EVIEWS用面板数据模型预测
- 格式:doc
- 大小:1.90 MB
- 文档页数:50
面板数据模型的分析及Eviews实现一、面板数据和模型概述在经济学研究和实际应用中,我们经常需要同时分析和比较横截面观察值和时间序列观察值结合起来的数据,即:数据集中的变量同时含有横截面和时间序列的信息。
这种数据被称为面板数据(panel data),它与我们以前分析过的纯粹的横截面数据和时间序列数据有着不同的特点。
简单地讲,面板数据因同时含有时间序列数据和截面数据,所以其统计质既带有时间序列的性质,又包含一定的横截面特点。
因而,以往采用的计量模型和估计方法就需要有所调整。
例1 表1中展示的数据就是一个面板数据的例子。
其他类似的例子还有:历次人口普查中有关不同年龄段的受教育状况;同行业不同公司在不同时间节点上的产值等。
这里,不同的年龄段和公司代表不同的截面,而不同时间节点数据反映了数据的时间序列性。
研究和分析面板数据的模型被称为面板数据模型(panel data model)。
它的变量取值都带有时间序列和横截面的两重性。
一般的线性模型只单独处理横截面数据或时间序列数据,而不能同时分析和对比它们。
面板数据模型,相对于一般的线性回归模型,其长处在于它既考虑到了横截面数据存在的共性,又能分析模型中横截面因素的个体特殊效应。
当然,我们也可以将横截面数据简单地堆积起来用回归模型来处理,但这样做就丧失了分析个体特殊效应的机会。
二、一般面板数据模型介绍 符号介绍:ity ——因变量在横截面i 和时间t 上的数值;j it x ——第j 个解释变量在横截面i 和时间t 上的数值;假设:有K 个解释变量,即K j ,,2,1 =;有N 个横截面,即N i ,,2,1 =; 时间指标T t ,,2,1 =。
记第i 个横截面的数据为⎪⎪⎪⎪⎪⎭⎫⎝⎛=iT i i i y y y y21; ⎪⎪⎪⎪⎪⎭⎫⎝⎛=K iT iT iT Ki i i K i i i i x x x x x x x x x X 212221212111;⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=iT i i i μμμμ 21 其中对应的i μ是横截面i 和时间t 时随机误差项。
eviews实验指导ARIMA模型建模与预测在数据分析和时间序列预测的领域中,ARIMA 模型是一种非常强大且实用的工具。
通过eviews 软件来实现ARIMA 模型的建模与预测,可以帮助我们更高效地处理和分析数据,做出更准确的预测。
接下来,让我们逐步深入了解如何使用eviews 进行ARIMA 模型的建模与预测。
首先,我们要明白什么是 ARIMA 模型。
ARIMA 全称为自回归移动平均整合模型(Autoregressive Integrated Moving Average Model),它由三个部分组成:自回归(AR)部分、差分(I)部分和移动平均(MA)部分。
自回归(AR)部分是指当前值与过去若干个值之间存在线性关系。
例如,如果说一个时间序列在 AR(2)模型下,那么当前值就与前两个值有关。
移动平均(MA)部分则表示当前值受到过去若干个随机误差项的线性影响。
差分(I)部分用于将非平稳的时间序列转化为平稳序列。
平稳序列在统计特性上,如均值、方差等,不随时间变化而变化。
在 eviews 中进行 ARIMA 模型建模与预测,第一步是数据的导入和预处理。
打开 eviews 软件后,选择“File”菜单中的“Open”选项,找到我们要分析的数据文件。
数据的格式通常可以是 Excel、CSV 等常见格式。
导入数据后,需要对数据进行初步的观察和分析,了解其基本特征,比如均值、方差、趋势等。
接下来,判断数据的平稳性。
这是非常关键的一步,因为 ARIMA 模型要求数据是平稳的。
我们可以通过绘制时间序列图、计算自相关函数(ACF)和偏自相关函数(PACF)来直观地判断数据的平稳性。
如果时间序列图呈现明显的趋势或周期性,或者自相关函数和偏自相关函数衰减缓慢,那么很可能数据是非平稳的。
对于非平稳的数据,我们需要进行差分处理。
在 eviews 中,可以通过“Quick”菜单中的“Generate Series”选项来实现差分操作。
基于EViews 6的面板数据计量分析对于面板数据,EViews 6 提供的估计方法有如下三种,最小二乘估计——LS - Least Squares (and AR)二阶段最小二乘估计——TSLS - Two-Stage Least Squares (and AR)动态面板数据模型的广义矩估计——GMM / DPD - Generalized Method of Moments/Dynamic Panel Data第1节“LS - Least Squares (LS and AR)”估计如果选择最小二乘方法估计面板数据模型,在“Equation Estimation”窗口中,须依次设置“Specification”、“Panel Options”和“Options”页面。
1.1“Specification”页面在“Specification”页面中,完成模型设定和估计样本时间范围的选择。
1 在“Equation specification”编辑区,指定模型的被解释变量、截距项和解释变量;2 在“Sample”编辑区,指定估计样本时间的范围。
1.2“Panel Options”页面设置模型中不可观测的双(单)因素效应,即面板数据回归模型的选择。
点击“Panel Options”该页面包含三方面内容。
1 效应设置在“Effects specification”选择区,设定面板数据模型的个体效应和时间效应,可选择的选项有“None”、“Fixed”和“Random”,分别表示“无效应”、“固定效应”和“随机效应”。
如果选择了“Fixed”或“Random”,EViews在输出结果中自动添加一个共同常数,即截距项,以保证效应之和为零。
否则,截距项必要时,须在“Specification”页面的“Equation specification”编辑区设定模型截距项。
2 GLS加权设置“GLS Weights”可以在下拉框中选择如下选项之一。
第一步:首先说明一下我的论文研究情景:1.时间:2006-20112.主题:资本监管对银行业的风险承担行为的影响(以工行,建行,中行,交行作为例子,4个cross sections)3.模型如下:dcap=c(1)+c(2)*drisk+c(3)*size+c(4)*roa+c(5)*riskt(-1)drisk=c(6)+c(7)*dcap+c(8)*size+c(9)*non+c(10)*capt(-1)有上面联立方程可以看出:dcap 和drisk 相互影响为内生变量size roa non riskt capt 为外生变量第二步:eviews6.0 实现过程:打开file-new-workfile按图操作:点击ok得到:点击object-new objectType选pool,ok:跳出的横框:Cross Section Identifiers 填入数据变量名称:(这是纵轴的)GSYHJSYHZGYHJTYH(前面提及的四大银行)然后点view-spreadsheet(stacked data)series list小框输入(这是横轴的变量名称)dcap drisk size roa non riskt capt点击edit+/- 手动输入数据或用import导入数据或粘贴复制进去也行:此时点object-new object,这次type选择system 用以联立方程分析:在system框内输入联立方程和工具变量:dcap=c(1)+c(2)*drisk+c(3)*size+c(4)*roa+c(5)*riskt(-1)drisk=c(6)+c(7)*dcap+c(8)*size+c(9)*non+c(10)*capt(-1)inst dcap drisk size roa non riskt(-1) capt(-1)点右上方的estimate,method选择TSLS(两阶段最小二乘估计):整个过程就是先建立workfile再建立panel data最后建立联立方程systemTSLS估计即可。
Eviews6.0面板数据操作一、数据输入1、创建工作文档。
如下图操作,在” workfile create”文本框的“workfile structure type”选择“balanced panel”,”panel specification”的”start date”和”end date”输入数据的起止期间,”wf”输入工作文档的名称,点击” OK”即跳出新建的工作文档a界面。
2、创建新对象。
操作如下图。
在”new object”文本框的”type of object”选择”pool”,”name for object ”输入新对象的名称。
创建成功后的界面如下面第3张图所示。
3、输入数据。
双击”workfile”界面的,跳出”pool”界面,输入个体。
一般输入方式为如下:若上海输入_sh,北京输入_bj,…。
个体输入完成后,点击该界面的键,在跳出的”series list”输入变量名称,注意变量后要加问号。
格式如下:y? x?。
点击”OK”后,跳出数据输入界面,如下面第4张图所示。
在这个界面上点击键,即可以输入或者从EXCEL处复制数据。
在输入数据后,记得保存数据。
保存操作如下:在跳出的“workfile save”文本框选择“ok”即可,则自动保存到我的文档。
然后在“workfile”界面如下会显示保存路径:d:\my documents\a.wf1。
若要保存到自己选择的路径下面,则在保存时选择“save as”,在跳出的文本框里选择自己要保存的路径以及命名文件名称。
4、单位根检验。
一般回归前要检验面板数据是否存在单位根,以检验数据的平稳性,避免伪回归,或虚假回归,确保估计的有效性。
单位根检验时要分变量检验。
(补充:网上对面板数据的单位根检验和协整检验存在不同意见,一般认为时间区间较小的面板数据无需进行这两个检验。
)(1)生成数据组。
如下图操作。
点击”make group”后在跳出的”series list”里输入要单位根检验的变量,完成后就会跳出如下图3所示的组数据。
这里N 指截面个体的个数,T 时期个数,k 是解释变量个数。
如果计算的F 统计量的值大于设定的显著性水平的临界值(如5%或10%),拒绝原假设,选择个体固定效应模型更合适;如果小于临界值,接受原假设,混合数据模型更适合。
在stata 中计算临界值disp invFtail(n1,n2,p) 或卡方disp invchi2tail(n,p) 再构造两个F 统计量以检验方程是否符合混合模型、变截矩模型或变系数模型。
3121()/(1)(1)[(1)(1),(*(1)]/(*(1)
S S N k F F N k N T k S N T k −−+=−+−−−−∼如果上述值大于给定的临界值,则拒绝原假设混合数据模型,对不变系数的模型作进一步的检验
2111()/(1)[(1),(*(1)]/(*(1)
S S N k F F N k N T k S N T k −−=
−−−−−∼如果上述值大于给定的临界值,则拒绝原假设,用变系数模型合适,否则,用变截距模型较合适。
S1指变系数模型残差平方和,S2指固定效应模型残差平方和,S3指混合数据模型残差平方和。
第8讲用面板数据模型预测1.面板数据定义时间序列数据或截面数据都是一维数据。
时间序列数据是变量按时间得到的数据;截面数据是变量在固定时点的一组数据。
面板数据是同时在时间和截面上取得的二维数据。
面板数据也可以定义为相同截面上的个体在不同时点的重复观测数据或者称为纵向变量序列(个体)的多次测量。
所以,面板数据(panel data)也称时间序列截面数据(time series and cross section data)或混合数据(pool data)。
面板数据示意图见图1。
面板数据从横截面(cross section)看,是由若干个体(entity, unit, individual)在某一时点构成的截面观测值,从纵剖面(longitudinal section)看每个个体都是一个时间序列。
图1 N=15,T=50的面板数据示意图图2是1978~2005年中国各省级地区消费性支出占可支配收入比率序列图。
图2 1978-2005年中国各省级地区消费性支出占可支配收入比率序列图(价格平减过)面板数据用双下标变量表示。
例如y i t, i = 1, 2, …, N; t = 1, 2, …, Ti对应面板数据中不同个体。
N表示面板数据中含有N个个体。
t对应面板数据中不同时点。
T表示时间序列的最大长度。
若固定t不变,y i ., ( i = 1, 2, …, N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, …, T)是纵剖面上的一个时间序列(个体)。
这里所讨论的面板数据主要指时期短而截面上包括的个体多的面板数据。
利用面板数据建立模型的好处是:(1)由于观测值的增多,可以增加估计量的抽样精度。
(2)对于固定效应回归模型能得到参数的一致估计量,甚至有效估计量。
(3)面板数据建模比单截面数据建模可以获得更多的动态信息。
例如1990-2000年30个省份的农业总产值数据。
固定在某一年份上,它是由30个农业总产值数字组成的截面数据;固定在某一省份上,它是由11年农业总产值数据组成的一个时间序列。
面板数据由30个个体组成。
共有330个观测值。
对于面板数据y i t, i = 1, 2, …, N; t = 1, 2, …, T,如果每个个体在相同的时期内都有观测值记录,则称此面板数据为平衡面板数据(balanced panel data)。
若面板数据中的个体在相同时期内缺失若干个观测值,则称此面板数据为非平衡面板数据(unbalanced panel data)。
案例1:1996-2002年中国东北、华北、华东15个省级地区的居民家庭固定价格的人均消费(CP)和人均收入(IP)关系研究(file:5panel02)1996-2002年中国东北、华北、华东15个省级地区的居民家庭固定价格的人均消费(CP)和人均收入(IP)数据见file:panel02。
数据是7年的,每一年都有15个数据,共105组观测值。
人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。
人均消费面板数据按个体连线见图3,按截面连线见图4。
人均收入面板数据按个体连线见图5,按截面连线见图6。
图3 15个省级地区的人均消费序列(个体)(file:5panel02)图4 7个人均消费横截面数据(含15个地区)(每条连线表示同一年度15个地区的消费值)图5 15个省级地区的人均收入序列(个体)(file:5panel02)图6 7个人均收入横截面数据(含15个地区)(每条连线表示同一年度15个地区的收入值)用CP表示消费,IP表示收入。
AH, BJ, FJ, HB, HLJ, JL, JS, JX, LN, NMG, SD, SH, SX, TJ,ZJ 分别表示安徽省、北京市、福建省、河北省、黑龙江省、吉林省、江苏省、江西省、辽宁省、内蒙古自治区、山东省、上海市、山西省、天津市、浙江省。
2000300040005000600070008000900010000110000400080001200016000IP(1996-2002)CPAH CPBJ CPFJ CPHB CPHLJ CPJL CPJS CPJX CPLN CPNMG CPSD CPSH CPSX CPTJ CPZJ图7 人均消费对收入的面板数据散点图(15个时间序列叠加)200040006000800010000120002000400060008000100001200014000IP(1996-2002)CP1996CP1997CP1998CP1999CP2000CP2001CP2002图8 人均消费对收入的面板数据散点图(7个截面叠加)15个地区7年人均消费对收入的面板数据散点图见图7和图8。
图7中每一种符号代表一个省级地区的7个观测点组成的时间序列。
相当于观察15个时间序列。
图8中每一种符号代表一个年度的截面散点图(共7个截面)。
相当于观察7个截面散点图的叠加。
为了观察得更清楚,图9给出北京和内蒙古1996-2002年消费对收入散点图。
从图中可以看出,无论是从收入还是从消费看内蒙古的水平都低于北京市。
内蒙古2002年的收入与消费规模还不如北京市1996年的大。
图10给出该15个省级地区1996和2002年的消费对收入散点图。
6年之后15个地区的消费和收入都有了相应的提高。
图9 北京和内蒙古1996-2002年消费对收入散点图 图10 1996和2002年15个地区的消费对收入散点图2.面板数据模型分类用面板数据建立的模型通常有3种,即混合回归模型、固定效应回归模型和随机效应回归模型。
2.1 混合回归模型(Pooled model )。
如果一个面板数据模型定义为, y it = α + X it 'β +εit , i = 1, 2, …, N ; t = 1, 2, …, T (1) 其中y it 为被回归变量(标量),α表示截距项,X it 为k ⨯1阶回归变量列向量(包括k 个回归量),β为k ⨯1阶回归系数列向量,εit 为误差项(标量)。
则称此模型为混合回归模型。
混合回归模型的特点是无论对任何个体和截面,回归系数α和β都相同。
如果模型是正确设定的,解释变量与误差项不相关,即Cov(X it ,εit ) = 0。
那么无论是N →∞,还是T →∞,模型参数的混合最小二乘估计量(Pooled OLS )都是一致估计量。
2.2 固定效应回归模型(fixed effects regression model )。
固定效应模型分为3种类型,即个体固定效应回归模型、时点固定效应回归模型和个体时点双固定效应回归模型。
下面分别介绍。
2.2.1个体固定效应回归模型(entity fixed effects regression model ) 如果一个面板数据模型定义为, y it = αi + X it 'β +εit , i = 1, 2, …, N ; t = 1, 2, …, T (3) 其中αi 是随机变量,表示对于i 个个体有i 个不同的截距项,且其变化与X it 有关系;X it 为k ⨯1阶回归变量列向量(包括k 个回归量),β为k ⨯1阶回归系数列向量,对于不同个体回归系数相同,y it 为被回归变量(标量),εit 为误差项(标量),则称此模型为个体固定效应回归模型。
个体固定效应模型(3)的强假定条件是,E(εit ∣αi , X it ) = 0, i = 1, 2, …, Nαi 作为随机变量描述不同个体建立的模型间的差异。
因为αi 是不可观测的,且与可观测的解释变量X it 的变化相联系,所以称(3)式为个体固定效应回归模型。
个体固定效应回归模型也可以表示为y it = α1 D 1 + α2 D 2 + … +αN D N + X it 'β +εit , t = 1, 2, …, T (4) 其中D i =⎩⎨⎧= 其他,,个个体如果属于第,,0 ..., ,2 ,1,1N i i注意:(1)在EViews5.0输出结果中αi 是以一个不变的常数部分和随个体变化的部分相加而成。
(2)在EViews 5.0以上版本个体固定效应对话框中的回归因子选项中填不填c 输出结果都会有固定常数项。
个体固定效应回归模型的估计方法有多种,首先设法除去αi 的影响,从而保证β估计量的一致性。
(详见第3节,面板数据模型估计方法。
)下面解释设定个体固定效应回归模型的原因。
假定有面板数据模型 y it = β0 + β1 x it +β2 z i +εit , i = 1, 2, …, N ; t = 1, 2, …, T (5) 其中β0为常数,不随时间、截面变化;z i 表示随个体变化,但不随时间变化的难以观测的变量。
以案例1为例,省家庭平均人口数就是这样的一个变量。
对于短期面板来说,这是一个基本不随时间变化的量,但是对于不同的省份,这个变量的值是不同的。
上述模型可以被解释为含有N 个截距,即每个个体都对应一个不同截距的模型。
令αi = β0 +β2 z i ,于是(5)式变为y it = αi + β1 x it +εit , i = 1, 2, …, N ; t = 1, 2, …, T (6) 这正是个体固定效应回归模型形式。
对于每个个体回归函数的斜率相同(都是β1),截距αi 却因个体不同而变化。
可见个体固定效应回归模型中的截距项αi 中包括了那些随个体变化,但不随时间变化的难以观测的变量的影响。
αi 是一个随机变量。
因为z i 是不随时间变化的量,所以当对个体固定效应回归模型中的变量进行差分时,可以剔除那些随个体变化,但不随时间变化的难以观测变量的影响,即剔出αi 的影响。
以案例1(file:5panel02)为例得到的个体固定效应模型估计结果如下: 输出结果的方程形式是t y 1ˆ= γˆ安徽+1ˆβ x 1t = (515.6 - 36.3) + 0.70 x 1t (55.0)t y 2ˆ= γˆ北京+1ˆβx 2t = (515.6 + 537.6) + 0.70 x 2t 。
(55.0)t y 15ˆ= γˆ浙江+1ˆβx 15t = (515.6 + 198.6) + 0.70 x 15t (55.0)R 2 = 0.99, SSE r = 2270386, t 0.05 (88) = 1.98从结果看,北京、上海、浙江是自发消费(消费函数截距)最大的3个地区。
图11 EViwes5.1个体固定效应回归模型的估计结果2.2.2 时点固定效应回归模型(time fixed effects regression model ) 如果一个面板数据模型定义为,y it = γt + X it 'β +εit , i = 1, 2, …, N (7) 其中γt 是模型截距项,随机变量,表示对于T 个截面有T 个不同的截距项,且其变化与X it 有关系;y it 为被回归变量(标量),εit 为误差项(标量),满足通常假定条件。