选修3-1-恒定磁场-基础知识考核
- 格式:doc
- 大小:663.50 KB
- 文档页数:4
《磁场》检测题一、单选题1.如图所示,导线框中电流为I ,导线框垂直于磁场放置,磁感应强度为B ,AB 与CD 相距为d ,则MN 所受安培力大小为( )A .F =BIdB .F =sin BIdC .F =BId sin θD .F =BId cos θ2.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子(正电子质量和电量与电子大小相等,电性相反)分别以相同速度沿与x 轴成60°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )A .1∶2B .2∶1C .1D .1∶13.如图,一质子以速度v 穿过互相垂直的电场和磁场区域而没有发生偏转则A .若电子以相同速度v 射入该区域,将会发生偏转B .若质子的速度v ′<v ,它将向下偏转而做类似的平抛运动C .若质子的速度v ′>v ,它将向上偏转,其运动轨迹是圆弧线D .无论何种带电粒子(不计重力),只要都以速度v 射入都不会发生偏转4.如图,半径为R 的圆形区域内有垂直于纸面的匀强磁场,半径OC 与OB 夹角为60°.一电子以速率v 从A 点沿直径AB 方向射入磁场,从C 点射出。
电子质量为m 、电荷量为e ,不计电子重力,下列说法正确的是( )A .磁场方向垂直纸面向里 B.磁感应强度大小为3eRC.电子在磁场中的运动时间为3RvD .若电子速率变为3v,仍要从C 点射出,磁感应强度大小应变为原来的3倍5.如图所示,两根长直通电导线互相平行,电流方向相同。
它们的截面处于一个等边三角形ABC 的A 和B 处,且A 、B 两点处于同一水平面上。
两通电电线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度的大小和方向是( )A .B 竖直向上 B .B 水平向右 C水平向右 D竖直向上 6.如图所示,总长为L 、通有电流I 的导线,垂直磁场方向置于宽度为x 、磁感应强度为B 的匀强磁场中,则导线所受安培力大小为( )A .BILB .BIxC .BI(L -x)D .BI(L +x)7.在玻璃皿的中心放一个圆柱形电极,紧贴边缘内壁放一个圆环形电极,并把它们与电池的两极相连,然后在玻璃皿中放入导电液体,例如盐水.如果把玻璃皿放在磁场中,如图所示,通过所学的知识可知,当接通电源后从上向下看( )A .液体将顺时针旋转B .液体将逆时针旋转C .若仅调换N 、S 极位置,液体旋转方向不变D .若仅调换电源正、负极位置,液体旋转方向不变8.M 点是位于圆形匀强磁场边界的一个粒子源,可以沿纸面向磁场内各个方向射出带电荷量为q 、质量为m 、速度大小相同的粒子,如图所示。
高中物理学习材料金戈铁骑整理制作第三章磁场综合测试题答案及详解本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,时间90分钟.第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.答案:ABD解析:只有当通电导线和磁场平行时,才不受安培力的作用,而A、D中导线均与磁场垂直,B中导线与磁场方向夹角为60°,因此受安培力的作用,故正确选项为A、B、D.2.答案:D解析:因为带电小球静止,所以不受磁场力的作用.3.答案:A解析:用双线绕成的螺丝管,双线中的电流刚好相反,其在周围空间产生的磁场相互抵消,所以螺线管内部磁感应强度为零.4.答案:C解析:通电后,弹簧的每一个圈都相当一个环形电流,且各线圈都通以相同方向的电流,根据同向电流相互吸引,弹簧收缩,下端脱离水银面,使电路断开,电路断开后,弹簧中的电流消失,磁场作用失去,弹簧在弹力和自身重力作用下下落,于是电路又接通,弹簧又收缩……如此周而复始,形成弹簧上下跳动.正确答案为C.5.答案:A解析:离导线越远磁感应强度越小,电子的轨道半径越大.6.答案:A解析:由于m甲∶m乙=4∶1,q甲∶q乙=2∶1,v甲∶v乙=1∶1,故R甲∶R乙=2∶1.由于带电粒子只受洛伦兹力的作用,而洛伦兹力充当粒子做圆周运动的向心力,由左手定则判断,甲、乙所受洛伦兹力方向相反,则可判断,A选项正确.7.答案:ABD解析:当磁场方向垂直斜面向下时,据平衡条件知在沿斜面方向上mg sin30°=BIL所以B=mg2IL,因此选项A正确;当磁场方向竖直向下时,由左手定则知安培力应水平向左,直导体受力如图所示.由平衡条件知在沿斜面方向上mg sin30°=BIL cos30°所以B =mg3IL,故选项B 正确;若磁感应强度垂直斜面向上,由左手定则知安培力应沿斜面向下,这样直导体不可能静止在斜面上,所以选项C 不正确;若B 水平向左,由左手定则知,安培力方向应竖直向上,此时若满足BIL =mg ,即B =mgIL,则直导体仍可静止在斜面上,所以D 选项正确.8.答案:ACD解析:各粒子做圆周运动的周期T =2πmqB,根据粒子的比荷大小可知:T 1=T 2<T 3,故A正确;由于r 1>r 2>r 3结合r =m vqB及粒子比荷关系可知v 1>v 2>v 3,故B 错误;粒子运动的向心加速度a =q v Bm,结合各粒子的比荷关系及v 1>v 2>v 3可得:a 1>a 2>a 3,故C 正确;由图可知,粒子运动到MN 时所对应的圆心角的大小关系为θ1<θ2<θ3,而T 1=T 2,因此t 1<t 2,由T 2<T 3,且θ2<θ3,可知t 2<t 3,故D 正确.9.答案:ABD解析:带负电小球由槽口下滑到P 点的过程中,磁场力不做功,支持力不做功,只有重力做功.小球在P 点受磁场力方向竖直向上.根据机械能守恒mgR =12m v 2v =2gR在P 点N +Bq v -mg =m v 2RN =3mg -qB 2gRM 对地面压力N ′=Mg +N =(M +3m )g -qB 2gR 当qB 2gR =2mg 时N ′=(M +m )g 当qB 2gR =3mg 时N ′=Mg 选项A 、B 、D 正确. 10.答案:CD解析:在A 图中刚进入复合场时,带电小球受到方向向左的电场力、向右的洛伦兹力、竖直向下的重力,在重力的作用下,小球的速度要变大,洛伦兹力也会变大,所以水平方向受力不可能总是平衡,A 选项错误;B 图中小球要受到向下的重力、向上的电场力、向外的洛伦兹力,小球要向外偏转,不可能沿直线通过复合场,B 选项错误;C 图中小球受到向下的重力、向右的洛伦兹力、沿电场方向的电场力,若三力的合力恰好为零,则小球将沿直线匀速通过复合场,C 正确;D 图中小球只受到竖直向下的重力和竖直向上的电场力可以沿直线通过复合场,D 正确.第Ⅱ卷(非选择题 共60分)二、填空题(共4小题,每小题5分,共20分.把答案直接填在横线上)11.答案:由安培定则判定答案如下图所示.12.答案:竖直向下 垂直纸面向里 E 2ghgB2πEgB +32h g 22gh π13.答案:0.5T解析:金属杆偏离竖直方向后受力如图所示,杆受重力mg ,绳子拉力F 和安培力F 安的作用,由平衡条件可得:F sin30°=BIL ① F cos30°=mg ②①②联立,得mg tan30°=BIL∴B =mg tan30°IL=0.5T14.答案:速度,荷质比解析:由直线运动可得:qE =qB v 进而可知:v =EB,可得速度相同,再由在后面只有磁场空间内半径相同,可得mq相同.三、论述·计算题(共5小题,共40分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分,有数值计算的题,答案中必须明确写出数值和单位)15.答案:11V解析:ab 棒受到的安培力:F =BIL =0.04N 所以I =2A I 总=3AE =I 总(r +R ·R abR +R ab)=11V .16.答案:P =BIa解析:将原图的立体图改画成从正面看的侧视图,如图所示,根据左手定则判断出电流受力方向向右.F =BIh ,P =F S =F ah =BIh ah =BIa点评:本题的物理情景是:当电流I 通过金属液体沿图中方向向上时,电流受到磁场的作用力,这个磁场力即为驱动液态金属流动的动力,由于这个驱动力而使金属液体沿流动方向产生压强.17.答案:(1)轨迹图见解析(2)2L (L 2+d 2)2mU q解析:(1)作粒子经电场和磁场中的轨迹图,如图(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12m v 2①粒子进入磁场后做匀速圆周运动,设其半径为r ,则:q v B =m v 2r②由几何关系得:r 2=(r -L )2+d 2③ 联立求解①②③式得:磁感应强度B =2L (L 2+d 2)2mUq .18.答案:(1)6×10-3J (2)0.6m解析:(1)从M →N 过程,只有重力和摩擦力做功.刚离开N 点时有 Eq =Bq v即v =E /B =42m/s =2m/s.根据动能定理mgh -W f =12m v 2所以W f =mgh +12m v 2=1×10-3×10×0.8-12×1×10-3×22=6×10-3(J).(2)从已知P 点速度方向及受力情况分析如附图由θ=45°可知 mg =Eq f 洛=2mg =Bq v p所以v P =2mg Bq =2EB=22m/s.根据动能定理,取M →P 全过程有mgH -W f -Eqs =12m v 2P求得最后结果s =mgH -W f -12m v 2PEq=0.6m.19.答案:(1)3.46m (2)1.53s解析:(1)设垒球在电场中运动的加速度为a ,时间为t 1,有:qE =ma h =12at 21 d =v 0t 1代入数据得:a =50m/s 2,t 1=35s ,d =23m =3.46m(2)垒球进入磁场时与分界面夹角为θtan θ=at 1v 0=3,θ=60°进入磁场时的速度为v =v 0cos θ=20m/s设垒球在磁场中做匀速圆周运动的半径为R由几何关系得:R =dsin θ=4m又由R =m v qB ,得B =m vqR=10T球在磁场中运动时间为:t 2=360°-2×60°360°TT =2πm qB ,故t 2=4π15s运动总时间为:t =2t 1+t 2=1.53s。
潮阳实校2018-2018学年度第一学期月考考试高二物理试题说明:考试内容为选修3-1第二章恒定电流、第三章磁场.全卷满分100分,考试时间90分钟.第Ⅰ卷(选择题36分)一、选择题(共12小题,每小题3分,共36分.每个小题至少有一个选项是正确的,选错或多选不给分,少选每小题1分.)1.联合国安理会每个常任理事国都拥有否决权,假设设计一个表决器,常任理事国投反对票时输入“0”,投赞成票或弃权时输入“1” ,提案通过为“1”,通不过为“0”,则这个表决器应具有哪种逻辑关系( ) A .与门 B .非门 C .或门 D .与非门 2.关于磁通量,下列说法正确的是( )A .穿过某个面的磁通量为零,该处磁感应强度也为零B .穿过任一闭合面的磁通量越大,该处磁感应强度也越大C .磁通量越大的地方,磁感线越密D .当闭合面跟磁场方向平行时,穿过闭合面的磁通量必为零 3.一个电子穿过某一空间而未发生偏转,则( ) A .此空间一定不存在磁场B .此空间可能有磁场,方向与电子速度平行C .此空间可能有磁场,方向与电子速度垂直D .此空间可能有正交的磁场与电场,它们的方向均与电子速度方向垂直 4.图1是简化的多用表的电路.转换开关S 与不同接点连接,就组成不同的电表,已知R 3<R 4,下面是几位同学对这一问题的议论,请你判断他们中的正确说法( )A .S 与1、2连接时,多用表就成了电流表,且前者量程较大B .S 与3、4连接时,多用表就成了电流表,且前者量程较大C .S 与3、4连接时,多用表就成了电压表,且前者量程较大D .S 与5连接时,多用表就成了电压表5.关于磁感应强度及其定义式B = ILF,下列说法中正确的是( )A .在磁场中某确定位置,B 与F 成正比,与I 、L 的乘积成反比B .一小段通电直导线放在磁感应强度B 为零的区域,它所受的磁场力一定为零C .一小段通电直导线在空间某处不受磁场力作用,则该处的磁感应强度B 一定为零D .磁场中某处的磁感应强度B 的方向跟电流在该处受的磁场力F 的方向相同6.在《测定电池的电动势和内电阻》的实验中,待测电池、开关和导线配合下列哪些仪器.可以达到测定目的( )A .一只电流表和一只滑动变阻器B .一只电流表和一只电压表C .一只电流表和一只电阻箱D .一只电压表和一只电阻箱7.19世纪20年代,以塞贝克(数学家)为代表的科学家已认识到:温度差会引起电流.安图 1培考虑到地球自转造成了太阳照射后正面与背面的温度差,从而提出如下假设:地球磁场是由于绕地球的环形电流引起的.则该假设中的电流方向是( ) A .由西向东垂直磁子午线 B .由东向西垂直磁子午线 C .由南向北沿磁子午线方向D .由赤道向两极沿磁子午线方向8.如图2所示为测量电阻R 的电路,尽管所用的仪器都是完好的,实验操作完好正确,但发现测得的阻值近似为真实值的一半,这是由于( ) A .R 的阻值远大于电压表的内阻 B .R 的阻值远小于电压表的内阻 C .R 的阻值接近于电压表的内阻 D .电流表的内阻太大 9.把两个相同的电灯分别接在图3中甲、乙两个电路里,调节滑动变阻器,使两灯都正常发光,两电路中消耗的总功率分别为甲P 和乙P ,可以断定( ) A .甲P >乙P B .甲P =乙P C .甲P <乙P D .无法确定10.两个电压表V 1和V 2是由完全相同的两个小量程电流表改装成的,V 1的量程是5V ,V 2的量程是15V .为了测量15~20V 的电压,我们把V 1和V 2串联起来使用,以下叙述正确的是( ) A .V 1 和V 2的示数相同B .V 1 和V 2的指针偏转角度相同C .V 1 和V 2的示数不相等,指针偏转角度也不相同D .V 1 和V 2示数之比等于两电压表的内阻之比11.如图4所示是一火警报警的部分电路示意图.其中R 2是用半导体热敏材料制成的传感器,电流表为值班室的显示器,a 、b 之间接报警器.当传感器R 2所在处出现火情时,显示器的电流I 、报警器两端的电压U 的变化情况是( ) A .电流I 变小,电压U 变小 B .电流I 变大,电压U 变大 C .电流I 变小,电压U 变大 D .电流I 变大,电压U 变小 12.如图5所示的天平可用来测定磁感应强度.天平的右臂下面挂一个矩形线圈,宽为L ,共n 匝.线圈的下部悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I (方向如图5)时,在天平左、右两边加上质量各为m 1、m 2的砝码,天平平衡;当电流反向(大小不变)时,右边再加上质量为m 的砝码后,天平重新平衡,由此可知( )A .磁感应强度的方向垂直纸面向里,大小为(m 1-m 2)g /nILB .磁感应强度的方向垂直纸面向里,大小为mg /2nILC .磁感应强度的方向垂直纸面向外,大小为(m 1-m 2)g /nILD .磁感应强度的方向垂直纸面向外,大小为mg /2nIL图3图5图2 图4分数统计栏选择题答案栏第Ⅱ卷(非选择题64分)二、填空与实验题(共6小题,每小题4分,共24分.) 13.某同学想探究导电溶液是否与金属一样遵从电阻定律.她拿了一根自行车轮胎气门芯用的乳胶管,里面灌满了盐水,两端用粗铜丝塞住管口,形成一段封闭的盐水柱.她量得盐水柱的长度是20 cm ,并测出盐水柱的电阻等于R .现握住乳胶管的两端把它拉长,使盐水柱的长度变为40 cm .如果溶液的电阻也遵从电阻定律,此时盐水柱的电阻应该等于________.14.量程为100 μA 的电流表的内阻是100 Ω,现串联一个9 900 Ω的电阻将它改装成一个电压表,则该电压表的量程是___________V ,用它来测量电压,表盘指针如图6所示,此时被测电压是_________V .15.图7中MN 表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直纸面向里,磁感应强度大小为B.一带电粒子从平板上的狭缝O 处以垂直于平板的初速v 射入磁场区域,最后到达平板上的P 点.已知B 、v 以及P 到O的距离l .不计重力,则此粒子的电荷q 与质量m 之比为_______.16.把一只满偏电流为5mA 的电流表改装成欧姆表,先调零然后测500Ω的电阻,指针指在2.5mA 处;现用它测量R x 时,指针指在1mA 处,则R x =_________Ω. 17.图8中图线①表示某电池组的输出电压-电流关系,图线②表示其输出功率-电流关系.该电池组的内阻为__________Ω.当电池组的输出功率为120 W 时,电池组的输出电压是____________V .18.如图9所示为“描绘小灯泡的伏安特性曲线”所使用的仪器,其中小灯泡的规格为“4V ,0.7A ”.实验原理如图10所示.请按原理图把图9连接起来.图图 10 图 6 v N B三、计算与论述题(共4小题,40分)19.(8分)一玩具电动机标有“6V,3W”字样,内阻4Ω,且保持不变,则:(1)当使其在6V电压下工作时,若由于负载过大而没能转动起来,电动机内阻上的发热功率是多大?(2)正常工作时,电动机内阻上发热的功率是多大?(3)正常工作时,电动机的输出功率是大?20.(10分)如图11所示,有一电阻不计、质量为m的金属棒ab可在两条轨道上滑动,轨道宽为L,轨道平面与水平面间的夹角为θ,置于垂直于轨道平面向上的匀强磁场中,磁感应强度大小为B.金属棒与轨道间的最大静摩擦力为重力的k倍,回路中电流电动势为E,内阻不计,轨道电阻也不计.问:滑动变阻器调节在什么阻值范围内,金属棒恰能静止在轨道上?21.(11分)如图12所示,分布在半径为r的圆形区域的匀强磁场,磁感应强度为B,方向垂直纸面向里.电量为q、质量为m的带正电的粒子从磁场边缘A点沿圆的半径AO方向射入磁场,离开磁场时的速度方向偏转了60°角.试确定:(1)粒子做圆周运动的半径;图11(2)粒子的入射速度;(3)若保持粒子的速率不变,从A 点入射时速度的方向顺时针转过60°角,粒子在磁场中运动的时间. 22.(11分)在如图13所示电路中,R 1、R 2均为定值电阻,且R 1 = 100 Ω,R 2的阻值未知,R 3是一滑动变阻器,在其滑片从最左端滑至最右端的过程中,测得电源的端电压随电流I 的变化图象如图所示,其中图象上的A 、B 两点是滑片在变阻器的两个不同端点时分别得到的.求:(1)电源的电动势和内电阻; (2)定值电阻R 2的阻值; (3)滑动变阻器R 3的最大值; (4)上述过程中R 1上得到的最大功率以及电源的最大输出功率.图13温馨提示:请同学们做完之后再看参考答案一、选择题13.3R 14.1 0.9 15.2q v m Bl= 16.2000Ω [说明]测量的原理仍然是闭合电路的欧姆定律,根据题意知中值电阻即欧姆表的内电阻是500Ω,电源的电动势是2.5 V ,当指针指在1 mA 处时,外电阻是内电阻的四倍,即2000Ω. 17.5 30三、计算题19.(1)9 W (2)1 W (3)2 W 20.)(sin k mg BLE +θ≤R ≤)(sin k mg BLE-θ21.(1)r 3(2)m rqB 3(3)qBm3π 22.(1)20 V ,20 Ω(2)5 Ω(3)300 Ω(4)2.25 W ,5 W。
高中物理学习资料金戈铁骑整理制作物理精髓试题:恒定电流、磁场综合练习(高二新人教版选修 3-1)100 分钟,满分 120 分组题人: FTP一、单项选择题: ( 每题 3 分,共 18 分 )1、. 两个定值电阻R1、R2串通后接在输出电压U牢固于12 V的直流电源上.有人把一个内阻不是远大于R1、 R2的电压表接在 R1两端,以下列图,电压表示数为8 V. 若是他把此电压表改接在 R2两端,则电压表的示数将( )A.小于 4 VB.等于 4 VC.大于 4V 小于 8VD.等于或大于8 V2 、如图所示,在滑动变阻器的触头由 a 点向 b 点移动的过程中,灯泡L 将( )A. 素来变暗B. 素来变亮C.先亮后暗D. 先暗后亮3、取两个完好相同的长导线,用其中一根绕成如图(a)所示的螺线管,当该螺线管中通以电流强度为I 的电流时,测得螺线管内中部的磁感觉强度大小为,若将另一根长导线对B折后绕成如图( b)所示的螺线管,并通以电流强度也为I 的电流时,则此()A.螺线管内中部的磁感觉强度大小为0B.螺线管内中部的磁感觉强度大小为 2 BC.两螺线管都有横向缩短的趋势( a)( b)D.两螺线管都有横向扩大的趋势4、从太阳或其他星体上放射出的宇宙射线中含有大量的高能带电粒子,这些高能粒子流到达地球会对地球上的生命带来危害,但是由于地球周围存在磁场,地磁场能改变宇宙射线中带电粒子的运动方向,对地球上的生命起到保护作用,以下列图。
那么()A.地磁场对宇宙射线的阻截作用各处相同B.地磁场对垂直射向地球表面的宇宙射线的阻截作用在南、北两极最强,赤道周边最弱C.地磁场对垂直射向地球表面的宇宙射线的阻截作用在南、北两极最弱,赤道周边最强D.地磁场会使沿地球赤道平面内射来的宇宙射线中的带电粒子向两极偏转5、以下列图,在虚线所包围的圆形地域内,有方向垂直于圆面向里的匀强磁场,从磁场边缘的 A 点沿半径方向射入一束速率不相同的质子,这些粒子在磁场里运动的过程中,以下结论中正确的选项是()A.运动时间越长的,其轨迹越长B.运动时间越短的,射出磁场的速率越小C.在磁场中偏转越小的,运动时间越短D.所有质子在磁场里运动时间均相等6、如图 8 所示,有a、b、c、d四个离子,它们带等量同种电荷,==质量不等,有 m m<m m,ab cd=B2以不等的速率 v a< v b v c< v d进入速度选择器后,有两种离子赶忙度选择器中射出,进入磁场,由此可判断()A.射向P1的是a离子B.射向P2的是b离子C.射向A1的是c离子D.射向A2的是d离子。
第四单元恒定电流基础知识(时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项正确.)1.有一只电熨斗,内部电路如图甲所示,其中M为旋钮的内部接线端子,旋钮有“高”“中”“低”“关”四个挡,每个挡内部接线有如图乙中所示的四种方式,下列判断中正确的是()A.a方式为“高”挡B.b方式为“低”挡C.c方式为“关”挡D.d方式为“中”挡2.现标有“110 V40 W”的灯泡L1和标有“110 V100 W”的灯泡L2及一只最大阻值为500 Ω的滑动变阻器R,将它们接在220 V的电路中,在如图所示的几种接法中,最合理的是()3.图甲为测量某电源电动势和内阻时得到的U-I图线.用此电源与三个阻值均为3 Ω的电阻连接成电路,测得路端电压为4.8 V.则该电路可能为图乙中的()4.一个微型直流电动机的额定电压为U,额定电流为I,线圈电阻为R,将它接在电动势为E、内阻为r的直流电源的两极间,电动机恰好能正常工作,则()A.电动机消耗的总功率为EI B.电动机消耗的热功率为U2 RC.电源的输出功率为EI D.电源的效率为1-Ir E5.如图所示,E为内阻不能忽略的电池,R1、R2、R3为定值电阻,S0、S 为开关,V与A分别为电压表与电流表.初始时S0与S均闭合,现将S断开,则()A.V的读数变大,A的读数变小B.V的读数变大,A的读数变大C.V的读数变小,A的读数变小D.V的读数变小,A的读数变大6.如图所示,灯泡L1、L2原来都正常发光,在两灯突然熄灭后,用电压表测得c、d间电压比灯泡正常发光时的电压高,故障的原因可能是(假设电路中仅有一处故障)()A.a、c间断路B.c、d间断路C.b、d间断路D.b、d间短路7.如图所示,当滑动变阻器R2的滑动触头P向左滑动时,下列说法中错误的是()A.电阻R3消耗功率变大B.电容器C上的电荷量变大C.灯L变暗D.R1两端的电压变化量的绝对值小于R2两端的电压变化量的绝对值二、多项选择题(本题共5小题,每小题6分,共30分,在每小题给出的四个选项中,有多个选项符合题意.)8.已知磁敏电阻在没有磁场时电阻很小,有磁场时电阻变大,并且磁场越强阻值越大.为探测磁场的有无,利用磁敏电阻作为传感器设计了如图所示电路,电源的电动势E和内阻r不变,在没有磁场时调节变阻器R使灯泡L正常发光.若探测装置从无磁场区进入强磁场区,则()A.灯泡L变亮B.灯泡L变暗C.电流表的示数变小D.电流表的示数变大9.在如图甲所示的电路中,电源电动势为3.0 V,内阻不计,L1、L2、L3为三只相同规格的小灯泡,这种小灯泡的伏安特性曲线如图乙所示.当开关闭合后,下列判断正确的是()A.灯泡L1的电阻为12 ΩB.通过灯泡L1的电流为灯泡L2的电流的2倍C.灯泡L1消耗的电功率为0.75 WD.灯泡L2消耗的电功率为0.30 W10.滑动变阻器的原理如图所示,则下列说法中正确的是()A.若将a、c两端连在电路中,则当滑片OP向右滑动时,变阻器接入电路中的阻值增大B.若将a、d两端连在电路中,则当滑片OP向右滑动时,变阻器的阻值减小C.将滑动变阻器以限流式接法接入电路时,必须连入三个接线柱D .将滑动变阻器以分压式接法接入电路时,必须连入三个接线柱 11.某同学将一直流电源的总功率PE 、输出功率P R 和电源内部的发热功率P r 随电流I 变化的图线画在了同一坐标系上,如图中的a 、b 、c 所示,以下判断正确的是( )A .直线a 表示电源的总功率P E -I 图线B .曲线c 表示电源的输出功率P R -I 图线C .电源的电动势E =3 V ,内电阻r =1 ΩD .电源的最大输出功率P m =2 W12.如图所示连接的电路中,闭合开关调节电阻箱,使电压表的示数增大ΔU ,已知电源的内阻不能忽略,用I 1、I 2分别表示流过R 1、R 2的电流,ΔI 1、ΔI 2分别表示流过R 1、R 2的电流的变化量,U 1、U 2分别表示R 1、R 2两端的电压.则下列说法正确的是 ( )A .ΔI 1>0,且ΔI 1=ΔU R 1B .U 2减小,且ΔU 2=ΔUC .I 2减小,且ΔI 2<ΔUR 2D .电源的输出电压增大,且增大量为ΔU 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)13.(10分)如图所示的电路中,电炉电阻R=10 Ω,电动机线圈的电阻r=1 Ω,电路两端电压U=100 V,电流表的示数为30 A,问通过电动机的电流大小为多少?通电一分钟,电动机做的有用功为多少?14.(10分)如图甲所示的电路中,R1、R2均为定值电阻,且R1=100 Ω,R2阻值未知,R3为一滑动变阻器,当其滑片P从左端滑至右端时,测得电源的路端电压随电源中流过的电流变化的图线如图乙所示,其中A、B两点是滑片P在变阻器的两个不同端点得到的.求:(1)电源的电动势和内阻;(2)定值电阻R2的阻值;(3)滑动变阻器的最大阻值.15.(10分)如图所示,E=10 V,C1=C2=30 μF,R1=4.0 Ω,R2=6.0 Ω,电池内阻忽略不计.先闭合开关S,待电路稳定后,再将开关断开,则断开S后流过R1的电荷量为多大?16.(12分)如图所示电路中,电阻R1=9 Ω,R2=15 Ω,电源电动势E=12 V,内阻r=1 Ω.求:(1)当电流表示数为0.4 A时,变阻箱R3的阻值多大?(2)当R3阻值多大时,它消耗的电功率最大?(3)当R3阻值多大时,电源的输出功率最大?参考答案与解析1.[导学号66870049] 【解析】选B.导体消耗电功率,在电压一定的情况下,根据公式P =U 2/R 可知,P 与导体的电阻值R 成反比;观察电熨斗内部电路图可知,甲图中有两个电阻R 1和R 2,根据导体的串并联性质可知,它们串联时电阻最大,消耗的功率最少,应为最低挡;并联时总电阻最小,为最高挡;如果旋钮的内部接线端子M 不接时,电路为断路,即挡位为“关”;结合乙图中四种接法,可以看出a 接线方式为“关”;b 接线方式为“低”;c 接线方式为“中”;d 接线方式为“高”;综上确定答案为B.2.[导学号66870050] 【解析】选C.L 1(110 V 40 W)和L 2(110 V 100 W)的额定电压相同,由P =U 2R 可知R 1>R 2,由串、并联电路电流、电压特点可知A 、D 中L 1、L 2一定不会同时正常发光,虽然B 、C 能使L 1、L 2同时正常发光,但B 中P 总=2(P 1+P 2),C 中P 总=2P 2,故选C.3.[导学号66870051] 【解析】选B.由题图甲可知电源电动势为6 V ,电源内阻为r =6-44 Ω=0.5 Ω.对A 图,I =E R 外+r =61.5 A =4 A ,U =IR 外=4 V ;对B 图,I =E R 外+r =2.4 A ,U =IR 外=4.8 V ;对C 图,I =ER 外+r=0.63 A ,U =5.67 V ;对D 图,I =ER 外+r=1.2 A ,U =5.4 V .故B 项正确. 4.[导学号66870052] 【解析】选D.电动机消耗的总功率应该用P =IU 来计算,所以总功率为IU ,所以A 错误;电动机消耗的热功率应该用P =I 2R 来计算.所以热功率P =I 2R ,所以B 错误;电源的输出功率等于电动机的输入功率,得P 出=UI ,故C 错误;电源的总功率为IE ,内部发热的功率为I 2r ,所以电源的效率为IE -I 2r IE =1-IrE,所以D 正确.5.[导学号66870053] 【解析】选B.S 断开,相当于电阻变大,总电流减小,故路端电压增大,V 的读数变大,把R 1归为内阻,则R 3两端的电压也增大,流过R 3的电流也增大,A 的读数变大.6.[导学号66870054] 【解析】选B.因电路中L 1、L 2、R 及电源串联,电路中只有一处故障且两灯不亮,电路中必是断路,故D 错误.电路中无电流,但c 、d 间电压升高,是因为c 、d 间断路,c 、d 两点分别与电源正、负极等电势.故正确答案为B.7.[导学号66870055]【解析】选A.滑动变阻器R2的滑片P向左滑动时,R2的阻值变小,电路中的总电流变大,路端电压变小,通过R3的电流变小,故R3消耗的功率变小,A错误;流过R1中的电流变大,则R1两端的电压变大,即电容器两端的电压也变大,故电容器上电荷量变大,B正确;而灯L两端的电压变小,故灯L变暗,C正确;由于路端电压变小,故R1两端的电压变化量的绝对值小于R2两端的电压变化量的绝对值,D正确.8.[导学号66870056]【解析】选AC.探测装置进入强磁场区以后磁敏电阻阻值变大,回路总电阻变大,总电流变小,电流表示数变小,电源内阻分压变小,路端电压变大,灯泡L变亮,正确选项为A、C.9.[导学号66870057]【解析】选ACD.由于电源电动势为3.0 V,内阻不计,所以当开关闭合后,达到稳定状态时,加在小灯泡两端的电压应为3.0 V,由小灯泡的伏安特性曲线可以看出当电压为3.0 V时,流过小灯泡的电流为0.25 A,由此求得灯泡L1的电阻为12 Ω.由P=UI可以求得灯泡L1消耗的电功率为0.75 W,选项A、C正确.L2、L3两端的总电压为3 V,所以流过L2、L3的电流为0.20 A,选项B错误.L2、L3的功率为P=UI=0.30 W,选项D正确.10.[导学号66870058]【解析】选AD.若将a、c两端连在电路中,aP部分将连入电路,则当滑片OP向右滑动时,该部分的导线长度变长,变阻器接入电路中的阻值将增大,A正确.若将a、d两端连在电路中,也是aP部分将连入电路,则当滑片OP向右滑动时,该部分的导线长度变长,变阻器接入电路中的阻值将增大,B错误.A、B两个选项中均为限流式接法,可见在限流式接法中,a、b两个接线柱中任意选一个,c、d两个接线柱中任意选一个,接入电路即可,C错误.在滑动变阻器的分压式接法中,a、b两个接线柱必须接入电路,c、d 两个接线柱中任意选一个接入电路即可,D正确.11.[导学号66870059]【解析】选AD.电源的总功率P E=EI,直线a表示电源的总功率P E-I图线,选项A正确.电源的输出功率P R=UI=(E-Ir)I=EI -I2r,曲线b表示电源的输出功率P R-I图线,曲线c表示电源内阻消耗的功率,选项B错误.由直线a的斜率可得电源的电动势E=4 V,选项C错误.当I=1 A时,电源的输出功率最大,为P m=2 W,选项D正确.12.[导学号66870060]【解析】选AC.R1是定值电阻,电压表V的示数增大ΔU 的过程,通过R 1的电流增加,增加量ΔI =ΔUR 1,故A 正确;电压表V的示数增大,电阻箱电阻增大,外电路总电阻增大,干路电流减小,R 2两端电压减小,路端电压增大,则R 2两端电压减少量一定小于ΔU ,故B 错误;由欧姆定律得:通过R 2的电流的减少量一定小于ΔUR 2,故C 正确;电压表示数增加,R 2电压减小,路端电压增加量一定小于ΔU ,故D 错误.13.[导学号66870061] 【解析】题图中的两个支路分别为纯电阻电路(电炉)和非纯电阻电路(电动机).在纯电阻电路中可运用欧姆定律I =UR 直接求出电流的大小,而非纯电阻电路中的电流只能运用干路和支路中电流的关系求出.在非纯电阻电路中,电功大于电热,两者的差值才是有用功.根据欧姆定律,通过电炉的电流为I 1=U R =10010 A =10 A.根据并联电路中的干路电流和支路电流的关系,则通过电动机的电流为I 2=30 A -I 1=20 A.电动机的总功率为P =UI 2=100×20 W =2×103 W.因发热而损耗的功率为P ′=I 22·r =0.4×103 W.电动机的有用功率(机械功率)为P ″=P -P ′=1.6×103 W ,电动机通电1 min 做的有用功为W =P ″t =1.6×103×60 J =9.6×104 J.【答案】20 A 9.6×104 J14.[导学号66870062] 【解析】(1)题图乙中AB 延长线交U 轴于20 V 处,交I 轴于1.0 A 处,所以电源的电动势为E =20 V内阻r =EI 短=20 Ω.(2)当P 滑到R 3的右端时,电路参数对应题图乙中的B 点 即U 2=4 V 、I 2=0.8 A 得R 2=U 2I 2=5 Ω.(3)当P 滑到R 3的左端时,由题中图乙知此时U 外=16 V ,I 总=0.2 A 所以R 外=U 外I 总=80 Ω因为R 外=R 1R 3R 1+R 3+R 2 所以滑动变阻器的最大阻值为R 3=300 Ω. 【答案】(1)20 V 20 Ω (2)5 Ω (3)300 Ω15.[导学号66870063] 【解析】闭合开关S 时两电容器所带电荷量分别为Q 1=C 1U 2=C 1E R 2R 1+R 2=30×10-6×10× 6.04.0+6.0C =1.8×10-4 C ,Q 2=0.断开开关S 后,两电容器所带电荷量分别为 Q 1′=C 1E =30×10-6×10 C =3.0×10-4 C , Q 2′=C 2E =30×10-6×10 C =3.0×10-4 C. 所以断开S 后流过R 1的电荷量为 ΔQ =Q 1′+Q 2′-Q 1=4.2×10-4 C. 【答案】4.2×10-4 C16.[导学号66870064] 【解析】(1)设干路电流为I ,根据并联电路的分流原理I 2=R 3R 2+R 3I ,外电路的总电阻R =R 1+R 2R 3R 2+R 3,由闭合电路欧姆定律得I =ER +r.由以上各式求得R 3=30 Ω. (2)设阻值为R 3′时,它消耗的功率最大为P 3,此时外电路总电阻为R ′=R 1+R 2R 3′R 2+R 3′,干路电流I ′=E R ′+r ,I 3′=R 2R 2+R 3′I ′,P 3=I ′23·R 3′.由以上各式得:P 3=362·R 3′25(R ′23+12R 3′+36)=36225⎝ ⎛⎭⎪⎫R 3′+36R 3′+12.当36R 3′=R 3′时,消耗的功率最大,即R 3′=6 Ω.(3)设阻值为R 3″时,电源输出功率最大为P m ,P m =⎝ ⎛⎭⎪⎫E R +r 2R .当外电路的总电阻R =r 时,电源输出功率最大.因R >r ,所以,当R 越接近r 时输出功率越大.故只有当R 3″=0时,R 最接近r ,此时电源输出功率最大.【答案】(1)30 Ω (2)6 Ω (3)0。
1-磁场与电场磁场电场性质对放入其中的电荷或电流有力的作可对放入其中的电布有力的作用场源电荷、电流皂荷物理量疫感应强曳电场强度、电势差〔电势〕描述磁感线电场线、等势面2.磁感应强度与电场强度磁感应罡度B电场在度E电势差U 物理意义反映随场的强弱反映电场的强弱反映电场的位置定义放入通电导饯,当B_L1时,B=F/IL放入试探电荷,E=F/q移动试探电荷.U=\\7q决定因素场源Q、I和乏场源的矩姿r,与导线无关场源Q和距场源的距离r, 与试探电荷无美两点间的电势之差,与试探电荷无关单位T V/m(N/C)V标矢量矢量,与放入小递针的X极所指的方向矢量,与放入试探正电荷所攵电场力的方向标量3 .磁感线与电场线磴感线电场线定义满足切践方向为B的方向的一组曲线满足切线方向为E的方向的一组曲浅特点闭合曲线.外部从N到S.内部S到N始于正电荷.终于负电荷永不相交永不相交疏客程度反映磁场的强弱〔B〕疏后程度反映场况的羽弱〔E〕4.安培力、洛伦兹力与电场力安培力洛伦兹力皂场力物理意义版场对通电导线的力盔场对运动电荷的力电场对电荷的力大小当B«LI 时,F=B1L当B〃I 时,F=0当互成一定夹角时,取有效长度〔,B方向的投影〕当BJ_v 时,F=qyB当B〃v 时,F=0F=Eq方向左手定那么〔不等于场的方向.且相互垂宜〕左手定那么〔注意电性不同方向相反〉正电荷所受电场力与E相同负电荷所受电场力与E相反一、磁场知识要点1,磁场的产生⑴磁极周围有磁场.⑵电流周围有磁场〔奥斯特〕.安培提出分子电流假说〔又叫磁性起源假说〕,认为磁极的磁场和电流的磁场都是由电荷的运动产生的.〔不等于说所有磁场都是由运动电荷产生的.〉⑶变化的电场在周困空间产生磁场〔麦克斯韦〕.2,磁场的根本性质•••磁场对放入其中的磁极和电流有磁场力的作用〔对磁极一定有力的作用:对电流只是遮有力的作用,当电流和磁感线平行时不受磁场力作用〕.这一点应该跟电场的根本性质相比拟.3.磁感应强度B =—〔条件是匀强磁场中,或AL很小,并且L_L8 〕oIL磁感应强度是矢量.单位是特斯拉,符号为T, 1T=1N/〔A m〕=lkg/〔A夕〕4.战感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线.磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向.磁感线的疏密表示磁场的强弱.⑵—印封闭地线〔和静电场的电场线不同〕. ⑶要熟记常见的几种磁场的磁感线:⑷安培定那么〔右手螺旋定那么〕:对直导线,四指指磁感线方向:对环行电流,大拇指手中央定线上的磁感线方向:对长直螺线箕大也指指螺线篁内邯的磁廛线方向.5 ,磁通量如果在磁柄应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,那么定义8与S的乘积为穿过这个面的磁通量,用.表示.s是标量,但是有方向〔进该面或出该而1玳位为韦伯,符号为Wbc lWb=lT m2=iv s=lkg m2/〔A s2〕.可以认为磁通量就是穿过某个面的磁感线条数C在匀强磁场磁感线垂直于平面的情况下,8二S/S.所以在感应强度又叫磁通密度.在匀强磁场中,当8与S的夹角为.时, 有S=BSsin a.A■中条形磁铁蹄形磁铁—+制感线分布安培定那么环形电流的磁场V:地球磁场通电直导线周围磁场由, 密感线分布U 安培定期直线电流的磁场、通电螺线管的磁场X XX①XX X 通电环行导线周围破二、安培力〔磁场对电流的作用力〕知识要点1 ,安培力方向的判定 ⑴用左手定那么.⑵用“同性相斥,异性相吸〞〔只适用于磁铁之间或磁体位于螺线管外部时〕.⑶用“同向电流相吸,反向电流相斥"〔反映r 磁现象的电本质,可以把条形同铁等效为长直螺线管〔不要把长直上线管 等效为条形磁铁〕.只要两导线不是互相垂直的,都可以用''同向电流相吸,反向电流相斥〞判定相互作用的磁场力的方向:当两导线互相垂 直时,用左手定那么判定.2安培力大小的计算:F=BUstn .〔.为8、L 间的夹角〕高中只力求会计算.=0 〔不受安培力〕和"900两种情况.例题分析例1:如下图,可以自由移动的竖直导线中通有向下的电流,不 仅在磁场力作用下,导线将如何移动解:先画出导线所在处的磁感线,上下两局部导线所受安培力的方向相反,使导线丛左回在看顺时轨段动:.那么又爱到竖 直向上的磁场的作用而向右移动〔不要说成先转90°后平移〕.分析的关键是画出相关的磁感线.例2:条形磁铁放在粗糙水平而匕正中的正上方有一导线, 流后,磁铁对水平面的压力将会一〔增大、减小还是不变〕.水 力大小为.}解:此题有多种分析方法.〔1〕画出通电导线中电流的磁场中 感线〔如图中粗虚线所示〕,可看出两极受的磁场力的合力竖直 的压力减小,但不受摩擦力.〔2〕画出条形磁铁的磁感线中通过通电导线的那一条〔如图中细虚线所示〕,可看出导线受到的安 培力竖直向下,因此条形磁铁受的反作用力竖直向上.⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中 的电流是同向电流,所以互相吸引.例3:如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向 哪个方向偏转解:用“同向电流互相吸引,反向电流互相排斥〞最简的:条形磁铁的等 面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以 如果用“同名磁极相斥,异名磁极相吸〞将出现判断错误,由于那只适用于线圈位于磁铁外部的情况C 〕例4:电视机显象管的偏转线圈示意图如右,即时电流方向如下图.该时刻由里 将向哪个方向偏转 >解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠 外.电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥〞. 偏转C 〔此题用其它方法判断也行,但不如这个方法简洁〕.通有图示方向的电 平面对磁铁的摩擦通过两极的那条磁 向上C 磁铁对水平面电子流的一侧为向 可判定电子流向左计通电导线的重力,的电流时,线圈将向效螺线管的电流在正 线圈向右偏转c 〔此题向外射出的电子流例5:如下图,光滑导轨与水平面成,角,导轨宽L 匀强磁场磁感应 长也为L ,质量为m,水平放在导轨上.当回路总电流为“时,金属杆正好 至少多大这时B的方向如何⑵假设保持B 的大小不变而将B 的方向改为竖直向 流/2调到多大才能使金属杆保持静止解:画出金属杆的截面图.由三角形定那么可知,只有当安培力方向沿导 力才最小,8也最小.根据左手定那么,这时8应垂直于导轨平面向上,大小 8二mgsin a 〞口当8的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨Wcos .=mgsin a , /2=/1/cos ez o 〔在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各 矢量方向间的关系〕.例6:如下图,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均 的匀强磁场方向竖直向下.电键闭合后,在磁场力作用下铜棒被平抛出去, 上,水平位移为5.求闭合电键后通过铜棒的电荷量Q .解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F/t 二m%而被 而瞬时电流和时间的乘积等于电荷量Q=/ 43由平抛规律可算铜棒离开导.=*唇最终可得.啮三、洛伦兹力知识要点1 .洛伦兹力2 •洛伦兹力方向的判定3 •洛伦兹力大小的计算带电粒子在匀强磁场中仅受洛伦兹力而做匀速忸周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:r = —.T = —Bq Bq4 ,带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区, 一定要先画好辅助线〔半径、速度及延长线〕.偏转角由运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现. 计算公式的推导:如下图,整个导线受到的磁场力〔安中/aesv :设导线中共有N 个自由电子N=nsh 每个电子受的 二NF .由以上四式可得F=qvB,条件是v 与8垂直.当v 与Bxxx xlx XXX 培力〕为人=8化:其 磁场力为F,那么F安X X X 头头XXX在用左手定那么时•,M 必须拒里逅方问〔丕星速度方回〕, 动方向的反方向.即正电荷定向移动的方向:对负电荷,四指应指负电荷定向移sin 〃,/R 求出.侧为L ,磁感应强度为8 下落h 后落在水平面 平抛出去,其中F=8/3 线框时的初速度移由外;以伊沙产解出.经历时间由I = "g得出.Bq注意,这里鼠世速度的反向延长线与初速度延长线见这点丕理是塞度北段的史点,这点与带电粒子在匀强电场中的偏转结论不同!⑵穿过圆形磁场区.面好辅助线〔半径、速度、轨迹圆的圆心、连心线〕.求出.经历时间由,一〃历得出.Bq注意:由对称性“射出线的反向延怅线必过磁场圆的圆心. 偏角可由lang =二 2R例题分析例1:磁流体发电机原理图如右.等离子体高速从左向右喷射, 向的匀强磁场,该发电机哪个极板为正极两板间城大电压为多少解:由左手定那么,正、负离子受的洛伦兹力分别向上、向下.所负极板间会产生电场.当刚进入的正负离子受的洛伦兹力与电场力等电压:U=Bdv.4处里跪断殂必选也感星电动教圣当外电路接通时, 小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发仍是£=8dv,但路端电压将小于8dv°在定性分析时特别需要注意的是:两极板间有如图方以上极板为正.正、值反向时,到达最大极板上的电荷量减生偏转,这时电动势⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反.⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于8雨,但电动势不变〔和所有电源一样, 电动势是电源本身的性质.〕⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析.在外电路断开时最终将到达平衡态.例2:半导体靠自由电子〔带负电〕和空穴〔相当于带正电〕导两种.p型半导体中空穴为多数载流子:n型半导体中自由电子为多验可以判定一块半导体材料是p型还是〃型:将材料放在匀强磁场中, 电,分为P型和n型数载流子.用以下实通以图示方向的电流人用电压表比拟上下两个外表的电势上下,假设上极板电势高,就是P型半导体:假设下极板电势高,就是.型半导体.试分析原因.解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以渔企丝力方向都跑上,迄攸鄱将向上偏转.P型半导体中空穴多,上极板的电挎高:,型半导体中自由电子多,上极板电势低.注意:一曳返友包根夙些,『尤"空鹿王走网二公磁场史改近裳的曲俭丝力麦迪根双,Jg以®拽力®板那么.例3:如图直线MN上方有磁感应强度为B的匀强磁场.正、点.以与MN成30,角的同样速度v射入磁场〔电子质量为m, 场中射出时相距多远射出的时间差是多少解:正负电子的半径和周期是相同的.只是偏转方向相反. 径,由对称性知:射入、射出点和圆心恰好组成正三角形.所以由图还看出经历时间相差2所.答案为射出点相距s = 空,时Be负电子同时从同一电荷为2〕,它们从磁先确定圆心,画出半两个射出点相距2小间差为A/ =4m〃关键是找网心、找半径和用对称.例4:一个质量为m电荷量为q的带电粒子从x轴上的P〔G. 0〕点以速度的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限.求8和射出点的坐标.I解:由射入、射出点的半径可找到圆心.,并得出半径为「='=竺,得8 =史竺:射出点坐标为〔0,岛〕.£ Bq 2aq v,沿与X正方向成60匀强磁场的磁感应强度四、带电粒子在混合场中的运动知识要点1 .速度选择器正交的匀强磁场和匀强电场组成螃螃暨.带电粒子必须以唯二碘定的逑度,包抵划,,加包上才熊匀叫,耍意世没真线〕通过速度选择器.否那么将发生偏转.这个速度的大小可以由洛伦兹力和出:qv8二£q, 1,=色.在木图中,速度方向必须向右.B〔D这个结论与离子带何种电荷、电荷多少都无关.⑵假设速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是曲线:假设大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将电场力的平衡得向偏转,电场力做圆,而是一条更杂减小,洛伦兹力也将减小,轨迹是一条红杂曲线.2,带电微粒在重力、电场力、磁场力共同作用下的运动⑴带电微粒在三个场共同作用下做匀速圆周运动.必然是电场力和重力平衡,而洛伦兹力充当向心力, ⑵与力学紧密结合的综合题,要认真分析受力情况和运动情况〔包括速度和加速度〕.必要时加以讨论.例题分析例1:某带电粒子从图中速度选择器左端由中点O以速度内向右射下方的.点以速度力射出:假设增大磁感应强度8,该粒子将打到.点上ac=ob,那么该粒子带—电:第二次射出时的速度为o解:B增大后向上偏,说明洛伦兹力向上,所以为带正电,由于洛所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的去,从右端中央a方的c点,且有伦兹力总不做功, 绝对值相同.1 , 1 , 12 1 ,一5〃?以=7,nv o 一不加打,二匕例2:如下图,一个带电粒子两次以同样的垂直于场线的初速度vo分别穿越匀强电场区和匀强磁场区,场区的宽度均为L偏转角度均为.,求£:8解:分别利用带电粒子的偏角公式.在电场中偏转:解:〔1〕离子在加速电场中加速,根据动能定理有rr 1 2au =mv^2①〔3分〕磁场中偏转:§而0=竺2,由以上两式可得与=」_.可以证实:当偏转角相同时,侧移必然不同〔电场中侧移较大〕: mv Q B cosa 当侧移相同时,偏转角必然不同〔磁场中偏转角较大〕. 例3: 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速 粒必然带,旋转方向为,假设圆半径为心电场强度为£磁感应强解:由于必须有电场力与重力平衡,所以必为负电:由左手定那么得逆时针 圆周运动◎那么该带电微 度为8,那么线速度为转动:再由Eq = 〃ig 和 r = 例4:质量为m 带电量为q 的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数 强磁场的方向如下图,电场强度为£磁感应强度为8:小球由静止糅放后沿杆下滑. 磁场也足够大,求运动过程中小球的最大加速度和最大速度. 解:不妨假设设小球带正电〔带负电时电场力和洛伦兹力都将反向,结论相同〕.刚 电场力、弹力、摩擦力作用,向下加速:开始运动后又受到洛伦兹力作用,弹力、摩擦力 力等于电场力时加速度最大为g .随着v 的增大,洛伦兹力大于电场力,弹力方向变为向 擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小 了=些+匕 〃Bq B 假设将磁场的方向反向,而其他因素都不变,那么开始运动后 力、摩擦力不断增大,加速度减小.所以开始的加速度最大为 为〃,匀强电场和匀 设杆足够长,电场和糅放时小球受重力、 开始减小:当洛伦兹 右,且不断增大,摩 球速度到达最大洛伦兹力向右,弗-㈣:摩擦力等于重力时速度最大,为y = 皿- No pBq B5.〔20分〕如下图为一种质谱仪示意图,由加速电场、静电分析器和磁分析器组成.:静电分析器通道的半径为R 均匀辐射电场的场强为£磁分析器中有垂直纸面向外的匀强磁场,磁感强度为8〉问:〔1〕为J'使位于4处电量为q 、质量 为m 的离子,从静止开始经加速电场加速后沿图中圆弧虚线通过静电分析器,加速电场的电压U 应为多大〔2〕离子由P 点进 入磁分析器后,最终打在乳胶片上的Q 点,该点距入射点P 多远 加速电场离子在辐向电场中做匀速恻周运动,电场力提供向心力,有_ 说&aE= m —丑②〔4分〕解得 2 ③〔2分〕〔2〕离子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有④〔3分〕由②、④式得⑤〔5分〕故〔3分〕例6:〔20分〕如下图,固定在水平桌面上的光滑金属框架cde/处于竖直向下磁感应强度为80的匀强磁场中.金属杆附与金属框架接触良好.此时.bed构成一个边长为/的正方形,金属杆的电阻为八其余局部电阻不计.⑴假设从t=0时刻起,磁场的磁感应强度均匀增加,每秒钟增量为A,施加一水平拉力保持金属杆静止不动,求金属杆中的感应电流.⑵在情况⑴中金属杆始终保持不动,当上fl秒末时,求水平拉力的大小.⑶假设从上0时刻起,磁感应强度逐渐减小,当金属杆在框架上以恒定速度v向右做匀速运动时,可使回路中不产生感应电流.写出磁感应强度8与时间t的函数关系式.解⑴设瞬时磁感应强度为8,由题意得山①〔1分〕一〞二一二回即S出产生感应电动势为M 匕t 氏②〔3分〕根据闭合电路欧姆定律得,产生的感应电流产了③ 〔3分〕〔2 〕由题意,根据二力平衡,安培力等于水平拉力,即F二七④〔1分〕% = ⑤〔3 分〕F国十5 尸伊.十姑「户由①酶得强丫 ,所以广〔2分〕〔3〕回路中电流为0,说明磁感应强度逐渐减小产生的感应电动势£和金属杆运动产生的感应电动势8’相反,即S + S f = 09那么有〔"一为〕'\班=0 8 =里一0〔4分〕解得 ,十讨〔2分〕例7〔19分〕如图,在x轴上方有磁感强度大小为从方向垂直纸面向里的匀强磁场.x轴下方有磁感强度大小为8/2,方向垂直纸面向外的匀强磁场.一质量为m、电量为f的带电粒子〔不计重力〕,从x轴上.点以速度4垂直x轴向上射出.求:<1〕经多长时间粒子第三次到达x轴.〔初位置.点为第一次〕〔2〕粒子第三次到达x轴时离.点的距离.X X X X X XXX X5/2解:X X X X X XXX X〔1〕粒子运动轨迹示意图如右图〔2分〕由牛顿第二定律效=%匕一r①〔4分〕冲②〔2分〕271m得71=祖〔2分〕72=祖〔2分〕1 - 1 - 3 根-A + -f2 =——粒子第三次到达x轴需时间t= 2 2 於〔1分〕叫〔2〕由①式可知rl=就〔2分〕2叫r2= " 〔2 分〕6阳片粒子第三次到达x轴时离0点的距离5 = 2rl 2r2 = * 〔2分〕例8、如下图,在第I象限范围内有垂直xOy平面的匀强磁场,磁感应强度为8.质量为m、电量大小为q的带电粒子〔不计重力〕,在.0平面里经原点0射入磁场中,初速度为vO,且与X轴成60.角,试分析计算:〔1〕带电粒子从何处离开磁场穿越磁场时运动方向发生的偏转角多大〔2〕带电粒子在鹤场中运动时间多长解:带电粒子假设带负电荷,进入磁场后将向x轴偏转,从A点离开磁场: 假设带正电荷,进入磁场后将向y轴偏转,从B点离开磁场:如下图.带电粒子进入磁场后作匀速圆周运动,轨迹半径均为圆心位于过0点与I/O垂直的同一条直线上,O1O=O2O=OL4 = O28 = R,带电粒子沿半径为R的圆周运动一周的时间为_ 2成2府1 = ----- =-------心的.〔1〕粒子假设带负电荷,进入磁场后将向x轴偏转,从A点离开磁场,运动方向发生的偏角为:01 = 20=2x600 = 1200,A点到原点o的距离为:q®粒子假设带正电荷,进入磁场后将向y轴偏转,在B点离开磁场:运动方向发生的偏角为:02 = 2 〔900-3〕 =2x300 = 600.B点到原点O的距离为:〔2〕粒子假设带负电荷, 进入磁场后将向x轴偏转,从A点离开磁场,运动的忖间为:粒子假设带正电荷,进入磁场后将向y轴偏转,在B点离开磁场:运动的时间为:’2二丽"二石二%例9、右图是科学史上一张著名的实验照片,显示一个属板运动的径迹.云室旋转在匀强磁场中,磁场方向垂板对粒子的运动起阻碍作用.分析此径迹可知粒子A.带正电,由下往上运动B.带正电,由上往下运动C.带负电,由上往下运动D.带负电,由下往上运动答案:A,mv解析:粒子穿过金属板后,速度变小,由半径公式——可知,半径变小,粒子运动方向为由下向上:又由于洛仑兹力的方qB向指向圆心,由左手定那么,粒子带正电.选A.例10、如下图,固定位置在同一水平向内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中.一质量为m 〔质量分布均匀〕的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为5现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好到达最大〔运动过程中杆始终与导轨保持垂直〕.设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g.那么此过程〔尸 _ M QRA・杆的速度最大值为82 d2BdlB.流过电阻R的电量为五十厂C,恒力F做的功与摩擦力做的功之和等于杆动能的变化量D.恒力F做的功与安倍力做的功之和大于杆动能的变化量答案BD【解析】当杆到达最大速度Vm时,F —卬堂—'"& = 0得匕〞=〔卜二卬9Rf' ,八错:由公式R + r m B%2q-△① =8*B对:在棒从开始到到达最大速度的过程中由动能定理有:+W f=AE K.带电粒子在云室中穿过某种金直照片向里.云室中横放的金属〔R + r〕〔R + r〕R + r *'、卜其中% =一〃〃吆,卬笈=一.,恒力F做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C错:恒力F做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D对.例11、如图甲,在水平地向上固定一倾角为.的光滑绝缘斜面,斜面 小为E 、方向沿斜面向下的匀强电场中.一劲度系数为k 的绝缘轻质 在斜而底端,整根弹簧处于自然状态.一质量为m 、带电量为q 〔q>0〕 簧上端为so 处静止释放,滑块在运动过程中电量保持不变,设滑块与 有机械能损失,算黄始终处在弹性限度内,重力加速度大小为g .〔1〕求滑块从静止糅放到与弹簧上端接触瞬间所经历的时间匕 〔2〕假设滑块在沿斜面向下运动的整个过程中最大速度大小为 择放到速度大小为心过程中弹簧的弹力所做的功W :〔3〕从滑块静止称放瞬间开始计时,请在乙图中画出滑块在沿 整个过程中速度与时间关系v-t 图象.图中横坐标轴上的11t2及t3分 次与弹簧上端接触、第一次速度到达最大值及第一次速度减为零的时次为滑块在匕时刻的速度大小,Vm 是题中所指的物理量.〔木小题不要求写出计算过程〕⑵ W 」叫2 -.叫sin6 + 把)• (% + 〃"6 + 吟; 2 k【解析】木题考查的是电场中斜面上的弹簧类问题,涉及到匀变速直线运动、运用动能定理处理变力功问题、最大速度问题和 运动过程分析.〔1〕滑块从静止糅放到与弹簧刚接触的过程中作初速度为零的匀加速直线运动,设加速度大小为.,那么有qE^mgsin0=mo1 . 2% = 53联立①②可得2〃 7soqE + "ig sin 0〔2〕滑块速度最大时受力平衡,设此时弹簧压缩量为X .,那么有mg sin 0 + qE = kx .从静止样放到速度到达最大的过程中,由动能定理得- 1 ,57gsin<9 + qE 〕^〔x nt +x 0〕 + W = -mv n ; -0乙联立④⑤可得W = _ (mg sin 0 + qE)• (“ +2〔3〕如图(3)2〃7soqE + mgmg sin 6 + qE)s 处于电场强度大 弹簧的一端固定 的滑块从距离弹 弹簧接触过程没Vm ,求滑块从静止斜而向下运动的 别表示滑块第一 刻,纵坐标轴上的 答案〔1〕。
磁现象和磁场达标基训知识点一磁场的概念1.关于磁场,下列说法中不正确的是( ).A.磁场和电场一样,是同一种物质B.磁场的最基本特性是对放在磁场里的磁极或电流有磁场力的作用C.磁体与通电导体之间的相互作用是通过磁场进行的D.电流和电流之间的相互作用是通过磁场进行的解析电荷周围存在电场,运动电荷产生磁场,磁场的基本性质是对放在磁场里的磁体或电流有磁场力的作用,磁体间、磁体与通电导体间、电流与电流间的相互作用都是通过磁场进行的.故B、C、D正确.答案 A2.磁铁吸引小铁钉与摩擦过的塑料尺吸引毛发碎纸屑两现象比较,下列说法正确的是( ).A.两者都是电现象B.两者都是磁现象C.前者是电现象,后者是磁现象D.前者是磁现象,后者是电现象解析磁铁吸引小铁钉是靠磁铁的磁场把铁钉磁化而作用的,是磁现象;摩擦过的塑料上带电荷是周围产生电场而吸引毛发碎纸屑的,是电现象.答案 D知识点二电流的磁效应3.判断一段导线中是否有直流电流通过,手边若有几组器材,其中最为可用的是( ).A.被磁化的缝衣针及细棉线B.带电的小纸球及细棉线C.小灯泡及导线D.蹄形磁铁及细棉线答案 A4.如图3-1-6四个实验现象中,不能表明电流能产生磁场的是( ).图3-1-6A.甲图中,导线通电小磁针发生偏转B.乙图中,通电导线在磁场中受到力的作用C.丙图中,当电流方向相同时,导线相互靠近D.丁图中,当电流方向相反时,导线相互远离解析磁场对小磁针、通电导体有作用力,图甲中的小磁针发生了偏转,图丙、丁中的通电导体发生了吸引和排斥,都说明了电流周围存在磁场.乙图不能说明电流能产生磁场.所以答案为B.答案 B5.下列说法中正确的是( ).A.奥斯特实验说明了通电导线对磁体有作用力B.奥斯特实验说明了磁体对通电导线有作用力C.奥斯特实验说明了任意两条通电导线之间有作用力D.奥斯特实验说明了任意两个磁体之间有作用力解析奥斯特实验说明了通电导线对磁体有作用力,所以正确选项为 A.答案 A知识点三地磁场6.下列说法正确的是( ).A.指南针指出的“北”不是真正的北,两者有一定的差别B.地球两极与地磁两极不重合,地磁南极在地球南极附近,地磁北极在地球北极附近C.在任何星球上都能利用指南针进行方向判断D.我国是最早在航海上使用指南针的国家解析因为磁偏角的存在,所以地磁南极在地球北极附近,地磁北极在地球南极附近,故A正确、B错误.火星不像地球那样有一个全球性的磁场,因此指南针不能在火星上工作,故C错.据史书记载,我国是最早在航海上使用指南针的国家,故D正确.答案AD7.地球是一个大磁体:①在地面上放置一个小磁针,小磁针的南极指向地磁场的南极;②地磁场的北极在地理南极附近;③赤道附近地磁场的方向和地面平行;④北半球地磁场方向相对地面是斜向上的;⑤地球上任何地方的地磁场方向都是和地面平行的.以上关于地磁场的描述正确的是( ).A.①②④B.②③④C.①⑤D.②③解析地磁场类似于条形磁铁磁场,地磁南极在地理的北极附近,而地磁的北极在地理的南极附近.答案 D综合提升8.磁性水雷是用一个可绕轴转动的小磁针来控制起爆电路的,军舰被地磁场磁化后就变成了一个浮动的磁体.当军舰接近磁性水雷时,就会引起水雷的爆炸,其依据是( ).A.磁体的吸铁性B.磁极间的相互作用规律C.电荷间的相互作用规律D.磁场对电流的作用原理解析同名磁极相斥、异名磁极相吸,被地磁场磁化的军舰相当于一个大磁体,当它与磁性水雷接近时,磁体间的相互作用引起磁性水雷内部小磁针的转动,接通电路,引起爆炸.答案 B9.超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术,磁体悬浮的原理是( ).①超导体电流的磁场方向与磁体的磁场方向相同②超导体电流的磁场方向与磁体的磁场方向相反③超导体使磁体处于失重状态④超导体对磁体的作用力与磁体的重力相平衡A.①③B.①④C.②③D.②④解析同名磁极相互排斥,异名磁极相互吸引,所以电流的磁场方向和磁体的磁场方向相反,磁体悬浮在空中,重力和超导体对磁体的作用力平衡.答案 D10.地球是个大磁场,在地球上,指南针能指南北是因为受到________的作用.人类将在本世纪登上火星,目前,火星上的磁场情况不明,如果现在登上火星,你认为在火星上宇航员能依靠指南针来导向吗?________(选填“能”“不能”或“不知道”) 解析地球周围有磁场,指南针就是因为受到地磁场的作用力而指南北的,火星上磁场情况不明,不能用指南针来导向.答案地磁场不能。
《磁场》检测题一、单选题1.如图所示,平行金属板M、N之间有竖直向下的匀强电场,虚线下方有垂直纸面的匀强磁场,质子和α粒子分别从上板中心S点由静止开始运动,经电场加速后从O点垂直磁场边界进入匀强磁场,最后从a、b两点射出磁场(不计重力),下列说法正确的是A.磁场方向垂直纸面向内B.从a点离开的是α粒子C.从b点离开的粒子在磁场中运动的速率较大D.粒子从S出发到离开磁场,由b点离开的粒子所用时间较长2.下列说法正确的是A.麦克斯韦认为恒定磁场周围存在电场 B.奥斯特认为电流周围存在磁场C.库仑提出用电场线来形象的描述电场 D.楞次首先发现了电磁感应现象3.如图所示,长方形abcd的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆心eb为半径的圆弧和以O为圆心Od为半径的圆弧组成的区域内有垂直纸面向里的匀强磁场(eb边界上无磁场)磁感应强度B=0.25T。
一群不计重力、质量m=3×10-7kg、电荷量q=2×10-3C 的带正电粒子以速度v=5×l02m/s沿垂直ad方向且垂直于磁场射入磁场区域,则下列判断正确的是()A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C .从Od 边射入的粒子,出射点分布在ab 边D .从ad 边射人的粒子,出射点全部通过b 点4.如图所示,在xOy 坐标系的第Ⅰ象限中有垂直于纸面向里的匀强磁场,一带电粒子在x 轴上的A 点垂直于x 轴射入磁场,第一次入射速度为v ,且经时间t 1恰好在O 点反向射出磁场,第二次以2v 的速度射入,在磁场中的运动时间为t 2,则t 1:t 2的值为( )A .1:2B .1;4C .2;1D :15.如图所示,始终静止在斜面上的条形磁铁,当其上方的水平放置的导线通以图示方向的电流时,斜面体对磁铁的弹力N 和摩擦力f 的变化是A .N 减小,f 不变B .N 减小,f 增大C .N 、f 都增大D .N 增大,f 减小6.如图所示,半径为R 的圆形区域里有磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,M 、N 是磁场边界上两点且M 、N 连线过圆心,在M 点有一粒子源,可以在纸面内沿各个方向向磁场里发射质量为m 、电荷量为q 、速度大小均为2v qBR m =的带正电粒子,不计粒子的重力,若某一个粒子在磁场中运动的时间为π2R t v=,则该粒子从M 点射入磁场时,入射速度方向与MN 间夹角的正弦值为( )A .12B .35CD .457.关于磁场和磁感线的描述,下列说法中正确的是: [ ]A.磁感线从永久磁铁的N极发出指向S极,并在S极终止B.任何磁场的磁感线都不会相交C.磁感线可以用来表示磁场的强弱和方向D.匀强磁场的磁感线平行等距,但这只是空间磁场内局部范围内的情况,整体的匀强磁场是不存在的8.如图所示,带电粒子以速度v刚刚进入磁感应强度为B的磁场,下列各图所标的带电粒子+q所受洛伦兹力F的方向中,正确的是A.B.C.D.9.如图所示是一个常用的耳机,它内部有一个小线圈紧贴着一片塑料薄膜,在薄膜下面有一块很小的磁铁,磁铁的磁场对通电线圈产生作用力,使线圈运动,导致覆盖其上的薄膜发生振动,从而产生声波。
选修3-1物理基础知识考核(3)
一、磁场
1、磁场的物质性:与电场一样,是一种看不见而又客观存在的特殊物质。
存在于(磁体、通电导线、运动电荷、变化电场、地球)的周围。
2、基本特性:对放入其中的(磁极、电流、运动的电荷)有力的作用。
(注:电场的性质是对放入其中的电荷有力的作用)
3、磁场方向规定:
①磁感线在该点的切线方向;
②磁场中任一点小磁针北极(N极)的受力方向或小磁针静止时N的所指方向。
③磁体或螺线管:外部(N→S),内部(S→N)组成闭合曲线;
[注:这点与静电场电场线(不成闭合曲线)不同。
]
④用安培定则判断
4、磁感线——为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.(1)疏密表示.(2)是闭合的曲线。
(3)每一点切线方向表示该点磁场的方向,也就是的方向.
(4)匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.
5、典型磁场形状(安培定则应用)
6、磁场的强弱用磁感应强度B 来表示:(条件:B⊥L)单位:T
注:(1)定义方法,特点:
(2)B的方向是磁场方向,不是式中的方向。
7、磁通量:定义式[S垂直于磁场方向的投影(有效面积)]
或(θ是B与S的夹角) (磁通量是标量,但有方向)
[说明:对某一面积的磁通量,一定要指明“是哪一个面积的、方向如何”,
该面积总磁通需要做正负方向代数和。
]
物理意义:
8、磁场力
(1)安培力:磁场对电流的作用力。
公式:(B L)方向:定则
注:1). L为
2). 两平行通电导线的相互作用:同向电流,反向电流
3). 安培力做功与路径,通过做功传递能量(磁场不提供能量)。
(2)洛仑兹力:磁场对运动电荷的作用力。
1). 建立物理模型:(根据安培力推导洛伦兹力的表达式)
(注:电荷的定向移动形成电流,安培力力是洛伦兹力的宏观表现,
洛伦兹力是安培力的微观实质。
)
2). 洛伦兹力的特点
①,②
3). 粒子在洛伦兹力作用下的运动情况
①当v⊥B时,。
②当v// B时,。
③当v与B成夹角时,。
二、带电粒子在匀强磁场中的运动
(1)无穷边界磁场
(2)有界磁场
①单边界②圆形边界
③双边界
(3)复合场
1). 当带电粒子所受合外力为零时,将做匀速直线运动或处于静止状态.合外力恒定且与
初速同向时做匀变速直线运动,常见的情况有:
①洛伦兹力为零(即v∥B),重力与电场力平衡,做匀速直线运动;或重力与电场力的
合力恒定,做匀变速运动.
②洛伦兹力F与重力和电场力的合力平衡,做匀速直线运动.
2). 带电粒子所受合外力做向心力,带电粒子做匀速圆周运动时.由于通常情况下,重
力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力是以上力的合力.
3). 当带电粒子受的合力大小、方向均不断变化时,粒子做非匀变速曲线运动
三、“电偏转”和“磁偏转”比较:
产生条件:
力的特征:
运动性质:
运动特征:
四、电磁场的应用
(1)速度选择器(2)电磁流量计
(3)磁流体发电机(4)回旋加速器
(5)霍尔效应(6)质谱仪
五、磁场物理结论及物理学史
1、1820年,丹麦物理学家发现电流的磁效应(电生磁)。
2、法国物理学家提出定则,判断电流与磁场的相互关系;
及定则判断通电导线在磁场中的受力方向。
3、荷兰物理学家提出运动的电荷产生磁场和磁场对运动的电荷有力
的作用。
4、英国物理学家发现电子,并提出原子的枣糕模型。
5、法国物理学家提出假说,揭示磁现象的电本质。
小贴士:安培分子环型电流假说:分子、原子等物质的微粒内部存在一种环形电流,叫分子电流。
这种环形电流使得每个物质微粒成为一个很小的磁体。
这就是安培分子电流假说。
本质:(磁体、电流、运动电荷)的磁场都是由运动电荷产生的,并通过磁场相互作用的。
实验:奥斯特在沿南北方向放置
......的导线下面放置小磁针,导线通电后,小磁针发生偏转。
罗兰实验:把大量的电荷加在橡胶盘上,后让盘绕中心轴线转动,发现带电盘转动时,小磁针发生了偏转,而且改变转盘方向,小磁针偏转方向也发生转变。
一切磁场都来源于运动电荷,揭示了磁现象的电本质。