第17章 勾股定理 测试卷
- 格式:doc
- 大小:104.50 KB
- 文档页数:4
人教版八年级数学下册第十七章 勾股定理单元测试训练卷一、选择题(共10小题,每小题4分,共40分)1. 下列各组数中,为勾股数的是( )A .1,2,3B .3,4,5C .1.5,2,2.5D .5,10,122. 如图所示的数轴上的四点E ,F ,G ,H 中,表示实数- 5 的点是( )A .点EB .点FC .点GD .点H3. 若一直角三角形的两直角边的长分别是4和6,则它的斜边长为( )A .6B .213C .37D .104. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A .365 B .1225C .94D .3345. 如图,矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为( )A .14B .16C .20D .286. 如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A .1013 13B .913 13C .813 13D .713 13 7. 若△ABC 的三边长a ,b ,c 满足(a -b)2+|a 2+b 2-c 2|=0,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .无法确定8. 如图是台阶的示意图,已知每级台阶的宽度都是30 cm ,每级台阶的高度都是15 cm ,连接AB ,则AB 等于( )A .195 cmB .200 cmC .205 cmD .210 cm 9. 如图是一块长、宽、高分别是6 cm ,4 cm ,3 cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需爬行的最短路程是( )A .(3+213 ) cmB .97 cmC .85 cmD .109 cm 10. 在△ABC 中,AB =10,AC =210BC 边上的高AD =6,则另一边BC 等于( )A .10B .8C .6或10D .8或10 二.填空题(共6小题,每小题4分,共24分)11. 在△ABC 中,∠ACB =90°,AC =6,AB =10,BC =________.12. 在平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为__ __.13. 公元3世纪初,中国古代数学家赵爽注《周髀算经》时创造了“赵爽弦图”.如图,设勾a =6,弦c =10,则小正方形ABCD 的面积是__ __.14. 如图,在△ABC 中,∠B =45°,AB 的垂直平分线交AB 于点D ,交BC 于点E(BE >CE),点F 是AC 的中点,连接AE ,EF ,若BC =7,AC =5,则△CEF 的周长为________.15. 如图,长方体的长、宽、高分别为8 cm,4 cm,5 cm.一只蚂蚁沿着长方体的表面从点A 爬到点B.则蚂蚁爬行的最短路径的长是__ __cm.16. 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是__ _.三.解答题(共6小题,56分)17.(6分) 如图,在四边形ABCD中,已知AB=1,BC=2,CD=2,AD=3,且AB⊥BC,试说明:AC⊥CD.18.(8分) 如图,有一个长方形的场院ABCD,其中AB=9 m,AD=12 m,在B处竖直立着一根电线杆,在电线杆上距地面8 m的E处有一盏电灯,则点D到灯E的距离是多少?19.(8分) 如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.20.(10分) 如图,在一条公路CD的同一侧有A,B两个村庄,A,B到公路的距离AC,BD分别为50 m,70 m,且C,D两地相距50 m,若要在公路旁(在CD上)建一个集贸市场(看作一个点),求A,B两村庄到集贸市场的距离之和的最小值.21.(12分) 如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?22.(12分) 阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30 cm,然后分别以D,C为圆心,以50 cm与40 cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是__ __;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).参考答案1-5BABAD 6-10DCACC11.8 12. 513. 414. 8 15. 14516. 1017.解:在△ABC 中,AB ⊥BC ,根据勾股定理得AC 2=AB 2+BC 2=12+22=5, ∵在△ACD 中,AC 2+CD 2=5+4=9,AD 2=9,∴AC 2+CD 2=AD 2,∴根据勾股定理的逆定理得,△ACD 为直角三角形,∴AC ⊥CD.18.解:∵在Rt △ABD 中,∠BAD =90°,∴BD =AB 2+AD 2 =92+122 =15(m).又∵在Rt △BDE 中,∠EBD =90°,∴ED =EB 2+BD 2 =82+152 =17(m),∴点D 到灯E 的距离是17 m19.解:在Rt △BDC 中,BC 2=BD 2+DC 2,在Rt △ABC 中,AC 2=AB 2+BC 2,∴AC 2=AB 2+BD 2+DC 2,又∵BD =DC ,∴AC 2=AB 2+2CD 2=42+2×62=88,∴AC =222 ,即AC 的长为22220.解:设A 关于直线CD 的对称点为A′,连接A′B ,则A′B 即为A ,B 两村到集贸市场的距离之和的最小值,过A′作BD 的垂线A′H 交BD 的延长线于点H ,在Rt △BHA′中,BH =50+70=120 (m),A′H =50 m ,∴A′B =1202+502=130(m),故A ,B 两村庄到集贸市场的距离之和的最小值为130 m.21.解:由题意可知∠ADB =90°.在Rt △ABD 中,∵AB =260 km ,AD =100 km ,∴BD =2602-1002=240(km).∴台风中心从B 点移动到D 点所用的时间为24015=16(h). 在D 点休息的游人应在台风中心距D 点30 km 前撤离,30÷15=2(h),16-2=14(h). ∴在接到台风警报后的14 h 内撤离才可以免受台风的影响.22.解:(1)∵CD =30,DE =50,CE =40,∴CD 2+CE 2=302+402=502=DE 2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理,故答案为:勾股定理的逆定理(2)由作图方法可知,QR=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC +∠RCS+∠QSC=180°,即∠QCR+∠QCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
人教版八年级数学下册额第十七章《勾股定理》测试卷(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。
第十七章勾股定理达标测试卷时间:90分钟分值:120分得分:__________一、选择题(本大题10小题,每小题3分,共30分)1.如图1,在△ABC中,∠B=90°,AC=2,则AB2+BC2的值是()图1A.2 B.3 C.22D.42.如图2,从电线杆上离地面5 m的C处向地面拉一条长为7 m的钢缆,则地面钢缆固定点A 到电线杆底部点B的距离是()图2A.24 B.12 C.74D.263.如图3,在数轴上取一点A,使OA=5,过点A作直线l⊥OA,在直线l上取点B,使AB=2,以点O为圆心,OB长为半径作弧,交数轴于点C,则点C表示的数是()图3A.21B.29C.7 D.294.下列各组数中,能作为直角三角形的三边长的是()图4A .1,2,3B .4,5,6C .3 ,2 ,5D .6,8,125.如图4,长为8 cm 的橡皮筋放置在水平面上,固定两端点A 和B ,然后把AB 的中点C 垂直向上拉升3 cm 至点D ,则橡皮筋被拉长了( )A .2 cmB .3 cmC .4 cmD .5 cm6.已知△ABC 的三边长分别为a ,b ,c ,且a +b =4,ab =1,c =14 ,则△ABC 的形状为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不能确定7.下列命题的逆命题是真命题的是( ) A .若a =b ,则|a |=|b | B .全等三角形的周长相等 C .若a =0,则ab =0D .有两边相等的三角形是等腰三角形8.如图5,在△ABC 中,AB =AC =5,CD =1,BD ⊥AC ,则BC 的长度为( )图5A .3B .4C .10D .179.如图6,正方形ABCD 的边长为2,其面积记为S 1,以CD 为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…,按照此规律继续下去,则S 9的值为( )图6A .⎝⎛⎭⎫12 6B .⎝⎛⎭⎫12 7C .⎝⎛⎭⎫12 8D .⎝⎛⎭⎫12 910.如图7,在△ABC 中,∠ABC =90°,∠A =30°,BC =1,M ,N 分别是AB ,AC 上的任意一点,则MN +NB 的最小值为( )图7A .32B .2C .32 +34D .32二、填空题(本大题5小题,每小题3分,共15分) 11.请写出一组勾股数:__________.12.(2022朝阳)如图8,在Rt △ABC 中,∠ACB =90°,AB =13,BC =12,分别以点B 和点C 为圆心,大于12 BC 的长为半径作弧,两弧相交于E ,F 两点,作直线EF 交AB 于点D ,连接CD ,则△ACD 的周长是__________.图813.(2022黑龙江)如图9,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,则CD =__________.图914.如图10,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则木板的长为__________米.图1015.如图11,AB为订书机的托板,压柄BC绕着点B旋转,连接杆DE的一端点D固定,点E 从A处向B处滑动,在滑动的过程中,DE的长度保持不变,在图11①中,BD=6 cm,BE=15 cm,∠B=60°,现将压柄BC从图11①的位置旋转到与底座AB垂直,如图11②所示,则此过程中点E滑动的距离为__________cm.图11三、解答题(本大题7小题,共75分)16.(8分)在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边.(1)若a=b=5,求c的值;(2)若a=5,∠A=30°,求b,c的值.17.(8分)图12是半圆形隧道的截面示意图,已知半圆的直径为5米,有一辆装满货物的卡车,高2.6米,宽1.4米,要从此隧道经过,则该卡车是否能通过隧道?请说明理由.图1218.(9分)如图13,在4×3的正方形网格中,每个小正方形的边长都为1,点A,B,C,D都在格点上.(1)线段AB的长为__________;(2)在图中作出线段EF,使得点E,F都在格点上,且EF的长为13,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.图1319.(11分)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图14①,②(图②为图①的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),求门槛AB的长.图1420.(11分)如图15,已知等腰三角形ABC的底边BC=15 cm,AH⊥BC于点H,D是腰AB上一点,且CD=12 cm,BD=9 cm,求AH的长.图1521.(13分)如图16,某小区有两个喷泉A,B,两个喷泉的距离为250 m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为120 m,BM的长为150 m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)求喷泉B到小路AC的最短距离.图1622.(15分)如图17,在△ABC中,∠ACB=90°,AB=10 cm,BC=6 cm,若点P从点A出发,以4 cm/s的速度沿折线A-C-B-A运动,设运动时间为t s(t>0).(1)填空:AC的长为__________cm;(2)若点P在AC上,且满足△BCP的周长为14 cm,求此时t的值;(3)若点P在∠BAC的平分线上,求此时t的值.第十七章 达标测试卷1.A 2.D 3.B 4.C 5.A 6.C 7.D 8.C 9.A 10.A 11.5,12,13(答案不唯一) 12.18 13.314.2.5 15.(15-315 )16.解:(1)在Rt △ABC 中,∠C =90°,a =b =5,∴c =a 2+b 2 =52+52 =52 .(2)在Rt △ABC 中,∠C =90°,a =5,∠A =30°,∴c =2a =10.∴b =c 2-a 2 =102-52 =53 . 17.解:不能.理由如下:如答图1,OD 为卡车宽度的一半,过点D 作CD ⊥AB 交半圆弧于点C ,连接OC .答图1由题意,得OD =0.7米,AB =5米,OC =12 AB =2.5米.在Rt △OCD 中,CD =OC 2-OD 2 =2.4米. ∵2.4<2.6,∴这辆卡车不能通过隧道. 18.解:(1)5 .(2)作线段EF 如答图2所示.(答案不唯一)答图2AB ,CD ,EF 三条线段能构成直角三角形.理由如下:∵CD 2=22+22=8,AB 2=12+22=5,EF 2=(13 )2=13,∴CD 2+AB 2=EF 2. ∴AB ,CD ,EF 三条线段能构成直角三角形.19.解:如答图3,记AB 的中点为O ,过点D 作DE ⊥AB 于点E .答图3由题意,得OA =OB =AD =BC ,DE =10寸,OE =12 CD =1寸.设OA =OB =AD =BC =r 寸,则AB =2r 寸,AE =(r -1)寸. 在Rt △ADE 中,AE 2+DE 2=AD 2,即(r -1)2+102=r 2.解得r =50.5.∴2r =101.∴AB =101寸,即门槛AB 的长为101寸.20.解:∵BC =15,BD =9,CD =12,∴BC 2=BD 2+CD 2.∴△BCD 为直角三角形. ∴∠BDC =∠ADC =90°. 设AD =x ,则AC =AB =x +9.在Rt △ACD 中,AD 2+CD 2=AC 2,即x 2+122=(x +9)2.解得x =72 .∴AB =72 +9=252 .∵AB =AC ,AH ⊥BC ,∴BH =12 BC =152 .由勾股定理,得AH =AB 2-BH 2=⎝⎛⎭⎫2522-⎝⎛⎭⎫1522=10 (cm).∴AH 的长为10 cm.21.解:(1)在Rt △BMN 中,MN =120 m ,BM =150 m , ∴BN =BM 2-MN 2 =1502-1202 =90 (m). ∵AB =250 m ,∴AN =AB -BN =250-90=160 (m).在Rt △AMN 中,AM =AN 2+MN 2 =1602+1202 =200 (m). ∴AM +BM =200+150=350 (m).答:供水点M 到喷泉A ,B 需要铺设的管道总长为350 m. (2)∵AM =200 m ,BM =150 m ,AB =250 m ,∴AM 2+BM 2=AB 2. ∴△ABM 是直角三角形,且∠AMB =90°,即BM ⊥AM . 由垂线段最短可知,BM 即为所求的最短距离. 答:喷泉B 到小路AC 的最短距离为150 m. 22.解:(1)8.(2)如答图4.由题意,得AP =4t .答图4∴CP =AC -AP =8-4t .∵△BCP 的周长为14,∴BP =14-6-(8-4t )=4t . 在Rt △BCP 中,由勾股定理,得62+(8-4t )2=(4t )2. 解得t =2516 ,即t 的值为2516.(3)①当点P 在BC 边上时,如答图5,过点P 作PE ⊥AB 于点E .答图5∵点P 恰好在∠BAC 的平分线上,且∠C =90°,∴CP =EP .在Rt △ACP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,CP =EP , ∴△ACP ≌△AEP (HL). ∴AE =AC =8.∴BE =AB -AE =2.设CP =x ,则BP =6-x ,PE =x .在Rt △BEP 中,BE 2+PE 2=BP 2,即22+x 2=(6-x )2.解得x =83. ∴CP =83 .∴AC +CP =8+83 =323 .∴t =323 ÷4=83. ②当点P 沿折线A -C -B -A 运动到点A 时,点P 也在∠BAC 的平分线上,此时t =(8+6+10)÷4=6.综上,若点P 恰好在∠BAC 的平分线上,则此时t 的值为83 或6.。
第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
《第17章-勾股定理》单元测试卷《第17章勾股定理》单元测试卷一.选择题(每小题4分,共32分)1.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=52.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253.正方形的面积是4,则它的对角线长是()A.2 B .C .D.44.如果直角三角形两直角边为5:12,则斜边上的高与斜边的比为()A.60:13 B.5:12 C.12:13 D.60:1695.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B .C .D.46.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里 C.35海里 D.40海里7.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形8.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE的长是()A.3 B.4 C.5 D.6二.填空题(每小题4分,共20分)9.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为.10.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2= .11.正方形的对角线为4,则它的边长AB= .12.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为.13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有米.三.做一做(8分)14.如图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段,并写出这两条线段的长度.第2页(共6页)第3页(共6页)《第17章勾股定理》单元测试卷一.选择题(每小题4分,共32分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A.小丰认为指的是屏幕的长度 B.小丰的妈妈认为指的是屏幕的宽度C.小丰的爸爸认为指的是屏幕的周长 D.售货员认为指的是屏幕对角线的长度3.如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形 B.锐角三角形 C.直角三角形 D.等腰三角形5.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个7.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形8.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45°D.60°9.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm210.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里 C.35海里 D.40海里二.填空题(每小题4分,共20分)11.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为,该定理的结论其数学表达式第4页(共6页)是.12.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.14.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.15.一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是三角形.16.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.三、解答题(共46分)19.(6分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).20.(6分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC2的值.21.(8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?22.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?第5页(共6页)四、创新探索题23.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.第6页(共6页)。
人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。
第十七章 勾股定理17.1 勾股定理一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.一个直角三角形有两条边长分别为6和8,则它的第三条边长可能是 A .8B .9C .10D .11【答案】C2.Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为 A .8B .4C .6D .无法计算【答案】A【解析】利用勾股定理,由Rt △ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得 AB 2+AC 2+BC 2=2BC 2=2×22=8.故选A .3.如图,在四边形ABCD 中,∠BAD =90°,∠DBC =90°,AD =4,AB =3,BC =12,则CD 为A .5B .13C .17D .18【答案】B【解析】∵∠BAD =90°,∴△ADB 是直角三角形,∴BD =22AD AB +=2234+=5,∵∠DBC =90°,∴△DBC 是直角三角形,∴CD =22BD BC +=22512+=13,故选B .4.如图的三角形纸片中,AB =8,BC =6,AC =5,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长是A .7B .8C .11D .14【答案】A5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为2和10,则b 的面积为A .8B .10+2 C .23D .12【答案】D【解析】如图,∵a 、b 、c 都为正方形,∴BC =BF ,∠CBF =90°,AC 2=2,DF 2=10,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABC 和△DFB 中, 13BAC FDBBC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFB ,∴AB =DF ,在△ABC 中,BC2=AC 2+AB 2=AC 2+DF 2=2+10=12,∴b 的面积为12.故选D .6.如图,一棵大树被大风刮断后,折断处离地面8 m ,树的顶端离树根6 m ,则这棵树在折断之前的高度是A .18 mB .10 mC .14 mD .24 m【答案】A【解析】∵BC=8 m,AC=6 m,∠C=90º,∴AB=22228610BC AC+=+=m,∴树高10+8=18 m.故选A.7.如图,盒内长、宽、高分别是6 cm、3 cm、2 cm,盒内可放木棒最长的长度是A.6 cm B.7 cm C.8 cm D.9 cm【答案】B8.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为A.45B.85C.165D.245【答案】C【解析】S△ABC=12×BC×AE=12×BD×AC,∵AE=4,AC=2243+=5,BC=4,即12×4×4=12×5×BD,解得BD=165.故选C.二、填空题:请将答案填在题中横线上.9.已知在△ABC中,AB=9,AC=10,BC=17,那么边AB上的高等于__________.【答案】8【解析】如图,作CD⊥AB交AB的延长线于D点,设CD=x,AD=y,在直角△ADC中,AC2=x2+y2,在直角△BDC中,BC2=x2+(y+AB)2,解方程得y=6,x=8,即CD=8,∵CD即AB边上的高,∴AB边上的高等于8.故答案为:8.10.如图,在△ABC中,∠C=90°,AC=6,AB=10,现分别以A、B为圆心,大于12AB长为半径作弧,两弧相交于点M、N,作直线MN,分别交AB、BC于点D、E,则CE的长为__________.【答案】7 411.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为__________.【答案】23【解析】∵∠BAC =120°,AB =AC ,∴△ABM 绕点A 逆时针旋转120°至△APC ,如图,连接PN ,∴△ABM ≌△ACP ,∴∠B =∠ACP =30°,PC =BM =2,∠BAM =∠CAP ,∴∠NCP =60°,∴∠CPD =30°. ∵∠MAN =60°,∴∠BAM +∠NAC =∠NAC +∠CAP=60°=∠MAN ,∵AM =AP ,AN =AN ,∴△MAN ≌△PAN , ∴MN =PN ,过点P 作BC 的垂线,垂足为D ,∴CD =12PC =1,DN =CN -CD =4-1=3,∴PD =3, ∴PN =22PD DN +=22(3)3+=23,∴MN =PN =23.故答案为:23.12.如图,△ABC 中,∠A =90°,AB =3,AC =6,点D 是AC 边的中点,点P 是BC 边上一点,若△BDP 为等腰三角形,则线段BP 的长度等于__________.【答案】32或5在△BDC 中,设BH =x 2222(32)3(35)x x =-,解得:5x =在△BDH 中,229(32)()55DH =-=, 在△PDH 中,设PH =y ,则BP =PD =5y -,由勾股定理得222()()55y y -+=,解得:5y =. ③当BP 为底时,则BD =PD =32,而当P 点与C 点重合时,PD =3,且点P 是BC 边上一点,不是延上长线上的,所以不存在.故答案为:32或5. 三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:2222AB CD AD BC +=+.14.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?【解析】在Rt ABC △中,224AC AB BC =-=米,故可得地毯长度=AC +BC =7米, ∵楼梯宽2米,∴地毯的面积=14平方米,故这块地毯需花14×30=420元.答:地毯的长度需要7米,需要花费420元.15.如图,在一棵树(AD)的10 m高B处有两只猴子,其中一只爬下树走向离树20m的池塘C处,而另一只则爬到树顶D后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?16.如图,A城气象台测得台风中心在A城正西方向320 km的B处,以每小时40 km的速度向北偏东60°的BF方向移动,距离台风中心200 km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【解析】(1)如图,由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320 km,则AC=160 km,因为160<200,所以A城要受台风影响.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×105 5.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD =n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a+b+c=0,且abc≠0,则a+c2b=-12;②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;③若a+b+c=0,且abc≠0,则abc>0;④若|a|>|b|,则a-ba+b>0.其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个. 16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程: (1)4-3(2-x )=5x ;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α. 所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α. 所以∠BOE =2∠COF . (2)∠BOE =2∠COF 仍成立. 理由:设∠AOC =β, 则∠AOE =90°-β,又因为OF 是∠AOE 的平分线, 所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β). 所以∠BOE =2∠COF . 25.解:(1)0.5x ;(0.65x -15) (2)(165-123)÷6×30=210(度), 210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元. (3)设10月的用电量为a 度. 根据题意,得0.65a -15=0.55a , 解得a =150.答:该用户10月用电150度. 26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290, 所以点D 表示的数为-290. (4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
第17章《勾股定理》单元测试卷含答案解析参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A. 4 B.8 C.10 D.12分析:利用勾股定理即可解答.解答:解:设斜边长为x,则一直角边长为x﹣2,依照勾股定理列出方程:62+(x﹣2)2=x2,解得x=10,故选C.点评:本题考查了利用勾股定明白得直角三角形的能力.2.(3分)小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A.小丰认为指的是屏幕的长度B.小丰的妈妈认为指的是屏幕的宽度C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度考点:勾股定理的应用.分析:依照电视机的适应表示方法解答.解答:解:依照29英寸指的是荧屏对角线的长度可知售货员的说法是正确的.故选D.点评:本题考查了勾股定理的应用,解题时了解一个常识:通常所说的电视机的英寸指的是荧屏对角线的长度.3.(3分)如图中字母A所代表的正方形的面积为()A. 4 B.8 C.16 D.64考点:勾股定理.分析:依照勾股定理的几何意义解答.解答:解:依照勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,因此A=289﹣225=64.故选D.点评:能够运用勾股定理发觉并证明结论:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.运用结论能够迅速解题,节约时刻.4.(3分)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形考点:相似三角形的性质.分析:依照三组对应边的比相等的三角形相似,依据相似三角形的性质就能够求解.解答:解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形.故选C.点评:本题要紧考查相似三角形的判定以及性质.5.(3分)一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D. 25cm考点:勾股定理.分析:设另一条直角边是a,斜边是c.依照另一条直角边与斜边长的和是49cm,以及勾股定理就能够列出方程组,即可求解.解答:解:设另一条直角边是a,斜边是c.依照题意,得,联立解方程组,得.故选D.点评:注意依照已知条件结合勾股定理列方程求解.解方程组的方法能够把①方程代入②方程得到c﹣a=1,再联立解方程组.6.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D. 5个考点:勾股定理的逆定理;三角形内角和定理.分析:运算出三角形的角利用定义判定或在明白边的情形下利用勾股定理的逆定理判定则可.解答:解:①,依照勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,依照勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,依照勾股定理的逆定理不是直角三角形,故不是.故选A.点评:本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判定.7.(3分)在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形考点:勾股定理的逆定理;完全平方公式.分析:依照勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么那个是直角三角形判定则可.假如有这种关系,那个确实是直角三角形.解答:解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.点评:本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.(3分)直角三角形斜边的平方等于两条直角边乘积的2倍,那个三角形有一个锐角是()A.15° B.30° C.45°D.60°考点:勾股定理.分析:依照斜边的平方等于两条直角边乘积的2倍,以及勾股定理能够列出两个关系式,直截了当解答即可.解答:解:设直角三角形的两直角边是a、b,斜边是c.依照斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,依照勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则那个三角形是等腰直角三角形,因而那个三角形的锐角是45°.故选C.点评:已知直角三角形的边长问题,不要不记得三边的长,满足勾股定理.9.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D. 12cm2考点:勾股定理;翻折变换(折叠问题).分析:依照折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就能够求解.解答:解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,依照勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.点评:本题考查了利用勾股定明白得直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.10.(3分)已知,如图,一轮船以16海里/时的速度从港口A动身向东北方向航行,另一轮船以12海里/时的速度同时从港口A动身向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D. 40海里考点:勾股定理的应用;方向角.分析:依照方位角可知两船所走的方向正好构成了直角.然后依照路程=速度×时刻,得两条船分别走了32,24.再依照勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,依照勾股定理得:=40(海里).故选D.点评:熟练运用勾股定理进行运算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2008•湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分闻名的定理,那个定理称为勾股定理,该定理的结论其数学表达式是a2+b2=c2.考点:勾股定理的证明.专题:证明题.分析:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.解答:解:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.那个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点评:本题是用数形结合来证明勾股定理,锤炼了同学们的数形结合的思想方法.12.(3分)如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10.考点:勾股定理;等腰三角形的性质.分析:依照等腰三角形的三线合一得BD=8,再依照勾股定理即可求出AB的长.解答:解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.点评:注意等腰三角形的三线合一,熟练运用勾股定理.13.(3分)如图,某人欲横渡一条河,由于水流的阻碍,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.考点:勾股定理的应用.专题:应用题.分析:从实际问题中找出直角三角形,利用勾股定明白得答.解答:解:依照图中数据,运用勾股定理求得AB===480米.点评:考查了勾股定理的应用,是实际问题但比较简单.14.(3分)小华和小红都从同一点O动身,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为15米.考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形依照勾股定明白得答.解答:解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,依照勾股定理得AB====15m.点评:本题专门简单,只要依照题意画出图形即可解答,表达了数形结合的思想.15.(3分)一个三角形三边满足(a+b)2﹣c2=2ab,则那个三角形是直角三角形.考点:勾股定理的逆定理.分析:化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.解答:解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,因此a2+b2=c2,则那个三角形为直角三角形.故答案为:直角.点评:考查了勾股定理逆定理的运用,是基础知识比较简单.16.(3分)木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,那个桌面合格(填”合格”或”不合格”).考点:勾股定理的应用.分析:只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,依照勾股定理直截了当解答.解答:解:==68cm,故那个桌面合格.点评:本题考查的是勾股定理在实际中的应用,需要同学们结合实际把握勾股定理.17.(3分)直角三角形一直角边为12cm,斜边长为13cm,则它的面积为30cm2.考点:勾股定理.分析:依照勾股定理求得其另一直角边的长,再依照面积公式即可求得其面积.解答:解:∵直角三角形一直角边为12cm,斜边长为13cm,∴另一直角边==5cm,∴面积=×5×12=30cm2.点评:解决本题的关键是依照勾股定理求得另一直角边的长.18.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是那个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.考点:平面展开-最短路径问题.分析:先将图形平面展开,再用勾股定理依照两点之间线段最短进行解答.解答:解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要依照题意判定出长方形的长和宽即可解答.三、解答题(共46分)19.(6分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形,构造出直角三角形,利用勾股定理求解.解答:解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.点评:本题考查正确运用勾股定理.善于观看题目的信息是解题以及学好数学的关键.20.(6分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC2的值.考点:勾股定理.分析:∵AD⊥BC于D,∴可得到两个直角三角形△ABD和△ADC,可利用勾股定理求得AD长,进而求得AC2的值.解答:解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.点评:本题需注意最后求的是AC2,因此在运算过程中都保持线段的平方即可.21.(8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要运算那个矩形鱼池的周长,你能关心小明算一算吗?考点:勾股定理的应用;二元一次方程组的应用;矩形的性质.专题:运算题.分析:依照矩形的面积公式得到长与宽的积,再依照勾股定理得到长与宽的平方和.联立解方程组求得长与宽的和可.解答:解:设矩形的长是a,宽是b,依照题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,因此矩形的周长是14×2=28m.点评:注意依照题意结合勾股定理联立解方程组,只需求得长与宽的和即可.22.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范畴内是受台风阻碍的区域.(1)A城是否受到这次台风的阻碍?什么缘故?(2)若A城受到这次台风阻碍,那么A城遭受这次台风阻碍有多长时刻?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC >200则A城不受阻碍,否则受阻碍;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范畴内差不多上受台风阻碍,再依照速度与距离的关系则可求时刻.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,因此A城要受台风阻碍;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,因此△ADG是等腰三角形,因为AC⊥BF,因此AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风阻碍的时刻是:t=240÷40=6(小时).点评:此题要紧考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时刻的关系等,较为复杂.四、创新探究题23.一只蚂蚁假如沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.考点:平面展开-最短路径问题.分析:要求长方体中两点之间的最短路径,最直截了当的作法,确实是将正方体展开,然后利用两点之间线段最短解答.解答:解:如图:依照题意,如上图所示,最短路径有以下三种情形:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,因此AB′2=25,即AB′=5cm.点评:此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
人教版数学八年级下册第十七章勾股定理测试卷一、单选题(共10题;共20分)1.判断以下各组线段为边作三角形,可以构成直角三角形的是()A. 6,15,17B. 7,12,15C. 13,15,20D. 7,24,252.如图,在的正方形网格中,的顶点都在格点上,下列结论错误的是A. B. C. D.3.下列各组数中不能作为直角三角形的三边长的是()A. 7,24,25B. ,4,5C. ,1,D. 40,50,604.小明搬来一架3.5 米长的木梯,准备把拉花挂在2.8 米高的墙上,则梯脚与墙脚的距离为( )A. 2.7 米B. 2.5 米C. 2.1 米D. 1.5 米5.如图,在中,是上一点,已知,,,,则的长为()A. B. C. D.6.将一根24cm 的筷子,置于底面直径为15cm,高8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h 的取值范围是()A. h≤15cmB. h≥8cmC. 8cm≤h≤17cmD. 7cm≤h≤16cm7.将面积为2π的半圆与两个正方形A和正方形B拼接如图所示,这两个正方形面积的和为()A. 4B. 8C. 2πD. 168.在四边形中,,若,则的大小为()A. B. C. D.9.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺A. 10B. 12C. 13D. 1410.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A. 360B. 400C. 440D. 484二、填空题(共10题;共30分)11.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为________12.如图,一棵大树在一次强台风中于离地面处折断倒下,树干顶部在距离根部处,这棵大树在折断前的高度为________ .13.三角形的三边长为a,b,c,满足(a+b)2﹣c2=2ab,则此三角形是________.14.没有上盖的圆柱盒高为10cm,周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为________cm.15.在△ABC中,∠C=90°,若AB= ,则AB2+AC2+BC2=________。
勾股定理检测卷(总分100分时间90分钟)一、选择题(每小题3分.共30分)1.在△ABC中.∠A、∠B、∠C的对应边分别是a、b、c.若∠A+∠C=90°.则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.已知一个直角三角形的三边的平方和为1800 cm2.则斜边长为( )A.30 cm B.80 cm C.90 cm D.120 cm3.如果a、6、c是一个直角三角形的三边.则a:b:c等于( )A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:134.如图.如果半圆的直径恰为直角三角形的一条直角边.那么半圆的面积为( ) A.4πcm2B.6πcm2C.12πcm2D.24πcm25.在△ABC中.∠C=90°.BD平分∠ABC.交AC于点D.若DC=3.BC=6.AD=5.则AB =( )A.9 B.10 C.11 D.126.如图.在Rt△ABC中.∠C=90°.D为AC上一点.且DA=DB=5.又△DAB的面积为10.那么DC的长是( )A.4 B.3 C.5 D.4.57.如图.梯子AB靠在墙上.梯子的底端A到墙根O的距离为7m.梯子的顶端B到地面的距离为24 m.现将梯子的底端A向外移动到A'.使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端B下降至B'.那∠BB'等于( )A.3m B.4 m C.5 m D.6 m8.聪聪在广场上玩耍.他从某地开始.先向东走10米.又向南走40米.再向西20米.又向南走40米.最后再向东走70米.则聪聪到达的终止点与原出发点间的距离是( )A.80米B.100米C.120米D.95米9.在Rt△ABC中.AC=6.BC-8.分别以它的三边为直径向上作三个半圆.则阴影部分面积为( )A.24 B.24πC.252D.252π10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三.股四.则弦五”的记载.如图(a)是由边长相等的小正方形和直角三角形构成的.可以用其面积关系验证勾股定理.图(b)是由图(a)放人长方形内得到的.∠BAC=90°.AB=3.AC=4.点D.E.F.G.H.I都在长方形KLMJ的边上.则长方形KLMJ的面积为( )A.90 B.100 C.110 D.121二、填空题(每小题3分.共24分)11.如图阴影部分正方形的面积是_______.12.若直角三角形中.一斜边比一直角边大2.且另一直角边长为6.则斜边为_______.13.如图.△ABC为等边三角形.AD为BC边上的高.且AB=2.则正方形ADEF的面积为_______.14.一长方形门框宽为1.5米.高为2米.安装门框时为了增强稳定性.在门框的对角线处钉上一根木条.这根木条至少_______米长.15.如图是一等腰三角形状的铁皮△ABC.BC为底边.尺寸如图.单位:cm.根据所给的条件.则该铁皮的面积为_______.16.如图是连江新华都超市一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线.小马虎从点A到点C共走了12 m.电梯上升的高度h为6m.经小马虎测量AB=2 m.则BE=_______.17.如图.P是正△ABC内一点.且PA=6.PB=8.PC=10.若将△PAC绕点A逆时针旋转后.得到△P'AB.则点P与P'之间的距离为PP'=_______.∠APB=_______度.18.如图.正方形ABDE、CDFI、EFGH的面积分别为25、9、16.△AEH、△BDC、△GFI 的面积分别为S1、S2、S3.则S1+S2+S3=_______.三、解答题(共46分)19.(6分)如图.△ABC中.∠ACB=90°.AC=7.BC=24.CD⊥AB于D.(1)求AB的长;(2)求CD的长.20.(6分)如图.已知AB=13.BC=14.AC=15.AD⊥BC于D.求AD长.21.(6分)某开发区有一空地ABCD.如图所示.现计划在空地上种草皮.经测量.∠B=90°.AB=3m.BC=4 m.AD=12 m.CD=13 m.若每种植1平方米草皮需要100元.问总共需要投入多少元?22.(6分)如图.两点A.B都与平面镜相距4米.且A.B两点相距6米.一束光由A点射向平面镜.反射之后恰好经过B点.求B点与入射点间的距离.23.(6分)如图.一块长方体砖宽AN=5 cm.长ND=10 cm.CD上的点B距地面的高BD=8 cm.地面上A 处的一只蚂蚁到B 处吃食.需要爬行的最短路径是多少?24.(8分)探索与研究:方法1:如图(a).对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得.所以∠BAE =90°.且四边形ACFD 是一个正方形.它的面积和四边形ABFE 面积相等.而四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图(b).是任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的.你能根据图示再写一种证明勾股定理的方法吗?25.(8分)(1)如图(1).在四边形ABCD 中.BC ⊥CD.∠ACD =∠ADC . 求证:AB +AC>22BC CD ;(2)如图(2).在△ABC 中.AB 上的高为CD.试判断(AC +BC)2与AB 2+4CD 2之间的大小关系.并证明你的结论.参考答案1—10 CADBB BBBAC11.22512.1013.314.2.515.60 cm216.817.6 15018.1819.(1)AB=25;(2)CD=6.72.20.AD=12.21.3600(元).22.5(米).24.略25.(1)略(2)大小关系是(AC+BC)2≥AB2+4CD2.。
单元测试(二)勾股定理
(时间:45分钟满分:100分)
一、填空题(本大题共6个小题,每小题3分,共18分)
1.在Rt△ABC中,∠C=90°,AC=5,BC=12,则AB=13.
2.命题“等边三角形是等腰三角形”的逆命题是等腰三角形是等边三角形,它是假命题(填“真”或“假”).3.若一个三角形的三边长分别为3,4,5,则这个三角形的面积为6.
4.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为64.
5.如图,在数轴上,点A,B表示的数分别为0,2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E表示的实数是5-1.
6.如图,一个三级台阶,它的每一级的长宽和高分别为20,3,2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.
二、选择题(本大题共8个小题,每小题4分,共32分)
7.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(A)
A.3,2, 5 B.3,4,5
C.6,8,10 D.5,12,13
8.等边三角形的边长为2,则该三角形的面积为(B)
A.4 3 B. 3 C.2 3 D.3
9.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是(D)
A.h≤17 B.h≥8
C.15≤h≤16 D.7≤h≤16
10.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是(B)
A.如果∠A-∠B=∠C,那么△ABC是直角三角形
B.如果a2=b2-c2,那么△ABC是直角三角形且∠C=90°
C.如果∠A∶∠B∶∠C=1∶3∶2,那么△ABC是直角三角形
D.如果a2∶b2∶c2=9∶16∶25,那么△ABC是直角三角形
11.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每
平方米a元,则购买这种草皮至少要(B)
A.450a元B.225a元C.150a元D.300a元
12.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距(D)
A.25海里B.30海里C.35海里D.40海里
13.一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米,如果梯子的顶端下滑0.4米,那么梯足将向外移(C)
A.0.6米B.0.7米C.0.8米D.0.9米
14.已知,如图,长方形ABCD中,AB=3 cm,AD=9 cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为(C)
A.3 cm2 B.4 cm2 C.6 cm2 D.12 cm2
三、解答题(本大题共5个小题,共50分)
15.(本小题满分8分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的值.
解:∵AD⊥BC,∴∠ADB=∠ADC=90°.
∵AB=3,BD=2,∴AD2=AB2-BD2=5.
∵DC=1,∴AC=AD2+DC2=5+1= 6.
16.(本小题满分10分)如图,在边长为1的正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:
(1)求△ABC的周长;
(2)试判断△ABC的形状.
解:(1)∵AB=12+22=5,
AC =42+22=25, BC =32+42=5, ∴△ABC 的周长为5+3 5. (2)∵AB 2+AC 2=BC 2=25, ∴∠BAC =90°.
∴△ABC 是直角三角形.
17.(本小题满分10分)在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺(如图).突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲离开原处的水平距离为6尺,请问水深多少?
解:设水深x 尺.由题意,得 x 2+62=(x +3)2, 解得x =4.5.
答:水深4.5尺.
18.(本小题满分10分)如图所示,已知等腰△ABC 的底边BC =20 cm ,D 是腰AB 上一点,且CD =16 cm ,BD =12 cm ,求△ABC 的周长.
解:在△BCD 中,BC =20 cm ,CD =16 cm ,BD =12 cm , ∵BD 2+DC 2=BC 2,
∴△BCD 是直角三角形,∠BDC =90°. 设AD =x ,则AC =x +12,
在Rt △ADC 中,∵AD 2+DC 2=AC 2, ∴x 2+162=(x +12)2, 解得x =14
3
.
∴△ABC 的周长为(143+12)×2+20=160
3(cm).
19.(本小题满分12分)如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD ′与BC 交于点E ,若AD =4,DC =3,求BE 的长.
解:∵四边形ABCD 是长方形,∴AB =CD ,∠B =∠D =90°. 由折叠可知,∠D =∠D′,CD =CD′. ∴∠B =∠D′,AB =CD′. 又∵∠AEB =∠CED′, ∴△ABE ≌△CD ′E(AAS). ∴AE =CE.
设BE =x ,则AE =CE =4-x , 即32+x 2=(4-x)2.解得x =7
8.
故BE 的长为7
8.。