图,△A1B1C1即为所求.(2)如图,满足条件的点P有4个,故答案为:4.(3)如图,点Q即为所求.【点睛】本题考查作图-轴对称变换,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)163;(2)11秒或12秒.【解析】【分析】(1)由题意用t可分别表示出BP和BQ,根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,即可求得t;(2)根据题意用t分别表示出BQ和CQ,利用等腰三角形的性质可分CQ=BC和BQ=CQ 三种情况,分别得到关于t的方程,即可求得t的值.【详解】解:(1)由题意可知AP=t,BQ=2t,∴BP=AB-AP=16-t,当△PQB为等腰三角形时,则有BP=BQ,即16-t=2t,解得t=16 3,∴出发163秒后△PQB能形成等腰三角形;(2)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10(cm),∴BC+CQ=22(cm),∴t=22÷2=11(秒).②当,△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,则BC+CQ=24(cm),∴t=24÷2=12(秒).综上所述:当t为11秒或12秒时,△BCQ是以BC或BQ为底边的等腰三角形.本题考查等腰三角形的性质、方程思想及分类讨论思想等知识.掌握用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意结合方程思想进行分析.23.(1)见详解;(2)10【解析】【分析】(1)根据题意连接BD 、CD ,根据线段垂直平分线的性质可得DB=DC ;依据角平分线的性质可得DG=DH ;依据HL 定理可判断出Rt △BDG ≌Rt △CDH ,根据全等三角形的性质即可得出结论;(2)由题意可得Rt △ADG ≌Rt △ADH (HL ),得出AG=AH ,进而得出答案.【详解】解:(1)证明:如图,连接BD 、CD ,∵D 是线段BC 垂直平分线上的点,∴BD=DC ,∵D 是∠BAC 平分线上的点,DG ⊥AB ,DH ⊥AC∴DG=DH ,∠DGB=∠H=90°,在Rt △BDG 与Rt △CDH 中,DG DH BD DC=⎧⎨=⎩,∴Rt △BDG ≌Rt △CDH (HL ),∴BG=CH ;(2)在Rt △ADG 与Rt △ADH 中,∵DG=DH ,AD=AD ,∴Rt △ADG ≌Rt △ADH (HL ),∴AB-AC=AG+BG-(AH-CH )=2BG=12-8=4,∴BG=2,∴AG=AB-BG=12-2=10.【点睛】本题考查线段垂直平分线及角平分线的性质和直角三角形全等的判定定理及性质,解答此题的关键是作出辅助线,构造出直角三角形.24.(1)40°;(2)1902α︒-;(3)1902AMC α∠=︒+.【解析】【分析】(1)由“SAS ”可证AEC ABD ∆∆≌,可得AEC ABD ∠=∠,由外角的性质可得结论;(2)由“SAS ”可证ACG ADH ∆∆≌,可得AG AH =,CAG DAH ∠=∠,即可求解;(3)连接AM ,过点A 作AP EC ⊥于P ,AN BD ⊥于N ,由全等三角形的性质可得ACG ADH S S ∆∆=,EC BD =,由面积法可求AP AN =,由角平分线的性质可求AMD ∠,即可求解.【详解】解:(1)EAB CAD α∠=∠= ,EAC BAD ∴∠=∠,在AEC ∆和ABD ∆中,AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,()AEC ABD SAS ∴∆∆≌,AEC ABD ∴∠=∠,AEC EAB ABD EMB ∠+∠=∠+∠ ,40EMB EAB ∴∠=∠=︒;(2)连接AG ,由(1)可得:EC BD =,ACE ADB ∠=∠,G 、H 分别是EC 、BD 的中点,在ACG ∆和ADH ∆中,AC AD ACE ADB CG DH =⎧⎪∠=∠⎨⎪=⎩,()ACG ADH SAS ∴∆∆≌,AG AH ∴=,CAG DAH ∠=∠,AGH AHG ∴∠=∠,CAG CAH DAH CAH ∠-∠=∠-∠,GAH DAC ∴∠=∠,DAC α∠=∵,GAH α∴∠=,180GAH AHG AGH ∠+∠+∠=︒ ,1902AHG α∴∠=︒-;(3)如图3,连接AM ,过点A 作AP EC ⊥于P ,AN BD ⊥于N ,ACE ADB ∆∆ ≌,ACE ADB S S ∆∆∴=,EC BD =, 1122EC AP BD AN ⨯=⨯⨯,AP AN ∴=,又AP EC ⊥ ,AN BD ⊥,1802AME AMD α︒-∴∠=∠=,1902AMC AMD DMC α∴∠=∠+∠=︒+.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的判定,掌握全等三角形的判定定理是本题的关键.25.(1)证明过程见解析;(2)成立,理由见解析【解析】【分析】(1)根据等边三角形的性质得到60ABC BAC ACB ∠=∠=∠=︒,AB BC AC ==,再根据中点得到90AMB AMN ∠=∠=︒,22BC BM MC ==,30BAM BAC ∠=∠=︒,再根据旋转的性质得到2MN MC BC AB ===,证明DBA ANM ≅△△,即可得解;(2)当12BM BC >,过点A 、点D 作AG BM ⊥,DH BA ⊥,再证明DAH AMG ≅△△,得到DH AG =,AH GM =,再根据等边三角形的性质得到BG GC =,证明DBH ANG ≅△△即可得解;当12BM BC <,根据相同的方法证明即可;【详解】(1)∵△ABC 是等边三角形,∴60ABC BAC ACB ∠=∠=∠=︒,AB BC AC ==,又∵M 为边BC 的中点,∴90AMB AMN ∠=∠=︒,22BC BM MC ==,30BAM BAC ∠=∠=︒,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴1203090BAD MAD BAM ∠=∠-∠=︒-︒=︒,∴90BAD AMN ∠=∠=︒,∵MC CN =,∴2MN MC BC AB ===,在DBA 和ANM 中,AB MN BAD AMB AD AM =⎧⎪∠=∠⎨⎪=⎩,∴DBA ANM ≅△△,∴BD AN =;(2)结论成立,理由如下:如图,当12BM BC >时,过点A 、点D 作AG BM ⊥,DH BA ⊥,∴90DHA AGM =∠=︒,∵180AMG BAM ABC ∠+∠+∠=︒,60ABC ∠=︒,∴180120AMG ABC BAM BAM ∠=︒-∠-∠=︒-∠,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴120DAB BAM ∠=︒-∠,∴DAB AMB ∠=∠,在DAH 和AMG 中,DHA AGM DAH AMG AD AM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DAH AMG ≅△△,∴DH AG =,AH GM =,又∵△ABC 是等边三角形,AG BM ⊥,∴BG GC =,∴GN GC CN GC CM BG GC GM BC GM =+=+=+-=-,又∵BH AB HA =-,AH GM =,AB BC =,∴BH GN =,∵DH AG =,90DHA AGM ∠=∠=︒,BH GN =,在DBH △和ANG 中,DH AG DHB AGM BH GN =⎧⎪∠=∠⎨⎪=⎩,∴DBH ANG ≅△△,∴BD AN =;当12BM BC <时,过点A 、点D 作AE BM ⊥,DF BA ⊥,∴90DFA AEM =∠=︒,∵180AME BAM ABC ∠+∠+∠=︒,60ABC ∠=︒,∴180120AME ABC BAM BAM ∠=︒-∠-∠=︒-∠,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴120DAB BAM ∠=︒-∠,∴DAB AMB ∠=∠,在DAF △和AME △中,DFA AEM DAF AME AD AM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DAF AME ≅△△,∴DF AE =,AF EM =,又∵△ABC 是等边三角形,AE BM ⊥,∴BE EC =,∴EN EC CN EC CM BE EC EM BC EM =+=+=+-=-,又∵BF AB FA =-,AF EM =,AB BC =,∴BF EN =,∵DF AE =,90DFA AEM ∠=∠=︒,BF EN =,在DBF 和ANE 中,DF AE DFB AEM BF EN =⎧⎪∠=∠⎨⎪=⎩,∴DBF ANE ≅△△,∴BD AN =;。
苏科版八年级上册数学期中考试试卷一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,下列汉字不是轴对称图形的是()A .一B .中C .王D .语2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A .2,3,4B .6,8,10C .5,12,14D .1,1,23.如图,ABC ADE △≌△,若80B ∠=︒,30C ∠=︒,则E ∠的度数为()A .80°B .35°C .70°D .30°4.如图,在△ABC 中,∠B=36°,AB =AC ,AD 是△ABC 的中线,则∠BAD 的度数是()A .36°B .54°C .72°D .108°5.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .8B .12C .18D .206.如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为()A.2.5km B.4.5km C.5km D.3km7.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形∠+∠+∠=)8.如图为6个边长相等的正方形的组合图形,则123(A.90 B.135 C.150 D.180二、填空题9.用一根长12cm的铁丝围成一个等边三角形,那么这个等边三角形的边长为___cm.10.在△ABC中,AB=AC,∠A=40°,则∠B的度数为_____°.11.木工师傅要做一扇长方形纱窗,做好后量得长为6分米,宽为4分米,对角线为7分米,则这扇纱窗________(填“合格”或“不合格”)12.若(a-4)2+|b-2|=0,则有两边长为a、b的等腰三角形的周长为________.13.如图,A、F、C、D在同一条直线上,△ABC≌△DEF,AF=1,FD=3.则线段FC 的长为_____.14.如图,△ABC中,边AB的垂直平分线分别交AB,BC于点D,E,连接AE,若AC =2cm,BC=5cm,则△AEC的周长是_____cm.15.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字______的格子内.16.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为_____cm2.17.如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.三、解答题18.如图,△ABC中,AB=AC,∠1=∠2,BC=6cm,那么BD的长_____cm.19.如图,网格中的△ABC与△DEF为轴对称图形.(1)利用网格线作出△ABC与△DEF的对称轴l;(2)如果每一个小正方形的边长为1,请直接写出△ABC的面积=.20.已知:如图,若AB∥CD,AB=CD且BE=CF.求证:AE=DF.21.已知:如图,∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:△OEF是等腰三角形.22.如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC=16m,上弦长AB=10m,求中柱AD的长.23.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.24.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.25.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;=15,求DE的长.(2)若AB+AC=10,S△ABC26.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.27.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.参考答案1.D【解析】【分析】直接利用轴对称图形的定义得出答案,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、“一”是轴对称图形,故本选项不合题意;B、“中”是轴对称图形,故本选项不合题意;C、“王”是轴对称图形,故本选项不合题意;D、“语”不是轴对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【解析】【分析】先求出较小两边的平方和,再求出最长边的平方,判断是否相等即可.【详解】解:A.∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;B.∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项符合题意;C.∵52+122≠142,∴5,12,14为边不能组成直角三角形,故本选项不符合题意;D.∵12+12≠22,∴以1,1,2为边不能组成直角三角形,故本选项不符合题意;故选:B.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理逆定理的内容是解题关键,注意:如果一个三角形的两边,a b的平方和等于第三边的平方,即222a b c,那么这个三角形是直角三角+=形.3.D【解析】【分析】根据全等三角形的性质即可求出∠E.【详解】解:∵△ABC≌△ADE,∠C=30°,∴∠E=∠C=30°,故选:D.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.4.B【解析】【分析】利用等腰三角形的三线合一和直角三角形的两个锐角互余解决问题即可.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD ⊥BC ,∵∠B=36°,∴∠BAD=90°-∠B=90°-36°=54°,故选:B .【点睛】本题考查等腰三角形的性质和直角三角形的性质,解题的关键是掌握等腰三角形的三线合一的性质,属于中考常考题型.5.D【解析】【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键.6.D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC ,BC 互相垂直,∴∠ACB =90°,∵M 为AB 的中点,∴CM =12AB ,∵AB =6km ,∴CM =3km ,即M ,C 两点间的距离为3km ,故选:D .7.B【解析】利用全等的定义分别判断后即可得到正确答案.【详解】解:A 、两个等边三角形不一定全等,例如两个等边三角形的边长分别为3和4,这两个三角形就不全等,故此选项错误;B 、两个全等的图形面积是一定相等的,故此选项正确;C 、形状相等的两个图形不一定全等,例如边长为3和4的正方形,故此选项错误;D 、两个正方形不一定全等,例如边长为3和4的正方形,故此选项错误.故选B.8.B【分析】标注字母,利用“边角边”判断出△ABC 和△DEA 全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【详解】解:如图,在△ABC 和△DEA中,90AB DE ABC DEA BC AE ⎧⎪∠∠︒⎨⎪⎩====,∴△ABC ≌△DEA (SAS ),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选B.【点睛】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.9.4【解析】【分析】根据等边三角形的定义“三条边都相等的三角形”即可求出答案.【详解】=÷=cm.根据等边三角形的三条边相等可知其边长1234故答案为:4.【点睛】本题考查等边三角形的定义.掌握其定义是解答本题的关键.10.70【解析】【分析】根据等腰三角形的性质可得到∠B=∠C,已知顶角的度数,根据三角形内角和定理即可求解.【详解】解:∵AB=AC,∴∠B=∠C,∵∠A=40°,∴∠B=(180°﹣40°)÷2=70°.故答案为:70.【点睛】本题主要是考查了等腰三角形的性质,熟练地利用等边找到底角,然后利用三角形内角和定理求解角度,这是解决本题的关键.11.不合格【分析】根据勾股定理的逆定理,若一个三角形的两边的平方和等于第三边的平方,则这个三角形为直角三角形,即可解答.【详解】解:根据矩形的性质得:矩形的长、宽、对角线三边能构成直角三角形,∵长为6分米,宽为4分米,对角线为7分米,∴22264527+=≠,∴长为6分米,宽为4分米,对角线为7分米的三边不能构成直角三角形,即这扇纱窗不合格.故答案为:不合格.【点睛】本题主要考查了矩形的性质,勾股定理的逆定理,能根据勾股定理的逆定理判断三条边长能否构成直角三角形是解题的关键.12.10【解析】【分析】先根据非负数的性质列式求出a、b,再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-2=0,解得a=4,b=2,①若2是腰长,则底边为4,三角形的三边分别为2、2、4,不能组成三角形,②若4是腰长,则底边为2,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10.故答案为:10.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.13.2【分析】根据全等三角形的性质得出AC=FD=3,再求出FC即可.【详解】解:∵△ABC≌△DEF,FD=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案为:2.【点睛】本题主要是考查了全等三角形的性质,熟练应用全等三角形的性质,找到对应相等的边,是求解该问题的关键.14.7【解析】【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【详解】解:∵DE是线段AB的垂直平分线,∴EA=EB,∴△AEC的周长=AC+EC+EA=AC+EC+EB=AC+BC=7(cm),故答案为:7.【点睛】本题主要是考查了垂直平分线的性质,熟练地应用垂直平分线的性质,找到相等边,是求解该类问题的关键.15.3【解析】【分析】根据轴对称的定义,沿着虚线进行翻折后能够重合,所以阴影应该涂在标有数字3的格子内.【详解】解:根据轴对称的定义,沿着虚线进行翻折后能够重合,根据题意,阴影应该涂在标有数字3的格子内;故答案为3.【点睛】本题考查了轴对称图形的性质,沿着虚线进行翻折后能够重合,进而求出答案.16.120【解析】【分析】设三边的长是5x,12x,13x,根据周长列方程求出x的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解.【详解】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键.17.8【解析】【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC•B′H即可求得答案.AC=B'H=4,则有S△AB'C=12【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A =90°,∠BAC+∠CAB'=90°,∴∠HB'A =∠CAB ,在△ACB 和△B'HA 中,ACB AHB CAB AB H AB AB ∠=∠'⎧⎪∠=∠'⎨⎪='⎩,∴△ACB ≌△B'HA (AAS ),∴AC =B'H ,∵∠ACB =90°,AB =5,BC =3,∴AC 22BA BC -2253-4,∴AC =B'H =4,∴S △AB 'C =12AC•B′H =12×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB ≌△B'HA 是解决问题的关键.18.3【解析】【分析】由AB =AC ,得出△ABC 是等腰三角形,由∠1=∠2,得出AD 是顶角平分线,再由等腰三角形底边上的中线与顶角平分线重合求解即可.【详解】解:∵AB=AC,∴△ABC是等腰三角形,∵∠1=∠2,∴12BD CD BC==,∵BC=6cm,∴1632BD=⨯=(cm).故答案为:3.【点睛】本题考查了等腰三角形,比较简单,解题的关键是掌握等腰三角形的性质.19.(1)见解析;(2)3【解析】【分析】(1)对应点连线段的垂直平分线即为对称轴;(2)根据三角形的面积等于矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,直线l即为所求;(2)S△ABC =2×4﹣12×1×2﹣12×2×2﹣12×1×4=3.20.见解析【解析】由AB∥CD,得∠B=∠C,再利用SAS证明△ABE≌△DCF,从而得出AE=DF.证明:∵AB ∥CD ,∴∠B =∠C ,在△ABE 与△DCF 中,AB CD B C BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (SAS ),∴AE =DF .【点睛】本题考查了全等三角形的性质与判定,平行线的性质,掌握SAS 证明三角形全等是解题的关键.21.见解析【分析】证明Rt △ABF ≌Rt △DCE ,根据全等三角形的性质得到∠AFB =∠DEC ,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE ,在Rt △ABF 和Rt △DCE 中,AB DC BF CE =⎧⎨=⎩,∴Rt △ABF ≌Rt △DCE (HL )∴∠AFB =∠DEC ,∴OE =OF ,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.22.6mAD =【分析】由等腰三角形的性质得BC=CD=12BC=8(m),再由勾股定理求解即可.【详解】解:∵AB=AC,AD⊥BC,BC=16m,∴BC=CD=12BC=8(m),∠ADB=90°,∴AD6(m),即中柱AD的长为6m.23.(1)见解析;(2)4AC=【解析】(1)利用线段垂直平分线的性质可得CD=BD,然后利用勾股定理逆定理可得结论;(2)首先确定BD的长,进而可得CD的长,再利用勾股定理进行计算即可.【详解】(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC4=.【点睛】本题主要考查勾股定理及其逆定理、线段垂直平分线的性质定理,熟练掌握勾股定理及其逆定理、线段垂直平分线的性质定理是解题的关键.24.该零件的面积为37cm 2.【解析】【分析】首先证明△ADC ≌△CEB ,根据全等三角形的性质可得DC=BE=7cm ,再利用勾股定理计算出AC 长,然后利用三角形的面积公式计算出该零件的面积即可.【详解】解:∵△ABC 是等腰直角三角形,∴AC=BC ,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE ,在△ADC 和△CEB 中,D E DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴DC=BE=7cm ,∴(cm ),∴cm ,∴该零件的面积为:12(cm 2).故答案为37cm 2.【点睛】本题考查全等三角形的应用,等腰直角三角形以及勾股定理的应用,关键是掌握全等三角形的判定方法.25.(1)见解析;(2)3DE =【解析】【分析】(1)由角平分线的性质得DE =DF ,再根据HL 证明Rt △AED ≌Rt △AFD ,得AE =AF ,从而证明结论;(2)根据DE =DF ,得111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,代入计算即可.【详解】(1)证明:∵AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高,∴DE =DF ,在Rt △AED 与Rt △AFD 中,AD AD DE DF=⎧⎨=⎩,∴Rt △AED ≌Rt △AFD (HL ),∴AE =AF ,∵DE =DF ,∴AD 垂直平分EF ;(2)解:∵DE =DF ,∴111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,∵AB+AC =10,∴DE =3.26.(1)见解析;(2)AC 的长为17.【解析】(1)首先根据垂线的意义得出∠CFD=∠CEB=90°,然后根据角平分线的性质得出CE=CF ,即可判定Rt △BCE ≌Rt △DCF ;(2)首先由(1)中全等三角形的性质得出DF=EB ,然后判定Rt △AFC ≌Rt △AEC ,得出AF=AE ,构建方程得出CF ,再利用勾股定理即可得出AC.【详解】(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,∴∠CFD=90°,∠CEB=90°(垂线的意义)∴CE=CF (角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=x∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.27.(1)当M、N运动6秒时,点N追上点M;(2)①2t=,△AMN是等边三角形;②当32t=或125时,△AMN是直角三角形;(3)8t=【解析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN 的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;②分别就∠AMN=90°和∠ANM=90°列方程求解可得;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵AB=AC=BC=6cm,∴∠A=60°,当AM=AN时,△AMN是等边三角形,∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图2,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得32 t ;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得125t .综上所述,当t为32或125s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.。
苏科版八年级上册数学期中考试试题一、单选题1..下列图形中,不是轴对称图形的是()A.B.C.D.2.下列选项可使△ABC≌△A′B′C′的是()A.AB=A′B′,∠B=∠B′,AC=A′C′B.AB=A′B′,BC=B′C′,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′3.在下列各组数中,是勾股数的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6 4.在Rt△ABC中,∠A=90°,AB=3,AC=4,则点A到BC的距离为()A.125B.425C.34D.525.如图,在△ABC中,AC=6,F是高AD和BE的交点,若AD=BD,则BF的长是()A.4B.5C.6D.86.如图,在△ABC中,CD是边AB上的高,BE平分∠ABC,交CD于点E,BC=10,DE=3,则△BCE的面积为()A.16B.15C.14D.137.如图,在△ABC中,∠A=60°,BD⊥AC,垂足为D,CE⊥AB,垂足为E,O为BC的中点,连接OD、OE,则∠DOE的度数为()A.40°B.45°C.60°D.65°8.如图,在△ABC中,AC=BC,∠ACB=90°D是AB的中点,点E在AC上,点F在BC上,DE⊥DF,AE=4,BF=3,则EF的长为()A.4B.5C.6D.7二、填空题9.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=___.10.在△ABC中,∠C=40°,CA=CB,则∠B=_____°.11.如图,在Rt△ABC中,∠BAC=90°,点D在边BC上,将△ABD沿AD折叠,使点B 恰好落在边AC上的点E处.若∠C=28°,则∠CDE=_____°.12.已知一个直角三角形的两条边长分别为1和2,则第三条边长的平方是_____.13.如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长为_________cm;14.如图,以Rt△ABC的三边分别向外作正方形,若斜边AB=a,则图中阴影部分的面积和为______.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是_____.AC,则△ABC顶角的度数16.在△ABC中,AB=AC,BD⊥AC,垂足为D,且BD=12为_____.三、解答题17.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.18.已知:如图,在Rt△ABC中,∠A=90°,在BC边上取CD=CA,过D点作DE⊥BC 交AB于点E.若AB=10,DE=4,求BE的长.19.已知:如图,在△ABC中,点D、E分别在边AB、AC上,BE平分∠ABC,DE∥BC.求证:BD=DE.20.如图,在△ABC中.(1)作BC的垂直平分线DE,分别交AC、BC于点D、E;(要求:尺规作图保留作图痕迹,不写作法.)(2)若AB=6,AC=10,求△ABD的周长.21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(三角形的顶点都在网格格点上).(1)在图中画出△ABC关于直线l对称的△A′B′C′(要求:点A与点A′、点B与点B′、点C与点C′相对应);(2)在(1)的结果下,设AB交直线l于点D,连接AB′,求四边形AB′CD的面积.22.已知:如图,AD是△ABC的中线,AB=25,BC=14,AD=24,求AC的长.23.如图,折叠等腰三角形纸片ABC,使点C落在边AB上的点F处,折痕为DE.已知AB=AC,FD⊥BC.(1)求证:∠AFE=90°;(2)如果AF=3,BF=6,求AE的长.24.已知:如图,在Rt△ABC中,∠A=90°,AB=AC,点D在BC上,点E与点A在BC的同侧,且∠CED=90°,∠B=2∠EDC.(1)求证:∠FDC=∠ECF;(2)若CE=1,求DF的长.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.设P点的运动时间为t.(1)CP=cm.(用含t的式子表示);(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案1.B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选B.【点睛】考点:轴对称图形.2.C【解析】【分析】根据全等三角形的判定逐项判定即可.【详解】解:A、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意;B、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意;C、满足SAS,能证明△ABC≌△A′B′C′,符合题意;D、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意,故选:C.【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.3.C【解析】【分析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选C.【点睛】本题考查了勾股数的知识,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a2+b2=c2,则△ABC是直角三角形.4.A【解析】【分析】根据勾股定理求出BC,再根据三角形的面积公式求解即可.【详解】解:∵在Rt△ABC中,∠A=90°,AB=3,AC=4,∴5BC===,设点A到BC的距离为h,由1122ABCS AB AC BC h=⋅⋅=⋅⋅得:1134522h⨯⨯=⨯,解得:125h=,即点A到BC的距离为12 5,故选:A.【点睛】本题考查勾股定理、三角形的面积公式,会利用等面积法求距离是解答的关键.5.C【解析】【分析】证△DBF≌△DAC,推出BF=AC即可解决问题.【详解】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD ,在△DBF 和△DAC 中,FBD CAD DB AD FDB CDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DBF ≌△DAC (ASA ),∴BF=AC=6,故选:C .【点睛】本题考查了全等三角形的性质和判定,等角的余角相等,关键是推出△DBF ≌△DAC .6.B【解析】【分析】作EH ⊥BC 于点H ,根据角平分线的性质得出EH=DE ,最后根据三角形的面积公式进行求解.【详解】解:如图,作EH ⊥BC 于点H,∵BE 平分∠ABC ,CD 是AB 边上的高,EH ⊥BC ,∴EH=DE=3,∴111031522BCE S BC EH =⋅=⨯⨯=△.故选B .【点睛】本题考查角平分线的性质,三角形面积,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.C【解析】【分析】根据垂直的定义得到∠AEC=∠BEC=∠ADB=∠BDC=90°,根据三角形的内角和定理得到∠ABD=∠ACE=30°,根据直角三角形的性质得到OE=CD=12BC,OD=OB=12BC,根据三角形的外角性质和平角的定义即可得到∠EDF=60°.【详解】证明:∵CE⊥AB,BD⊥AC,∴∠AEC=∠BEC=∠ADB=∠BDC=90°,∵∠A=60°,∴∠ABD=∠ACE=30°,∴∠DBC+∠ECB=180°-∠A-∠ABD-∠ACE=60°,∵点O是BC的中点,∴OE=OC=12BC,OD=OB=12BC,∴∠OEC=∠OCE,∠OBD=∠ODB,OE=OD,∵∠BOE=∠OEC+∠OCE=2∠OCE,∠COD=∠OBD+∠ODB=2∠OBD,∴∠BOE+∠COD=2∠OCE+2∠OBD=2×60°=120°,∴∠DOE=60°.故选:C.【点睛】本题考查了直角三角形斜边上的中线,等腰三角形的判定和性质,熟练掌握直角三角形斜边上的中线是斜边的一半是解题的关键.8.B【解析】【分析】连接CD,根据全等三角形的判定易得到△ADE≌△CDF,求得CF、CE的长,利用勾股定理可得出结论.【详解】解:连接CD,∵AC=BC ,∠ACB=90°,∴△ABC 是等腰直角三角形,∠A=∠B=45°,∵D 为AB 中点,∴BD=AD ,CD 平分∠BCA ,CD ⊥AB .∴∠DCF=45°,∵DE ⊥DF ,即∠EDF=90°,∴∠ADE+∠EDC=90°,∠CDF+∠EDC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中,ADE CDF AD CD A DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ),∴AE=CF ,∵AE=4,BF=3,∴CF=4,则AC=BC=4+3=7,∴CE=7-4=3,∴2222345CE CF +=+=,故选:B .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,关键是掌握全等三角形的判定方法.9.20【解析】【分析】先利用三角形的内角和定理求出70A ∠=︒,然后根据全等三角形对应边相等解答.【详解】解:如图,180506070A ∠=︒-︒-︒=︒,ABC DEF ∆≅∆ ,20EF BC ∴==,即20x =.故答案为:20.【点睛】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.10.70【解析】【分析】根据等边对等角和三角形的内角和定理即可求得答案.【详解】如图,∠C =40°,CA =CB ,()1180702A B C ∴∠=∠=︒-∠=︒故答案为:70【点睛】本题考查了等边对等角,三角形内角和定理,掌握以上知识是解题的关键.11.34【解析】【分析】根据直角三角形的两锐角互余和折叠性质求出∠AED=∠B=62°,再根据三角形的外角性质求解即可.【详解】解:∵在Rt △ABC 中,∠BAC =90°,∠C =28°,∴∠B=90°﹣∠C=90°﹣28°=62°,由折叠知∠AED=∠B=62°,∵∠AED=∠C+∠CDE ,∴∠CDE=62°﹣28°=34°,故答案为:34.【点睛】本题考查直角三角形的两锐角互余、折叠性质、三角形的外角性质,熟练掌握折叠性质和三角形的外角性质是解答的关键.12.3或5【解析】【分析】求第三边的长必须分类讨论,分2是斜边或直角边两种情况,然后利用勾股定理求解.【详解】解:当直角三角形的直角边为1和2时,第三边的平方为22125=+=当直角三角形的斜边为2时,第三边的平方为22213=-=综上所述,第三边的平方为3或5故答案为3或5【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.13.5cm【解析】【详解】∵O 是∠APB 内的一点,点M ,N 分别是O 点关于PA ,PB 的对称点,∴OE=ME ,OF=NF ,∵MN=5cm ,∴△OEF 的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm ).故答案为5cm .【点睛】考点:轴对称的性质.14.2a 2【解析】【分析】根据勾股定理可得AC 2+BC 2=AB 2,然后判断出阴影部分的面积=2S 正方形,再利用正方形的面积等于边长的平方计算即可得解.【详解】∵△ABC 是直角三角形,∴AC 2+BC 2=AB 2,∵图中阴影部分的面积和=2S 正方形=2a 2,故答案为2a 2【点睛】本题考查了勾股定理,正方形的性质,熟记定理与正方形的面积的求法是解题的关键.15.50【解析】【分析】通过“AAS ”得到EFA AGB ≌、BCG CDH △≌△,求得四个直角三角形的面积,围成的图形面积,就是梯形DEFH 减去四个直角三角形的面积,即可求解.【详解】解:由题意可得:EF AF ⊥、BG AC ⊥、DH AC⊥∴90BGA EFA FAE FEA ∠=∠=∠+∠=︒∵AE ⊥AB∴90EAB ∠=︒,即90EAF BAG ∠+∠=︒∴BAG FEA ∠=∠、BGA EFA∠=∠又∵AE AB=∴()EFA AGB AAS △≌△∴3AF BG ==,6EF AG ==同理可得:()BCG CDH AAS △≌△∴3==BG CH ,4CG DH ==∴16FH AF AG CG CH =+++=192AEF ABG S S AF EF ==⨯⨯=△△,162BCG CDH S S CH DH ==⨯⨯=△△11()10168022DEFH S DH EF FH =⨯+⨯=⨯⨯=梯形所围成的图形的面积2250AEF BCG DEFH SS S S --==△△梯形故答案为50【点睛】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.16.30°或150°##150°或30°【解析】【分析】根据题意分两种情况作出图形,证明ABD AED ≌,进而证明ABE △是等边三角形,即可求得30BAC ∠=︒.【详解】①如图,延长BD 至E ,使DE BD =, BD =12AC ,AB =AC ,BD ⊥AC ,则2BE BD AB==在ABD △和AED 中90AD AD ADB ADE BD DE =⎧⎪∠=∠=︒⎨⎪=⎩ABD AED∴△≌△AE AB ∴=,BAD EAD∠=∠AB AE BE∴==ABE ∴ 是等边三角形60BAE ∴∠=︒1302BAD EAD BAE ∴∠=∠=∠=︒②如图,当BD AC ⊥的延长线时,1122DB AC AB ==,同理可得30BAD ∠=︒,150BAC ∴∠=︒故答案为:30°或150︒【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,三角形全等的判定与性质,分类讨论画出图形是解题的关键.17.详见解析【解析】【分析】要证明BE=CD ,把BE 与CD 分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA 可得出三角形ABE 与三角形ACD 全等,利用全等三角形的对应边相等可得证.【详解】证明:在△ABE 和△ACD 中,∵B C AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△ACD∴BE=CD (全等三角形的对应边相等)18.BE=6.【解析】【分析】连接EC ,先证Rt △AEC ≌Rt △DEC (HL ),得出AE=DE=4,再用线段之差计算BE=AB-AE=10-4=6即可.【详解】解:连接EC ,∵∠A =90°,DE ⊥BC∴∠EDC=∠A=90°,在Rt △AEC 和Rt △DEC 中,CA CD EC EC=⎧⎨=⎩∴Rt △AEC ≌Rt △DEC (HL ),∴AE=DE=4,∴BE=AB-AE=10-4=6.【点睛】本题考查直角三角形全等判定与性质,线段差,掌握直角三角形全等判定与性质是解题关键.19.见解析【解析】【分析】根据角平分线的性质和平行线的性质得到∠DBE=∠DEB ,根据等角对等边解答即可证得结论.【详解】解:∵BE平分∠ABC,∴∠DBE=∠CBE,∵DE∥BC,∴∠CBE=∠DEB,∴∠DBE=∠DEB,∴BD=DE.【点睛】本题考查角平分线的性质、平行线的性质、等腰三角形的判定,会利用等角对等边证明线段相等是解答的关键.20.(1)见解析;(2)16【解析】【分析】(1)分别以,B C为圆心,大于12BC为半径作弧,过两弧的交点作直线DE,分别交AC、BC于点D、E;(2)根据垂直平分线的性质可得DB DC=,进而根据AB BD AD AB DC AD AB AC++=++=+即可求得△ABD的周长.【详解】(1)如图,(2)连接BD,DE是BC的垂直平分线,DB DC∴=AB=6,AC=10,∴△ABD的周长为16AB BD AD AB DC AD AB AC++=++=+= 21.(1)见解析;(2)14【分析】(1)根据轴对称图形的性质画图即可;(2)根据网格结构和割补法进行计算即可求得面积.【详解】解:(1)如图,△A′B′C′即为所求作的三角形;(2)四边形AB′CD的面积为:4×6-12×3×5-12×4×1-12×1×1=24-7.5-2-0.5 =14.【点睛】本题考查画轴对称图形,熟练掌握轴对称的性质,会利用割补法求解网格中不规则图形的面积是解答的关键.22.25【解析】【分析】=.先根据勾股定理的逆定理证明AD BC⊥,进而根据垂直平分线的性质可得AC AB【详解】AD是△ABC的中线,AB=25,BC=14,AD=24,7∴==BD DC()()222524252449,249AB AD-=+-=BD=222∴+=AB AD BD∴ 是直角三角形ABD∴⊥AD BCBD DC=∴==AB AC25【点睛】本题考查了勾股定理的逆定理,垂直平分线的性质,三角形的中线的定义,证明AD BC⊥是解题的关键.23.(1)见解析;(2)5【解析】【分析】(1)根据折叠性质和等腰三角形性质得出∠B=∠C=∠EFD,再根据直角三角形的两锐角互余解答即可;(2)根据折叠性质和勾股定理解答即可.【详解】解:(1)由折叠性质,∠C=∠EFD,EF=CE,∵AB=AC,∴∠B=∠C=∠EFD,∵FD⊥BC,∴∠B+∠BFD=90°,∴∠EFD+∠BFD=90°,∴∠AFE=180°﹣∠EFD﹣∠BFD=90°;(2)∵AF=3,BF=6,AB=AC,∴AC=AB=3+6=9,∴EF=CE=AC﹣AE=9﹣AE,在Rt△AFE中,AF2+EF2=AE2,∴32+(9﹣AE)2=AE2,解得:AE=5.【点睛】本题考查折叠性质、等腰三角形的性质、直角三角形的两锐角互余、勾股定理,熟练掌握折叠性质和等腰三角形的性质,利用勾股定理建立方程思想是解答的关键.24.(1)见解析(2)2【解析】【分析】(1)如图,作C点关于DE的对称点H,设DH与AC交于G点,得到DE垂直平分CH,再证明AB∥DH,得到∠DGC=∠A=90°,再利用直角三角形两锐角互余求解;(2)先△ABC和△GDC是等腰直角三角形,得到DG=CG,再证明△GDF≌△GCH,得到DF=CH=2CE=2.【详解】(1)如图,作C点关于DE的对称点H,设DH与AC交于G点,∵∠CED=90°∴DE垂直平分CH∴CD=DH∴∠HDC=2∠EDC=2∠EDH∴∠EDC=∠EDH∵∠B=2∠EDC∴∠B=∠HDC∴AB∥DH∴∠DGC=∠A=90°∴∠GDF+∠GFD=∠ECF+∠EFC=90°∴∠GDF=∠ECF故∠FDC =∠ECF ;(2)∵∠A=90°,AB=AC∴△ABC 是等腰直角三角形∴∠ACB=45°∴∠GDC=90°-∠ACB=45°∴△GDC 是等腰直角三角形∴DG=CG∵∠GDF=∠GCH ,∠DGF=∠CGH=90°∴△GDF ≌△GCH (ASA )∴DF=CH=2CE=2.【点睛】此题主要考查等腰三角形与全等三角形综合,解题的关键是根据题意作辅助线,证明三角形全等进行求解.25.(1)(83)t cm -;(2)全等;(3)当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等.【解析】【分析】(1)根据题意可得出答案;(2)由“SAS ”可证BPD CQP ∆≅∆;(3)根据全等三角形的性质得出4BPPC cm ==,5CQ BD cm ==,则可得出答案.【详解】解:(1)由题意可得,(83)PC BC BP t cm =-=-,故答案为:(83)t cm -.(2)全等,理由:1t s = ,点Q 的运动速度与点P 的运动速度相等,313()BP CQ cm ∴==⨯=,10AB cm = ,点D 为AB 的中点,5()BD cm ∴=.又PC BC BP =- ,8BC cm =,835()PC cm ∴=-=,PC BD ∴=,又AB AC = ,B C ∴∠=∠,在BPD ∆和CQP ∆中,PC BDB C BP CQ=⎧⎪∠=∠⎨⎪=⎩,()BPD CQP SAS ∴∆≅∆;(3) 点Q 的运动速度与点P 的运动速度不相等,BP ∴与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ∆≅∆,且B C ∠=∠,则4()BP PC cm ==,5()CQ BD cm ==,∴点P ,点Q 运动的时间4()33BPt s ==,∴点Q 的运动速度515(/)443CQcm s t ===;答:当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等.。
苏科版八年级上册数学期中考试试卷一、单选题1.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.4,6,8B.6,8,10C.6,9,10D.5,11,133.已知:△ABC≌△DEF,AB=DE,∠A=70°,∠E=30°,则∠F的度数为()A.80°B.70°C.30°D.100°4.若等腰三角形中有两边的长分别为5和8,则这个三角形的周长为()A.18B.21C.18或21D.21或165.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点6.如图,在△ABC和△DEF中,AC=DF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BE=CF C.∠ACB=∠DFE=90°D.∠B=∠DEF 7.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积为24,则EC等于()A.2B.103C.4D.838.下列说法:①等腰三角形的两底角相等;②角的对称轴是它的角平分线;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④全等三角形的对应边上的高相等;⑤在直角三角形中,如果有一条直角边长等于斜边长的一半.那么这条直角边所对的角等于30°.以上结论正确的个数()A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=13,BC=14,S△ABC=84,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.15B.12C.10D.910.如图,如果把△ABC沿AD折叠,使点C落在边AB上的点E处,那么折痕(线段AD)是△ABC的()A.中线B.角平分线C.高D.既是中线,又是角平分线二、填空题11.如图,∠1=∠2,要使△ABE≌△ACE,需添加一个条件是__________.(填上一个条件即可)12.若一个直角三角形的两直角边长分别为6和8,则其斜边上的高为________.13.如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长为___________.14.如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=6,AD=4,则DE的长为________________.15.如图,∠ABC=∠ACD=90°,BC=2,AC=CD,则△BCD的面积为_________.16.已知长方形ABCD中,∠A=∠ABC=∠C=∠D=90°,AB=8,BC=5,点E为射.线.CD上一点,将△BCE沿BE翻折得到△BC′E,当点C′落在边AB的垂直平分线上时,点C/到边CD的距离为_____.17.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm 无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm三、解答题18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种方法分别在下图方格内涂黑2个小正方形,使它们成为轴对称图形.19.已知:如图,AC∥DF,AC=DF,AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.20.已知:如图,△ABC中,∠A=90°,现要在AC边上确定一点D,使点D到BA、BC 的距离相等.(1)请你按照要求,在图上确定出点D的位置(尺规作图,不写作法,保留作图痕迹);(2)若BC =5,AB =4,则AC =,AD =(直接写出结果).21.如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.(1)求∠DAC 的度数;(2)求证:DC =AB .22.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB 8m =,AD 6m =,CD 24m =,BC 26m =,又已知A 90∠=︒,求这块土地的面积.23.已知,如图,AC =BD ,∠1=∠2.(1)求证:△ABC ≌△BAD ;(2)若∠2=∠3=25°,求∠D 的度数.24.如图是一个零件的示意图,测量AB =4cm ,BC =3cm ,CD =12cm ,AD =13cm ,∠ABC =90°,根据这些条件,你能求出∠ACD 的度数吗?试说明理由.25.如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,若动点P 从点C 开始,按C→A→B→C 的路径运动,且速度为每秒1cm ,设运动的时间为t 秒.(1)当t=秒时,CP把△ABC的面积分成相等的两部分,此时CP=cm;(2)当t为何值时,△ABP为等腰三角形.(3)若点P在线段AC上运动,点Q是线段AB上的动点,求PB+PQ的最小值.26.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=6,P为BC上一点,将△ABP沿直线AP翻折至△AEP的位置,使点B落在点E处.射线..(1)若P为BC上一点.①如图1,当点E落在边CD上时,利用尺规作图,在图1中作出满足条件的点E(不写作法,保留作图痕迹),并直接写出此时CE=;②如图2,连接CE,若CE∥AP,则BP与BC有何数量关系?请说明理由;(2)如果点P在BC的延长线上,当△PEC为直角三角形时,求PB的长.参考答案1.B【解析】【分析】根据轴对称图形的概念对各选项分析判断,利用排除法求解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键.2.B【解析】【分析】根据勾股定理的逆定理:两边的平方和等于第三边的平方,即可完成解答.【详解】A 、22246528+=≠,故不能组成直角三角形;B 、2226810010+==,故能组成直角三角形;C 、2226911710+=≠,故不能组成直角三角形;D 、22251114613+=≠,故不能组成直角三角形;故选:B【点睛】本题考查了勾股定理的逆定理,熟练掌握此定理是关键.3.A【解析】【分析】根据全等三角形对应角相等求出∠D=∠A ,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.4.C【解析】【分析】分5是腰长和底边长两种情况讨论求解.【详解】解:5是腰长时,三角形的三边分别为5、5、8,能组成三角形,周长=5+5+8=18,5是底边长时,三角形的三边分别为5、8、8,能组成三角形,周长=5+8+8=21,综上所述,这个等腰三角形的周长是18或21.故选:C.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.5.B【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三边中垂线的交点最适当.故选:B.【点睛】本题主要考查了游戏的公平性与线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.6.D【解析】【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【详解】解:∵AC=DF,AB=DE,∴添加∠A=∠D,可利用SAS证明△ABC≌△DEF,故A不符合题意;∴添加BE=CF,得出BC=EF,利用SSS证明△ABC≌△DEF,故B不符合题意;∴添加∠ACB=∠DFE=90°,利用HL证明Rt△ABC≌Rt△DEF,故C不符合题意;添加∠B=∠DEF,不能证明△ABC≌△DEF,故D符合题意;故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.7.D【解析】【分析】先根据三角形的面积公式求得BF的长,然后根据勾股定理可求得AF=10,由翻折的性质和矩形的性质可知BC=10,故此FC=2,最后在△EFC中,由勾股定理列方程求解即可.【详解】∵S△ABF=24,∴12AB•BF=24,即12×6•BF=24.解得:BF=8,在Rt△ABF中由勾股定理得:AF10.由翻折的性质可知:BC=AD=AF=10,ED=FE.∴FC =10﹣8=2.设DE =x ,则EC =6﹣x .在Rt △EFC 中,由勾股定理得:EF 2=FC 2+EC 2,x 2=4+(6﹣x )2.解得:x =103,∴CE =83.故选D .【点睛】本题主要考查了翻折问题,矩形的性质,勾股定理,熟练运用勾股定理是解题的关键.8.D【解析】【分析】根据直角三角形性质,等边对等角,全等三角形的性质定理,轴对称图形的概念判断即可.【详解】解:等腰三角形的两底角相等,①正确;角的对称轴是它的角平分线所在的直线,②错误;成轴对称的两个图形中,对应点的连线被对称轴垂直平分,③正确;全等三角形的对应边上的高相等④正确;在直角三角形中,如果有一条直角边长等于斜边长的一半.那么这条直角边所对的角等于30°,⑤正确;故选D .【点睛】本题考查的是直角三角形性质,全等三角形的性质,轴对称图形,掌握全等三角形的性质定理,轴对称图形的概念是解题的关键.9.A【解析】【分析】如图,连接AD ,作AM BC ⊥,CN l ⊥垂足分别为M N ,,可证()BDF CDN AAS ≌,BF CN =;由1842ABC S BC AM =⨯⨯= ,求得AM 的值,在Rt ABM 中,由勾股定理得22BM AB AM =-,求得BM 的值,CM BC BM =-,求得CM 的值,在Rt ACM △中,由勾股定理得22AC AM CM =+,求得AC 的值;12CDH ADH ABC S S S += ,可得12ABC S ()12DH CN AE =⨯⨯+,可知当l AC ⊥时,DH 最小,CN AE +最大,此时有111222ABC S DH CN DH AE =⨯⨯+⨯ ,解得DH 的值,进而求解CN AE +的值,故可知BF AE +的最大值.【详解】解:如图,连接AD ,作AM BC ⊥,CN l ⊥垂足分别为M N,由题意知BD CD=在BDF 和CDN △中∵90BFD CND BDF CDN BD CD ∠=∠=︒⎧⎪∠=⎨⎪=⎩∴()BDF CDN AAS ≌∴BF CN=∵1842ABC S BC AM =⨯⨯= ∴12AM =在Rt ABM 中,由勾股定理得225BM AB AM =-=∴9CM BC BM =-=在Rt ACM △中,由勾股定理得15AC ==∵12CDH ADH ABC S S S += ∴111222ABC S DH CN DH AE =⨯⨯+⨯ ()12DH CN AE =⨯⨯+∴当l AC ⊥时,DH 最小,CN AE +最大∴此时1122ADCS CD AM AC DH =⨯⨯=⨯⨯ 解得285DH =∴5841528CN AE +=⨯=∴BF AE +的最大值为15故选A .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识.解题的关键在于将线段和与面积联系求解.10.B【解析】【分析】根据折叠的性质即可得到结论.【详解】解:∵把△ABC 沿AD 折叠得到△ADE ,∴△ACD ≌△AED ,∴∠CAD=∠EAD ,∴AD 是△ABC 的角平分线.故选择:B .【点睛】本题考查折叠图形的性质,掌握折叠图形的性质是解题关键.11.∠B=∠C(或BE=CE或∠BAE=∠CAE)【解析】【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【详解】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE是公共边,∴当∠B=∠C时,△ABE≌△ACE(AAS);当BE=CE时,△ABE≌△ACE(SAS);当∠BAE=∠CAE时,△ABE≌△ACE(ASA).故答案为:∠B=∠C(或BE=CE或∠BAE=∠CAE).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.24 5【解析】【分析】10=,根据面积不变,得斜边上的高为16821102⨯⨯⨯,计算求解即可.【详解】10=,根据面积不变,得斜边上的高为16824 215102⨯⨯=⨯,故答案为:24 5.【点睛】本题考查了勾股定理,等面积法求三角形的高,解题的关键在于正确的计算.13.10【解析】【分析】根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【详解】解:∵DE是AB的垂直平分线,∴EA=EB,∵△BCE的周长为18,∴BC+CE+BE=BC+CE+AE=BC+AC=18,∵BC=8,∴AC=10,故答案为:10.【点睛】本题考查的是线段的垂直平分线的性质、三角形的周长计算,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.5 2【解析】【分析】利用勾股定理求出AB,再利用直角三角形斜边中线的性质求解即可.【详解】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=3,∴∠ADB=90°,∴AB5,∵AE=EB,∴1522DE AB ==,故答案为52.15.2【解析】如图,作DE 垂直于BC 的延长线,垂足为E ,可知BAC DCE ∠=∠,可证()ABC CED AAS ≌,有2BC DE ==,进而可知122BCDS BC DE =⨯⨯= .【详解】解:如图,作DE 垂直于BC 的延长线,垂足为E ∵90ACB BAC ∠+∠=︒,90ACB DCE ∠+∠=︒∴BAC DCE∠=∠在ABC 和CED 中∵90BAC DCE ABC CED AC CD ∠=∠⎧⎪∠==︒⎨⎪=⎩∴()ABC CED AAS ≌∴2BC DE ==∴122BCD S BC DE =⨯⨯= 故答案为:2.16.2或8【解析】根据题意分类讨论:当E 点在线段AB 垂直平分线左侧时和当E 点在线段AB 垂直平分线右侧时,根据翻折的性质得出5BC BC '==.根据垂直平分线得出90BFC '∠=︒,142BF AB ==,5FG BC ==.再在Rt BFC ' 中,利用勾股定理可求出FC '的长,从而求出'C G 的长,即点C '到边CD 的距离.【详解】分类讨论:①当E 点在线段AB 垂直平分线左侧时,如图,由翻折可知,5BC BC '==,∵FG 为线段AB 的垂直平分线,∴90BFC '∠=︒,142BF AB ==,5FG BC ==,∴在Rt BFC ' 中,3FC '===,∴532C G FG FC ''=-=-=.②当E 点在线段AB 垂直平分线右侧时,如图,同理可知5BC BC '==,90BFC '∠=︒,5FG BC ==,142BF AB ==∴在Rt BFC ' 中,3FC '===,∴538C G FG FC ''=+=+=.综上可知,点C '到边CD 的距离为2或8.故答案为:2或8.【点睛】本题考查翻折的性质,垂直平分线的性质,勾股定理.利用分类讨论的思想是解答本题的关键.17.16【解析】【分析】将正方形ABCD 沿着CD 翻折得到正方形''A B CD ,过点M 在正方形ABCD 内部作'MM BC ⊥,使'3cm MM =,连接QM ,过'M 作'''M N A B ⊥于点N ,此时''''AP PQ QM A P PQ PM A M PQ ++=++=+最小,运用勾股定理求解即可.【详解】如图,将正方形ABCD 沿着CD 翻折得到正方形''A B CD ,过点M 在正方形ABCD 内部作'MM BC ⊥,使'3cm MM =,连接QM ,过'M 作'''M N A B ⊥于点N ,则四边形''MM NB 是矩形,四边形'PQMM 是平行四边形,∴'''M N MB =,'PM QM =,''B N MM =,''90A NM ∠=︒,此时''''AP PQ QM A P PQ PM A M PQ ++=++=+最小,∵点M 是BC 中点,∴142CM BC ==cm ,∴''12M N MB ==cm ,''''5A N A B B N =-=cm ,在''Rt A M N △中,''13A M =cm ,∴''16A M PQ +=cm ,故答案为:16.【点睛】本题考查最短路径问题,考查了正方形的性质,矩形的性质,平行四边形的性质和判定,勾股定理,轴对称性质等,解题的关键是将立体图形中的最短距离转换为平面图形的两点之间线段长度进行计算.18.见解析【解析】【分析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则这个图形是轴对称图形,这条直线是对称轴,根据轴对称图形的含义,按照要求完成即可.【详解】【点睛】本题考查了轴对称图形,掌握轴对称图形的含义是本题的关键.19.(1)见解析;(2)见解析【解析】【分析】(1)由平行线的性质可得∠A=∠FDE ,再由已知即可证得结论;(2)由全等三角形的性质可得∠ABC=∠E ,由平行线的判定定理即可得到结论.(1)∵AC ∥DF∴∠A=∠FDE在△ABC 和△DEF 中AC DF A FDE AB DE =⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△DEF(SAS)(2)∵△ABC≌△DEF∴∠ABC=∠E∴BC∥EF【点睛】本题考查了全等三角形的判定与性质、平行线的判定与性质,掌握这两个判定与性质是关键.20.(1)见解析;(2)AC=3,AD=4 3【解析】【分析】(1)由题意可知以点B为圆心,适当长为半径画弧,交AB、BC于两点,然后再以这两个点为圆心,大于这两个点距离的一半为半径画弧,交于一点,连接点B与这个点,交AC 于点D,进而问题可求解;(2)过点D作DH⊥BC于点H,由勾股定理可得AC,然后根据角平分线的性质定理可得AD=DH,进而根据面积法可求解.(1)解:由题意可得如图所示:(2)解:过点D作DH⊥BC于点H,如(1)图:∵∠A=90°,BC=5,AB=4,∴由勾股定理得:3AC=,∵BD平分∠ABC,∴AD=DH,∴162ABCS AB AC=⋅=△,∵11622ABCADB BCD S S S AB AD BC DH =+=⋅+⋅= ,∴()162AB BC AD +⋅=,解得:43AD =;故答案为3,43.【点睛】本题主要考查勾股定理及角平分线的性质定理,熟练掌握勾股定理及角平分线的性质定理是解题的关键.21.(1)75°(2)证明见解析【解析】【分析】(1)由AB=AC 可得∠C=∠B=30°,可求得∠BAC ,再利用角的和差可求得∠DAC ;(2)由外角的性质得到∠ADC=75°,即可得到∠ADC=∠DAC ,从而有AC=DC ,即可得到结论.【详解】(1)∵AB=AC ,∠B=30°,∴∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC ﹣∠DAB=120°﹣45°=75°;(2)∵∠ADC=∠B+∠DAB=30°+45°=75°,∴∠ADC=∠DAC ,∴AC=DC ,∵AB=AC ,∴AB=CD .【点睛】考点:1.等腰三角形的性质;2.三角形的外角性质.22.2144m 【解析】【分析】本题要先把解四边形的问题转化成解三角形的问题,再用勾股定理解答.【详解】解:连接BD,A 90∠=︒ ,222BD AD AB 100∴=+=则2222BD CD 10057667626BC +=+===,因此CDB 90∠=︒,ADB CBD ABCD 1111S S S AD AB BD CD 682410144(2222=+=⋅+⋅=⨯⨯+⨯⨯= 四边形平方米).【点睛】此题考查勾股定理,解答此题的关键是解四边形的问题转化成运用勾股定理解直角三角形的问题再解答.23.(1)见解析(2)∠D =105°【解析】【分析】(1)直接根据SAS 证明三角形全等即可;(2)由△ABC ≌△BAD 可得,∠DAB=∠CBA=2∠2=50°,通过三角形内角和可得.(1)解:在△ABC 和△BAD 中=1=2=AC BD AB BA ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△BAD (SAS )(2)解:由(1)△ABC ≌△BAD 得,∠DAB=∠CBA∵∠2=∠3=25°∴∠DAB=∠CBA=2∠2=50°∴∠D=180°-∠DAB-∠2=105°【点睛】本题考查了三角形全等判定的证明,及性质的运用,解题的关键是熟练掌握三角形全等的判定方法.24.∠ACD=90°,理由:见解析【解析】【分析】在Rt△ABC中,由勾股定理求出AC的长,然后在△ACD中,根据勾股定理的逆定理即可判断△ACD的形状,进而求出∠ACD的度数.【详解】∠ACD=90°,理由:∵∠ABC=90°,AB=4厘米,BC=3厘米,∴在Rt△ABC中,由勾股定理得:,在△ACD中,∵AC2+CD2=52+122=169=132=AD2,∴△ACD是直角三角形,且∠ACD=90°.【点睛】此题考查了勾股定理和勾股定理的逆定理,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.25.(1)t=13,CP=5(2)t=7 4(3)48 5【解析】【分析】(1)先根据勾股定理得出AB的长,再根据CP把△ABC的面积分成相等的两部分,得出P为AB的中点,从而求出x的值和CP的长;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB,在RtΔPBC中运用勾股定理列出方程即可.(3)作点B关于AC的对称点B′,过点B′作AB的垂线段,交AC于点P,交AB于点Q,连接AB′,则垂线段B′Q即为所求的PB+PQ的最小值.(1)解:在直角三角形ACB中,由勾股定理得AB10=,∵CP把△ABC的面积分成相等的两部分,∴P为AB的中点,CP=15 2AB=.∴运动的路径长为AC+AP=8+5=13.运动的时间为13÷1=13(秒)所以t=13;CP=5.(2)解:△ABP为等腰三角形,点P只能在AC上且PA=PB,设CP=t,则AP=BP=8﹣t,在Rt△BCP中,BC2+CP2=BP2,即62+t2=(8﹣t)2,解得,t=7 4,∴当t=74时,△ABP为等腰三角形;(3)作点B关于AC的对称点B′,过点B′作AB的垂线段,交AC于点P,交AB于点Q,连接AB′,则垂线段B′Q即为所求的PB+PQ的最小值,∵S△ABB′=12×BB′×AC=12×12×8=48,S△ABB′=12×AB×B′Q,∴B′Q=485,即PB+PQ最小值为485.【点睛】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、直角三角形的性质等知识,解题的关键是学会构建方程,把问题转化为方程解决.26.(1)见解析,①2CE =,②2B C B P =,见解析;(2)10BP =或30【解析】【分析】(1)①以点A 为圆心,AB 为半径交CD 于点E ,利用勾股定理求出DE 的长即可;②根据平行线的性质和翻折的性质可证EP=CP ,BP=PE ,从而BP=PC ;(2)由△PEC 是直角三角形,当∠EPC=90°时,则四边形ABPE 是正方形,得PB=AB=10;当∠ECP=90°时,设BP=x ,则PC=x-6,在Rt △ECP 中,利用勾股定理列方程即可求解,当∠PEC=90°时,点P 在线段BC 上,不符合题意,舍去.(1)解:(1)①如图:以点A 为圆心,AB 为半径交CD 于点E ,∵AE=AB=10,AD=6,∠D=90°,∴22AE AD -22106-,∴CE=DC-DE=10-8=2;故答案为:2;②BC =2BP ,理由如下:∵将△ABP 沿直线AP 翻折至△AEP 的位置,∴∠APB =∠APE ,PE =BP ,∵CE ∥AP ,∴∠CEP =∠APE ,∠ECP =∠APB ,∴∠PEC =∠ECP ,∴EP=CP,∴BP=BC,∴BC=2BP;(2)(2)∵△PEC是直角三角形,当∠EPC=90°时,∵∠EPC=∠AEP=∠B=90°,且EP=BP,∴四边形ABPE是正方形,∴PB=AB=10;当∠ECP=90°时,由翻折知AE=AB =10,根据勾股定理得DE=8,∴EC=18,设BP=x,则PC=x﹣6,在Rt△ECP中,由勾股定理得:182+(x﹣6)2=x2,解得x=30,∴PB=30;当∠PEC=90°时,点P在线段BC上,不符合题意,舍去,综上:BP=10或30.。
苏科版八年级上册数学期中考试试题一、单选题1.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.等腰三角形的底角为50°,则这个等腰三角形的顶角为()A .50°B .80°C .100°D .50°或80°3.三角形的三边a ,b ,c 满足222+=a b c ,则此三角形是()A .锐角三角形B .等边三角形C .钝角三角形D .直角三角形4.下列说法正确的是()A .形状相同的两个三角形全等B .角不是轴对称图形C .全等的两个三角形一定成轴对称D .等腰三角形的底角必小于90︒5.下列各组数中,哪一组是勾股数()A .1,1,2B .6,8,10C .32,42,52D .7,12,156.如图,在Rt ABC △中,90C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,若4cm CD =,则点D 到AB 的距离DE 是()A .2cmB .3cmC .4cmD .5cm7.如图,ACE DBF ≌,若11cm AD =,3cm BC =,则AB 长为()A .8cmB .7cmC .4cmD .3cm8.如图,以ABC 的顶点A 为圆心,BC 的长为半径作弧;再以顶点C 为圆心,AB 的长为半径作弧,两弧交于点D ;连接AD ,CD ,则ABC CDA △△≌,理由是()A .SSSB .SASC .AASD .HL9.如图,等腰ABC 中,8AB AC ==,5BC =,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BEC △的周长为()A .12B .13C .14D .1510.如图,点D 为ABC 边AB 的中点,将ABC 沿经过点D 的直线折叠,使点A 刚好落在BC 边上的点F 处,若44B ∠=︒,则BDF ∠的度数为()A .86︒B .88︒C .90︒D .92︒二、填空题11.已知△ABC ≌△DEF ,∠A=30°,∠E=50°,则∠C=_____.12.一个等腰三角形的两边长分别是2cm 和4cm ,则第三边长为________cm .13.直角三角形的两直角边分别为6和8,则斜边是________.14.在Rt △ABC 中,D 是斜边AB 的中点,AD =10,则CD 的长是______.15.如图,已知ABC 中,90ACB ∠=︒,以ABC 的两边AC 、AB 为边向外作两个正方形,S 1、S 2分别表示这两个正方形的面积,若18S =,217S =,则BC =________.16.如图,将Rt ABC △绕直角顶点C 顺时针旋转,得到''A B C ,连结'AA .若''18AA B ∠=︒,则B Ð的度数为________.17.如图,在等腰ABC 中,120ACB ∠=︒,8AC BC ==,D 、E 为边AB 上两个动点,且6DE =,则CDE △周长的最小值是________.18.已知:如图,在△ABC 中,AB=AC ,DE 垂直平分AB ,交边AB 于点D ,交边AC 于点E ,BF 垂直平分CE ,交AC 于点F ,则∠A=____度.三、解答题19.如图,AB 、CD 相交于点O ,且O 是AB 的中点,AC ∥BD .求证:O 是CD 中点.20.如图,在ABC 中,AB AC CD ==,点D 在BC 上,且AD BD =,求BAC ∠的度数.21.在老旧小区的改造中,为了便于人们及时、安全收到网购物品,打算增设快递柜,计划在道路m 、n 两旁建立一个快递柜点P .使得快递柜点P 到两条道路m 、n 的距离相等,且快递柜点P 到A 、B 两个小区的距离也相等.请你利用直尺和圆规找出点P 的位置.(不写作法,保留作图痕迹)22.如图,ABC 是等边三角形,D 是BC 边上一点,以AD 为边向右作等边ADE ,连接CE .求证:(1)ABD ACE △≌△;(2)AB CE .23.(1)如图,四边形ABCD 是一块草坪,90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =,求这块草坪的面积;(2)若在这块草坪上修建一个小喷泉点O ,使得OA OB OC OD ===,请找出小喷泉O 点的位置,并说明理由.24.如图,在ABC 中,90C ∠=︒,点P 在边AC 上运动,点D 在边AB 上运动,PD 始终保持与PA 相等,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE .(1)判断DP 与DE 的位置关系,并说明理由:(2)若3AC =,4BC =,1PA =,求线段DE 的长.(3)若3AC =,4BC =,则PE 的最小值为.(直接写出结果)25.在 ABC 中,AB =AC ,D 是BC 的中点,以AC 为腰向外作等腰直角△ACE ,∠EAC =90°,连接BE ,交AD 于点F ,交AC 于点G .(1)若∠BAC =48°,求∠AEB 的度数;(2)求证:∠AEB =∠ACF ;(3)求证:EF 2+BF 2=2AC 2.26.如图,在ABC 中,90ACB ∠=︒,10cm AB =,6cm BC =,若点P 从点A 出发,以每秒1cm 的速度沿射线AC 运动,设运动时间为t 秒(0t >).沿着过点P的直线折叠,使点A与点B重合,请求出此时t的值.(1)把ABC(2)是否存在t值,使得ABP△为等腰三角形?若存在,直接写出结果;若不存在,请说明理由.沿着直线BP翻折,当t为何值时点C恰好落在直线AB上.(3)现把ABC参考答案1.B【解析】【分析】根据轴对称图形的概念对各选项分析判断,利用排除法求解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键.2.B【解析】【分析】根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【详解】解:∵三角形为等腰三角形,且底角为50°,∴顶角=180°﹣50°×2=80°.故选B .【点睛】本题考查等腰三角形的性质,三角形内角和定理,题目比较简单,属于基础题.3.D【解析】【分析】根据勾股定理逆定理,即可求解.【详解】解:∵三角形的三边a ,b ,c 满足222+=a b c ,∴此三角形是直角三角形.故选:D【点睛】本题主要考查了勾股定理逆定理,熟练掌握若三角形的两边的平方和等于第三边的平方,则该三角形是直角三角形是解题的关键.4.D【解析】【分析】对各个选项逐个判断即可.【详解】A 、大小与形状相同的两个三角形才全等,故此说法错误;B 、角是轴对称图形,故此说法错误;C 、全等的两个三角形不一定成轴对称,故此说法错误;D 、等腰三角形的底角必小于90゜,否则此三角形的内角和大于180゜,这是与三角形的内角和为180゜矛盾,故此说法正确.故选:D .【点睛】本题主要考查了全等三角形的概念,轴对称图形的识别,等腰三角形的角的性质,掌握这此基础知识是关键.5.B【解析】【分析】根据勾股数的定义逐一计算即可得出答案.【详解】解:A .∵222112+≠,∴1,1,2不是勾股数;B .∵2226810+=,∴6,8,10是勾股数;C .∵222324252+≠,∴32,42,52不是勾股数;D .∵22271215+≠,∴7,12,15不是勾股数;故选:B .【点睛】本题考查了勾股数,勾股数就是可以构成一个直角三角形三边的一组正整数,能熟记勾股数的意义是解此题的关键.6.C【解析】【分析】根据角平分线的性质得出DE=DC ,即可求出点D 到AB 的距离.【详解】解:∵ABC ∠的平分线BD 交AC 于点D ,90C ∠=︒,DE ⊥AB ,∴4cm DE CD ==,故选:C .【点睛】本题考查了角平分线的性质,解题关键是熟记角平分线的性质,熟练运用它求解.7.C【解析】【分析】根据全等三角形的对应边相等,得出AB =CD ,再用AD BC -的值除以2即可.【详解】解:∵ACE DBF ≌,∴AC =BD ,∴AC-BC =BD-BC ,即AB =CD ,∴113422AD BC AB --===cm ,故选:C .【点睛】本题考查了全等三角形的性质,解题关键是根据全等三角形的性质得出线段相等.8.A【解析】【分析】根据作图可知,AD=CB ,AB=CD ,再加上公共边,可用“边边边”判定全等.【详解】解:以ABC 的顶点A 为圆心,BC 的长为半径作弧;再以顶点C 为圆心,AB 的长为半径作弧,两弧交于点D ;可知AD=CB ,AB=CD ;因为AC=CA ,根据“边边边”可证ABC CDA △△≌;故选:A【点睛】本题考查了尺规作图和全等三角形的判定,解题关键是明确尺规作图的意义,熟记全等三角形判定定理.9.B【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE =BE ,然后求出△BEC 周长=AC +BC ,再根据等腰三角形两腰相等可得AC =AB ,代入数据计算即可得解.【详解】解:∵DE 是AB 的垂直平分线,∴AE =BE ,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选:B.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两腰相等的性质,熟记性质并准确识图是解题的关键.10.D【解析】【分析】先根据图形翻折不变性的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算即可求解.【详解】沿经过点D的直线折叠,使点A刚好落在BC边上的点F处,解:∵ABC∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=44°,∴∠BDF=180°−∠B−∠BFD=180°−44°−44°=92°.故选:D.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,三角形内角和定理,熟知折叠的性质是解答此题的关键.11.100°【解析】【详解】∵△ABC≌△DEF,∴∠B=∠E=50°,∵∠A+∠B+∠C=180°,∠A=30°,∴∠C=180°-20°-50°=100°,故答案为100°.12.4【解析】【分析】分成腰为2cm和腰为4cm两种情况,再结合三角形三边关系求解即可.【详解】解:当腰为2cm时,三角形的三边分别为2cm、2cm、4cm,因为2+2=4,不能构成三角形,舍去;当腰为4cm时,三角形的三边分别为2cm、4cm、4cm,因为2+4>4,能构成三角形,故答案为:4.【点睛】本题考查了等腰三角形的概念和三角形三边关系,解题关键是要判断是否能够构成三角形.13.10【解析】【分析】利用勾股定理即可得.【详解】=,10故答案为:10.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.14.10【解析】【分析】根据斜边中线等于斜边一半,直接求解即可.【详解】解:∵∠ACB =90°,D 为斜边AB 的中点,∴AD =BD =10,∴CD =AD =10.故答案为:10.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.15.3【解析】【分析】根据勾股定理、正方形的面积即可求得BC .【详解】由题意得:218S AC ==,2217S AB ==由勾股定理得:3BC ===故答案为:3【点睛】本题考查了勾股定理、正方形的面积,由正方形的面积转化为三角形的边的平方是关键.16.63°【解析】【分析】由旋转的性质可得AC =A'C ,∠ACB =∠ACA'=90°,由等腰直角三角形的性质可得∠CAA'=45°,即可求解.【详解】解:∵将Rt △ABC 绕直角顶点C 顺时针旋转,得到△A'B'C',∴AC =A'C ,∠ACB =∠ACA'=90°,∠CB'A'=∠B ,∴∠C A'A =45°,∵''18AA B ∠=︒,'1''''47852CA B CA AA B A -=︒-︒=︒∠=∠∠,2''''9090637A B C CA B ︒-︒=︒∠=︒-∠=,∴∠B =63°,故答案为:63°【点睛】本题考查了旋转的性质和等腰三角形的性质,掌握旋转前、后的图形全等是解题的关键.17.16【解析】【分析】作CH ∥AB ,点E 关于直线CH 对称点为F ,连接CF ,作CG ⊥AB 于G ,当F 、C 、D 在同一直线上时,周长最小,此时可证CD=CE ,根据勾股定理可求CD 长,即可求出周长最小值.【详解】解:作CH ∥AB ,点E 关于直线CH 对称点为F ,连接CF ,作CG ⊥AB 于G ,由对称可知,CD+CE =CD+CF ,当F 、C 、D 在同一直线上时,它们的和最小,即CDE △周长的最小.∵CH ∥AB ,CG ⊥AB ,∴∠HCG =90°,∠ECG+∠HCE =90°,∠FCH+∠DCG =90°,由对称可知,∠HCF =∠HCE ,∴∠DCG =∠GCE ,∵CG =GC ,∠EGC =∠DGC =90°,∴△EGC ≌△DGC ,∴CD=CE ,∴116322GD DE ==⨯=,∵120ACB ∠=︒,8AC BC ==,∴30B ∠=︒,142GC BC ==,∵5DC ==,CDE △周长的最小值为5+5+6=16.故答案为:16.【点睛】本题考查了等腰三角形的性质,勾股定理和最短路径问题,解题关键是恰当作轴对称,确定周长最小时,三角形为等腰三角形.18.36.【解析】【分析】连结BE,根据线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质可得5∠A=180°,即可得出答案.【详解】连结BE.∵DE垂直平分AB,∴∠ABE=∠A.∵BF垂直平分AC,∴∠BEF=∠C.∵∠BEC=∠ABE+∠A,∴∠C=2∠A.∵AB=AC,∴∠C=∠ABC=2∠A,∴5∠A=180°,解得:∠A=36°.故答案为:36.【点睛】此题考查了线段垂直平分线的性质,等腰三角形性质,三角形内角和定理和三角形外角的性质的应用,解题的关键是注意数形结合思想的应用,注意等量代换思想的应用.19.见解析【解析】【分析】根据全等三角形的判定定理ASA 证得△ACO ≌△BDO ,然后由全等三角形的对应边相等即可证得结论.【详解】证明:因为AC ∥BD ,所以∠A =∠B ,因为O 是AB 的中点,所以OA =OB .在△AOC 和△BOD 中,A B OA OB AOC BOD ∠=∠⎧⎪=⎨⎪∠=∠⎩所以△AOC ≌△BOD (ASA ).所以OC =OD ,即O 是CD 中点.20.∠BAC =108°.【解析】利用AB =AC ,可得∠B 和∠C 的关系,利用AD =BD ,可求得∠CAD =∠CDA 及其与∠B 的关系,在△ABC 中利用内角和定理可求得∠B ,进一步求得∠ABC ,得到结果.【详解】解:∵AB =AC ,∴∠B =∠C ,∵BD =AD ,∴∠B=∠DAB,∵AC=DC,∴∠DAC=∠ADC=2∠B,∴∠BAC=∠BAD+∠DAC=∠B+2∠B=3∠B,又∠B+∠C+∠BAC=180°,∴5∠B=180°,∴∠B=36°,∠C=36°,∠BAC=108°.21.见解析【解析】因为P到两条道路的距离相等,且使PM=PN,所以P应是∠O的平分线和AB的垂直平分线的交点.【详解】解:作图如图所示.理由是:因为P是∠O的平分线和AB的垂直平分线的交点,所以P到∠O的两路m和n的距离相等,P到A、B的距离相等,所以P就是所求.【点睛】此题主要考查了角平分线的作法和线段垂直平分线的作法,熟练利用线段的垂直平分线和角的平分线的性质是解决问题的关键.22.(1)见解析;(2)见解析【解析】【分析】(1)由三角形ADE 与三角形ABC 都为等边三角形,得到两对边相等,一对角相等为60°,利用等式的性质得到夹角相等,利用SAS 即可得证;(2)利用全等三角形的对应边相等得到∠ACE=∠B=60°,再由∠BAC=60°,利用内错角相等两直线平行即可得证.【详解】证明:(1)∵△ADE 与△ABC 都是等边三角形,∴AC=AB ,AE=AD ,∠DAE=∠BAC=60°,∴∠DAE-∠CAD=∠BAC-∠CAD ,即∠CAE=∠BAD ,在△CAE 和△BAD 中,AC AB CAE BAD AE AD ⎧⎪∠∠⎨⎪⎩===,∴ABD ACE △≌△(SAS );(2)∵△CAE ≌△BAD ,∴∠ACE=∠B=60°,∴∠ACE=∠BAC=60°,∴AB CE .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(1)234m 2.(2)见解析【解析】【分析】(1)连接AC ,先根据勾股定理求出AC 的长,再求出AD 的长,由S 四边形ABCD =S △ABC+S △ADC 即可得出结论.(2)作线段AB 的垂直平分线MN 交AC 于点O ,根据直角三角形斜边上的中线等于斜边的一半可得OA OB OC OD ===,从而可得结论.【详解】解:(1)连接AC ,如图:∵∠B =90°,AB =24m ,BC =7m ,∴AC 2=AB 2+BC 2=242+72=625,∴AC =25(m ).又∵CD =15m ,AD =20m ,152+202=252,即AD 2+DC 2=AC 2,∴△ACD 是直角三角形,∴S 四边形ABCD =S △ABC+S △ADC =1122AB BC AD DC⋅⋅+⋅⋅=11247201522⨯⨯+⨯⨯=234(m 2).答:这块四边形草坪的面积是234m 2.(2)如图,理由:由作图得,OA=OB ,AE=BE ,MN ⊥AB ,∵CB ⊥AB∴MN//BC∴1AO AE OC BE==∴AO=CO∴AO=OB=OC∴点O 为AC 的中点由(1)知△ACD 是直角三角形∴OD=AO∴OA OB OC OD===【点睛】本题考查的是勾股定理的应用,熟知勾股定理的运用是解答此题的关键.24.(1)DP ⊥DE ,理由见解析;(2)198;(3)125【解析】(1)由题意可得∠CPD=2∠A ,∠CED=2∠B ,而∠A+∠B=90゜,故可得∠CPD+∠CED=180゜,从而由四边形的内角和知DP 与DE 是垂直关系;(2)连接PE ,设DE=x ,则可得BE=x ,CE=4-x ,又PA=PD=1,故CP=2,分别在Rt △PCE 和Rt △PDE 中,用勾股定理建立关于x 的方程,解方程即可;(3)连接PE 、CD ,取PE 的中点O ,分别连接OC 、OD ,则可得12OC OD PE ==,由OC+OD≥CD ,当CD 最短时,OC+OD 即PE 最小,此时CD 垂直AB 时最小,从而由面积相等即可求得CD 的最小值,从而求得PE 的最小值.【详解】(1)DP ⊥DE ,理由如下:∵PD=PA∴∠A=∠PDA∴∠CPD=2∠A∵EF 垂直平分线段BD∴BE=DE∴∠EDB=∠B∴∠CED=2∠B∵∠ACB=90゜∴∠A+∠B=90゜∴∠CPD+∠CED=2(∠A+∠B)=2×90゜=180゜∵四边形的内角和为360゜∴∠PDE=360゜-(∠CPD+∠CED)-∠ACB=90゜∴DP ⊥DE(2)如图,连接PE设DE=x ,则可得BE=x ,CE=4-x∵PA=PD=1∴CP=2在Rt △PCE 和Rt △PDE 中,由勾股定理得:222222(4)PE PC CE x =+=+-,222221PE PD DE x =+=+∴222212(4)x x +=+-解方程得:19x 8=即DE 的长为198(3)如图,连接PE 、CD ,取PE 的中点O ,分别连接OC 、OD ∵∠ACB=∠PDE=90゜,OC 、OD 分别是两个直角三角形的斜边PE 上的中线∴12OC OD PE==∴OC+OD=PE∵OC+OD≥CD∴当CD 最短时,OC+OD=PE 最小当CD 垂直AB 时,CD 最小∵1122··AC BC AB CD=由勾股定理得:2222AB AC BC 345+=+=∴341255AC BCCDAB⨯===即PE的最小值为12 5故答案为:12 5【点睛】本题考查了等腰三角形的性质,勾股定理,直角三角形斜边上的中线性质,垂线段最短等知识,用到了方程思想来求线段的长,把求PE的最小值问题转化为求OC+OD的最小值问题是本题(3)的关键与难点.25.(1)21°;(2)见详解;(3)见详解【解析】【分析】(1)根据等腰直角三角形的旋转得出∠ABE=∠AEB,求出∠BAE,根据三角形内角和定理求出即可;(2)根据等腰三角形的性质得出∠BAF=∠CAF,根据SAS推出△BAF≌△CAF,根据全等得出∠ABF=∠ACF,即可得出答案;(3)根据全等得出BF=CF,求出∠CFG=∠EAG=90°,根据勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2=2AC2,即可得出答案.【详解】(1)解:∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAC=48°,∠EAC=90°,∴∠BAE=48°+90°=138°,∴∠AEB=(180°−138°)÷2=21°;(2)证明:∵AB=AC,D是BC的中点,∴∠BAF=∠CAF.在△BAF 和△CAF 中,AF =AF ,∠BAF =∠CAF ,AB =AC ,∴△BAF ≌△CAF (SAS ),∴∠ABF =∠ACF ,∵∠ABE =∠AEB ,∴∠AEB =∠ACF ;(3)证明:∵△BAF ≌△CAF ,∴BF =CF ,∵∠AEB =∠ACF ,∠AGE =∠FGC ,∴∠CFG =∠EAG =90°,∴EF 2+BF 2=EF 2+CF 2=EC 2,∵△ACE 是等腰直角三角形,∴∠CAE =90°,AC =AE ,∴EC 2=AC 2+AE 2=2AC 2,即EF 2+BF 2=2AC 2.26.(1)25s 4t =;(2)t 的值为10s 或25s 4或16s;(3)5s 或20s 【分析】(1)根据题意得,点P 在AB 的垂直平分线与AC 的交点处点A 与点B 重合,设AP=x ,则BP=x ,CP=8-x ,根据勾股定理列出方程并求解即可;(2)分AB=AP ,AP=BP ,AB=BP 犬可能;(3)分点P 在AC 上和在AC 的延长线上两种情况结合勾股定理求出萨赫毅然线段长即可解决问题.【详解】解:(1)在Rt ABC ∆中,90ACB ∠=︒,10cm AB =,6cm BC =,由勾股定理得,222AB AC BC =+∴8c .m AC ===(1)如图,当点P 为边AB 的垂直平分线与AC 边的交点处点A 与点B 重合,设AP x =,则8CP x =-,BP x =在Rt BCP ∆中,222BP PC BC =+∴222(8)6x x =-+解得,25.4x =即:254AP =∴25251s44t =÷=(2)存在由题意知:AP t=当AB AP =时,10t =当AP BP =时,由(1)知,25s4t =当AB BP=∴22816AP AC ==⨯=∴16t =综上,t 的值为10s 或25s 4或16s ;(3)①当点P 在AC 上时,如图,由题意得,1116,,90BC BC CP C P AC P P AC ===∠=∠=︒∴1111064cm,90AC AB BC BC P =-=-=∠=︒设AP x =,则18PC PC AC AP x ==-=-在1APC Rt ∆中,2221l AC PC AP +=∴2224(8)x x +-=∴5x =,即5cmAP =∴515st =÷=②如图,当点P 在AC 的延长线上时,由折叠得,222,6cm,90PC PC BC BC BC P BCP ===∠=∠=︒设2PC PC x ==,则8AP AC CP x =+=+,2210616AC AB BC =+=+=在2Rt APC ∆中,22222AC C P AP +=∴2216(8)x x +=+∴12x =,即cm.12PC =又8cmAC =∴20cmAP AC PC =+=t=÷∴201=20s综上,t的值为5s或20s。
八年级数学上学期期中试题苏科版(2)word版本⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯_⋯⋯_卷_⋯__⋯__⋯_⋯_号答⋯试考⋯⋯⋯要⋯⋯⋯⋯⋯⋯不⋯⋯⋯⋯内⋯名⋯⋯姓⋯⋯线⋯⋯⋯⋯⋯封⋯装⋯⋯级⋯密⋯班⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯泰州市 2017~2018 学年度第一学期期中考试八年级数学试题(考: 120 分,分150 分)成注意 : 将全部目的答案填到答上, 答在卷上无效。
一、:(本大共 6 小,每小 3 分,共 18 分)1.以下案中不是称形的是(▲)A B C D2.在平面直角坐系中,点P(3,-4)对于原点的称点是(▲ )A .( 3,4)B.( -3 ,-4 )C.( -4 , 3)D.( -3 , 4)3.等腰三角形的两分4cm和 7cm,周(▲ )A. 15cm B. 18cm C .15cm 或 18cmD. 15cm或 11cm4.如,已知AB∥CF, E DF的中点,若 AB=8㎝, CF=5㎝, BD(▲).A.2㎝B. 3 ㎝C.4㎝D. 1 ㎝AEFDB C(第6)(第 4)(第 5 )5.如,在Rt⊿ABC中,∠B=90°,ED是AC的垂直均分,交AC于点D,交BC于点E.已知∠ BAE=10°,∠ C的度数(▲).A. 40°B.20°C.50°D.10°6.如,Rt△ABC,∠ACB=90°,AC=3,BC=4,将AC沿CE翻折,使点A落在 AB上的点D ;再将BC沿 CF翻折,使点 B 落在 CD的延上的点B′,两条折痕与斜AB 分交于点E、 F,段 B′F 的(▲)A. B. C. D.二、填空:(本大共10 小,每小 3 分,共 30 分)7. 16 的平方根是 ___▲ ___.8.点C到x轴的距离为1,到y轴的距离为3,且在第二象限,则C点坐标是__▲___.9.如图,AB=AC,要使△ABE≌△ACD,应增添的条件是▲.(增添一个条件即可)CEADB(第 9题)(第 11 题)10.泰州创立文明城市时期,市里公交站台上增设了图书漂流窗,让图书触手可及,“悦读”更方便,让整座城市书香四溢,此次创立初步预计投入图书31500 册.请将数31500精准到1000 的结果是_▲ __.11.如图为 6 个边长相等的正方形的组合图形,则∠1+∠2+∠ 3=▲°.12.已知a、b、c是△ABC的三边长,且知足关系,则△ABC 的形状为▲.13.如图,OC均分∠AOB,过OC上一点P作PD⊥OA于点D,PD=2,则P点到OB的距离是__▲ _.A北(第 13 题)(第 14 题)14.如图,这是海陵区地图的一部分,分别以正东、正北方向为x 轴、 y 轴的正方向成立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图以下描绘海陵学校的地点.甲:海陵学校处的坐标是(0.2 , 0).乙:海陵学校处在海陵区某地 A 处南偏西45°方向,相距km.则海陵区某地 A 处的坐标是____▲___.15.如图,已知等边△ABC中,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点 B 落在点 Bˊ处, DBˊ、 EBˊ分别交边 AC于点 F、G,若∠ ADF=80o,则∠ GEC的度数为▲.ADFGB'B EC(第 15 题)(第 16 题)16.如图, P 为∠ AOB内必定点,∠ AOB=45°,M、N分别是射线 OA、OB上随意一点,当△PMN 周长的最小值为 10 时,则、两点间的距离为▲ .O P三、解答题 ( 本大题共 10 小题,共102 分)17.(此题 10 分,每题 5 分)求以下各式中的(1)4 2= 81;(2)(x + 1) 3-8= 0.x18.(此题8 分,每题 4 分)( 1)解不等式组:( 2)先化简,再求值:( x- 2)( x+ 2) -x( x- 3) ,此中x为 9 的算术平方根.19. (此题 8 分)如图,校园有两条路OA、OB,在交错口邻近有两块宣传牌C、 D,学校准备在这里安装一盏路灯,要求灯柱的地点P 离两块宣传牌同样远,而且到两条路的距离也同样远,请你用直尺和圆规画出灯柱的地点点P.(不写作图步骤,保存作图印迹)20. (此题 10 分)在平面直角坐标系xoy 中,点 A、 B、C 的坐标分别为(-1 , 0)、( -2, 3)、( -3 , 1).( 1)作出△ABC对于x轴对称的△A1B1C1,并写出B1、C1两点的坐标: B1:, C1:.(2)△ABC的面积 S△ABC=.(3)若D点在y轴上运动,求CD+DA的最小值.21.(此题10 分)如图,MS⊥ PS, MN⊥ SN, PQ⊥ SN,垂足分别为S、N 、Q,且 MS=PS.求证: MN=QS.第22题第21题22.(此题 10 分)如图,有一块四边形花园ABCD,∠ ADC=90°, AD=4m,AB=13m,BC=12m,DC=3m,求该花园的面积.23.(此题10 分)如图,把长方形纸片ABCD沿 EF折叠后,使得点 D 与点 B 重合,点C 落在点 C′的地点上.(1)折叠后, DC的对应线段是, CF的对应线段是;(2)若∠ 1=50°,求∠ 2、∠ 3 的度数;(3)若 CD=4, AD=6,求 CF的长度.第 23题24.(此题 10 分)如图,△ABC中,AD是△ABC的边BC上的高,E、F分别是AB、AC的中点, AC=13、 AB=20、BC=21.(1)求四边形AEDF的周长;(2)求AD的长度 .第24题25. (此题 12 分)如图 1,在平面直角坐标系中,点A、点 B 的坐标分别为(4,0)、( 0,3) .( 1)求AB的长度 .(2) 如图 2,若以AB为边在第一象限内作正方形ABCD,求点 C的坐标.(3)在 x 轴上能否存一点 P,使得⊿ ABP是等腰三角形?若存在,直接写出点 P 的坐标;若不y y 存在,请说明原因 .CFDB DB DO A xO A x图 1题图 2第 2526.(此题 14 分)如图1,在△中,∠=90°,= ,均分∠.ABC BAC AB AC BD ABC( 1)延伸BA到M,使AM=AD,连结CM,求∠ACM的度数.( 2)如图 2,若CE⊥BD于E,则BD与EC存在如何的数目关系?请说明原因.( 2)如图 3,点P是射线BA上A点右侧一动点,以CP为斜边作等腰直角△CPF,此中∠F=90°,点 Q为∠ FCP与∠ CPF的角均分线的交点.当点P运动时,点 Q能否必定在射线上?若在,请证明;若不在,请说明原因.BDC C CFD D EDQB MB B A PA A图 1图 2图 3第26题泰州市海陵学校2017~ 2018 学年度第一学期期中考试八年级数学参照答案一、选择题(本大题共有 6 小题,每题 3 分,合计18 分)1. B2.D3.C4. B5.A6. C二、填空题(本大题共有10 小题,每题 3 分,合计30 分)7.8. (-3 ,1)9.AE=AD( 答案不独一 )10.11. 13512. 等腰直角三角形 13.214.(1.2,1)15. 40° 16.三、解答题(本大题共有10 小题,合计 102 分)17、(此题10 分,每题 5 分)( 1)(2) x=118.(此题8 分,每题 4 分) (1) x>3(2) 519.(此题 8 分)作图略20.(此题10 分)( 1)作对称三角形略,B1:(-2,-3),C1:(-3,-1).(3分)(2)S = 2.5.(4 分)( 3)(3 分)△ ABC21.(此题10 分)证△MSN≌△SPQ,可得MN=QS.222.(此题10 分) 24m23.(此题10 分)( 1)BC′FC′( 2 分) (2) ∠ 2=50°∠ 3=80°( 4 分)( 3)CF=(4分 )24.(此题 10 分) (1) 33(2) 1225. (此题 12 分) (1) 5(2)(3 ,7)(3)( -1 ,0)、( -4 ,0)、( 9, 0)、(26.(此题14 分)( 1) 22.5 °(4分)(2)延伸 CE交 BA延伸线于点 F,证△ABD≌△ACF,得 BD=CF,再证 CE=EF,进而有 BD=2CE (详细过程略)( 5 分)(3)(详细过程略)点Q必定在射线BD上 . 如图,过点 Q作 QM⊥ BC于 M,作 QN⊥ BP 于 N. 由等腰直角△CPF和 Q是角均分的交点,易得∠ PQC=135°, CQ=QP,又由∠ ABC=45°可得∠ MQN=135°,进而得∠ MQC=∠ NQP,易证△CQM≌△PQN,因此有MQ=NQ,可得点Q必定在射线BD上 . ( 5 分)。
第4题图江苏省江阴市华士片2016-2017学年八年级数学上学期期中试题(满分:100分,考试时间:120分钟)一、选择题:(本大题共10小题,每题3分,共30分)1.下列图形是轴对称图形的有 ( )A.1个B.2个C.3个D.4个2.已知等腰三角形的两边长分别是3与6,那么它的周长等于 ( )A . 12B . 12或15C . 15D . 15或183.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是 ( ) A .a:b:c =4:5:6 B .b 2=a 2-c 2C .∠A =∠C -∠BD .a =3,b =4,c =54.如图,已知A ,D ,C ,F 在同一直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件是 ( ) A .∠BCA =∠FB .∠B =∠EC .BC ∥EFD .∠A =∠EDF5.如图,△ABC 中,AB=AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是 ( ) A.1对 B.2对 C.3对 D.4对6.如图,直线a ∥b ,点A 在直线b 上,以点A 为圆心,适当长为半径画弧,分别交直线a 、b 于C 、B 两点,连接AC 、BC ,若∠ABC=54°,则∠1的大小为( )A .36°B .54°C .72° D.63°7.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等第5题图第6题图DCA EB第9题图第10题图三角形的中线相等;③如果直角三角形的两边长分别为3、4,那么斜边长为5;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有 ( ) A.1个 B.2个 C.3个 D.4个8.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是196,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不正确的是 ( )A. x +y =14B.x -y =2C. xy =48D.x +y =144.9.如图,BD 是∠ABC 平分线,DE ⊥AB 于E ,AB =36cm,BC =24cm,S △ABC =120cm 2,DE 长是( ) A. 4cmB. 4.8cm C .5cm D .无法确定10.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是 ( ) A. 4个 B. 5个 C .8个 D .9个二、填空:(本大题共8小题,每空2分,共16分)11.等腰三角形有一个角为70°,则底角的度数为 .12.已知△ABC ≌△DEF ,在△ABC 中,∠A ∶∠B ∶∠C=4∶3∶2,,则∠E= .13.如图,在Rt△ABC 中,∠BAC=90°,过顶点A 的直线DE∥BC,∠ABC,∠ACB 的平分线分别交DE 于点E 、D ,若AC=9, AB=12,则DE 的长为 .14.如图,△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40cm ,24cm ,则AB = cm .15.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC , 则∠ABC= °.第13题图第14题图第15题图 第8题图16.如图,在△ABC 中,AB=AC=7,BC=5,AF⊥BC 于F ,BE ⊥AC 于E ,D 是AB 的中点,则△DEF 的周长是 .17.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为 .18.如图,Rt△ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上运动,以AD 为折痕△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若∠B′ED =90°,则BD 的长是 .三、认真答一答:(本大题共8小题,共54分)19.(本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形与图中三角形成轴对称,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)20.(本题6分)如图,已知:△ABC 中,AB=AC ,M 是BC 的中点,D 、E 分别是AB 、AC 边上的点,且AD=AE . 求证:MD=ME .EDCBA第16题图第17题图EPCBA第18题图21. (本题6分)如图1,有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形.再经过一次“生长”后,变成图3;“生长”10次后,如果继续“生长”下去,它将变得更加“枝繁叶茂”. 随着不断地“生长”,形成的图形中所有正方形的面积和也随之变化。
若生长n 次后,变成的图中所有正方形的面积用S n 表示,求回答:(1)S 0= ,S 1= ,S 2= ,S 3= ; (2)S 0+S 1+S 2+…+S 10= .22. (本题6分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)△ACE ≌△BCD ;(2)222DE DB AD =+.23. (本题8分)如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P 运动到点C时,两个点都停止运动.求运动时间t为多少秒时,△PQB成为以PQ为腰的等腰三角形?24. (本题6分)(1)如图1,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,探索与证明:∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕点A逆时针方向旋转一个角度到如图2的位置,并使∠ADB=120°,∠AEC =120°.通过观察或测量,请直接写出线段BD ,CE 与DE 之间满足的数量关系.25. (本题8分)如图,四边形ABCD 是长方形(长方形对边相等且平行,四个角为直角), (1)用直尺和圆规在边CD 上找一个点P ,使△ADP 沿着直线AP 翻折后D 点正好落在BC 边上的Q 点(不写作法,保留作图痕迹).连结AP,AQ,PQ(2)在(1)中作的新图形中,已知AB=5,AD=13,求CP 的长.图2mEDCBA 图1mEDA26.(本题8分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.2016-2017学年第一学期期中考试初二数学参考答案(总分100分 时间120分钟)一.选择题(本大题共10小题,每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCABDCBDAD二.填空题(本大题共8小题,每题2分,共16分)11.70°或55°; 12.60°; 13. 21; 14. 16 ; 15.45; 16.9.5; 17. 5 ; 18. 5.三、解答题(本大题共9小题,共54分.解答时应写出文字说明、证明过程或演算步骤.) 19.(每张图2分,共6分)20.证△ADM ≌△AEM(SAS) 6分21.(1)S 0= 1 ,S 1= 2 ,S 2= 3 ,S 3= 4 ;4分 (2)S 0+S 1+S 2+…+S 10= 66 .2分22.(1)SAS 3分 (2)证∠EAD=90°得222DE AE AD =+ 3分 23.47,38 4分+4分 24.(1)BD+CE=DE 1分 证△ABD ≌△CEA 3分 (2)BD+DE=CE 2分25.(1)画图4分 (2)CP=2.4 4分 26. (1)如图作图,2分+2分(2)如图3 ①、②作△ABC .①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.2分+2分。