阀控式铅酸蓄电池
- 格式:doc
- 大小:16.50 KB
- 文档页数:2
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是两种常见的蓄电池类型,它们都有自己的优势和特点。
本文将从电池原理、性能特点、安全性、环保性和应用领域等方面对这两种蓄电池进行对比分析,帮助大家更好地了解这两种蓄电池,并选择适合自己需求的产品。
一、电池原理阀控式密封铅酸蓄电池是一种铅酸蓄电池,它使用硫酸和铅作为电解液,通过化学反应来产生电能。
它采用阀控技术,可以在正常使用状态下将电解液将气体和水分分离,保持电池内部压力恒定,避免了电解液泄漏的问题。
磷酸铁锂蓄电池是一种锂离子电池,它采用锂铁磷酸盐作为正极材料,通过锂离子在正负极之间的往复迁移来储存和释放电能。
相比于铅酸蓄电池,锂离子电池具有更高的能量密度和更长的循环寿命。
二、性能特点1. 能量密度:磷酸铁锂电池的能量密度通常高于铅酸蓄电池,因此在同样体积和重量下,锂离子电池可以存储更多的电能。
2. 循环寿命:磷酸铁锂电池的循环寿命通常高于铅酸蓄电池,可以经受更多次的充放电循环,因此更适合长周期使用场景。
3. 充放电效率:锂离子电池的充放电效率通常高于铅酸蓄电池,能够更快地完成充电和放电过程。
4. 自放电率:磷酸铁锂电池的自放电率通常低于铅酸蓄电池,可以在长时间不使用时保持较高的电荷状态。
三、安全性铅酸蓄电池由于使用硫酸和铅等有毒物质,一旦损坏可能会造成严重的环境污染,并且可能产生可燃气体导致爆炸。
而磷酸铁锂电池采用无毒无害的材料,安全性更高,可以更好地满足环保要求。
四、环保性磷酸铁锂电池采用无毒无害材料,更符合环保要求;而铅酸蓄电池在生产和处理过程中可能会产生大量的废弃物和有害物质,对环境造成较大的影响。
五、应用领域铅酸蓄电池由于成本低廉、使用成熟,广泛应用于汽车、UPS电源、太阳能储能系统等领域;而磷酸铁锂电池由于能量密度高、循环寿命长、安全可靠,逐渐在电动汽车、储能系统等高端领域得到应用。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池各有优势,适用于不同的应用场景。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是目前市场上主要应用的两种蓄电池技术。
本文将从以下几个方面对它们进行对比分析。
1.安全性能对比
阀控式密封铅酸蓄电池采用了阀控装置,可以有效控制内部气体的压力,防止气体泄
漏和电池爆炸的发生。
而磷酸铁锂蓄电池在安全性能方面更优秀,因为其正极材料热稳定
性高,不易产生热失控反应,能够有效抑制电池发生燃烧和爆炸的风险。
2.电池容量对比
阀控式密封铅酸蓄电池的电池容量一般较小,一般在10-30Ah左右。
而磷酸铁锂蓄电
池的电池容量相对较大,一般可以达到100Ah甚至更高。
3.循环寿命对比
阀控式密封铅酸蓄电池的循环寿命一般为200-300次,而磷酸铁锂蓄电池的循环寿命
可以达到2000次以上。
这是因为磷酸铁锂蓄电池具有较高的充放电效率和较低的自放电率,相对于铅酸蓄电池更耐循环。
4.充电性能对比
阀控式密封铅酸蓄电池充电过程中会产生氧气和氢气,需要通过安全阀将其排放出去。
而磷酸铁锂蓄电池充电时产生的气体很少,不需要特别的排气装置。
磷酸铁锂蓄电池具有
较高的充电效率,可以在较短时间内完成充电。
5.环境友好性对比
阀控式密封铅酸蓄电池中的铅、酸等成分对环境造成一定的污染,需要特别注意处理
和回收。
而磷酸铁锂蓄电池的正极材料中不含有有毒元素,对环境污染较小。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池在安全性能、容量、循环寿命、充电性能和
环境友好性等方面有不同的特点和优势。
在选择使用时,需要根据具体的应用需求和特点
来进行选择。
阀控式铅酸蓄电池特性目录目录 (2)1 背景 (3)2 VRLA电池结构及工作原理 (3)2.1VRLA电池的电化学反应原理 (3)2.2VRLA电池的氧循环原理 (4)2.3VRLA电池的容量分类 (4)3 特性曲线 (4)3.1充放电曲线 (4)3.2倍率特性 (5)3.3温度特性 (6)3.4循环特性 (7)4总结 (8)参考文献 (8)1 背景阀控式铅酸蓄电池(VRLA)尽管它的质量比能量、体积比能量不能和镍镉电池、镍氢电池、锂离子电池、锂聚合物电池相比,但它的性能价格比仍有很大优势,特别是作备用电源、储能电源和动力电源等领域的应用。
由于铅酸蓄电池容量大,大电流放电性能好,无记忆效应,价格便宜,因此铅酸蓄电池的市场份额仍是化学电源产品的首位。
VRLA电池结构上是密封的,充、放电过程中不会漏液,也不需要定期加水或加酸液,同时,电池内部有一个可以控制电池内部气压的特殊排气阀,当电池发生化学反应产气量超过一定值时,排气阀会自动打开,把多余气体排出,从而防止电池内气压过大发生危险,因此,排气阀又被称作安全阀。
基于以上两点,目前生产厂家通常把这种电池叫做“免维护”阀控密封式铅酸蓄电池。
2 VRLA电池结构及工作原理2.1 VRLA电池的电化学反应原理铅酸蓄电池主要由正极板(活性物质为PbO2)、负极板(海绵状金属Pb)、隔板、电池槽、盖、安全阀、电解液(硫酸)等组成,并具有正极、负极端子,一种典型铅酸蓄电池结构如图1所示。
蓄电池通过正负极充、放电反应来实现蓄电池正常工作。
放电时,蓄电池将储存的化学能转化为电能;充电时,蓄电池将电能转化为化学能储存下来。
电池总反应如下:PbO2+Pb+2H2SO4放电→充电←2PbSO4+2H2O从反应方程式中可以看出,电池正负极反应是可逆的。
电池放电时,负极板上的铅放出两个电子,在极板上生成难溶的硫酸铅。
正极板的铅离子得到来自负极的两个电子后,变成二价铅离子,在极板上也生成难溶的硫酸铅。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是目前常见的两种蓄电池类型,它们在电力系统和能源存储领域有着广泛的应用。
在实际应用中,选择合适的蓄电池类型对于系统性能和成本控制至关重要。
对这两种蓄电池进行对比分析,可以帮助我们更好地了解其特点并选择适合的产品。
一、基本原理1. 阀控式密封铅酸蓄电池:阀控式密封铅酸蓄电池是一种使用电解液浓度较高的铅酸电池,采用气密封设计和压力维持阀,能够在充电时将水分解为氢气和氧气,并在放电时再次蒸发水汽重新合成水,实现了电解液的循环再生,从而形成了一种半封闭循环系统。
其电化学反应为:Pb+PbO2+2H2SO4=2PbSO4+2H2O;2PbSO4+2H2O=2PbO+2H2SO4。
2. 磷酸铁锂蓄电池:磷酸铁锂蓄电池是一种采用磷酸铁锂作为正极材料的锂离子电池,其具有高能量密度、长循环寿命和较低的自放电率等特点。
其电化学反应为:LiFePO4+LiC6=LiFePO4+LiC6。
二、比较分析1. 能量密度:磷酸铁锂蓄电池具有更高的能量密度,能够在相同体积和重量下储存更多的电能,因此在对空间限制较大的应用场景中更具优势。
2. 循环寿命:磷酸铁锂蓄电池的循环寿命远远高于阀控式密封铅酸蓄电池,能够经受更多次的充放电循环,具有更长的使用寿命。
3. 自放电率:磷酸铁锂蓄电池的自放电率较低,能够长时间保存电能而不会迅速损耗,适合长期储存和备用电源的应用。
4. 安全性:磷酸铁锂蓄电池相对于阀控式密封铅酸蓄电池在安全方面更为稳定,不易发生短路、过充和过放等危险情况。
5. 成本:阀控式密封铅酸蓄电池因其成熟的生产工艺和较低的材料成本而具有较低的总体成本,适合成本敏感型应用场景。
三、结论阀控式密封铅酸蓄电池和磷酸铁锂蓄电池各自具有独特的优势和适用场景。
在实际选择时,需要根据实际应用需求综合考虑其能量密度、循环寿命、自放电率、安全性和成本等因素,以确定最合适的蓄电池类型。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是目前常用的两种蓄电池类型。
本文将对它
们的特性、优缺点等进行比较分析。
阀控式密封铅酸蓄电池,也称为VRLA蓄电池,具有以下特点:
1. 密封性能好:阀门设计使得蓄电池内部气体不能外泄,从而保持了蓄电池的密封
性能,无需定期加水。
2. 维护简单:阀控式密封铅酸蓄电池无需定期加水,减少了维护工作的频率,降低
了维护成本。
3. 堆叠安全:阀控式密封铅酸蓄电池采用了阀门设计,能够有效控制内部气体的压力,防止堆叠过程中因气压升高导致的安全事故。
4. 充放电效率高:阀控式密封铅酸蓄电池具有较高的充放电效率,能够更好地满足
电力系统对能量的需求。
而磷酸铁锂蓄电池的特点如下:
1. 寿命长:磷酸铁锂蓄电池的循环寿命可达到2000-5000次,相比之下,阀控式密封铅酸蓄电池的寿命较短。
2. 安全性高:磷酸铁锂蓄电池具有较高的安全性,不会发生过热、燃烧等危险情况,因此被广泛应用于电动汽车和储能系统等领域。
3. 能量密度较高:磷酸铁锂蓄电池的能量密度较高,相对于铅酸蓄电池来说,可以
达到更小的体积和更大的容量。
4. 充电速度快:磷酸铁锂蓄电池充电速度快,可在短时间内充满电,便于快速充电
需求的场景。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池在使用特性上存在差异。
阀控式密封铅酸蓄
电池具有维护简单、堆叠安全等优点,适用于一些对安全要求较高的应用场景;而磷酸铁
锂蓄电池则具备较高的寿命、安全性高等特点,适用于对性能要求较高的场景。
在实际选
择中,需根据具体应用需求来做出合适的选择。
2v阀控式铅酸蓄电池技术参数
2V阀控式铅酸蓄电池的技术参数主要包括以下要点:
电池容量:电池的容量通常以Ah(安时)为单位进行表示。
例如,2V500AH代表该电池的电压为2V,容量为500Ah。
电池电压:该蓄电池的电压为2V。
电池类型:这种电池是阀控式铅酸蓄电池。
工作温度范围:电池的工作温度范围一般在-20℃~50℃之间。
建议工作温度:建议的工作温度为25℃。
低自放电率:在25℃的环境下,电池的低自放电率小于2%每月。
长设计寿命:在25℃的环境下,电池的浮充寿命为15年。
密封反应效率:电池的密封反应效率大于98%。
适用环境范围:电池的适用环境范围为-15℃~50℃。
端子设计:电池的端子设计可以防止漏液情况的发生,为机房整体安全考虑,电池极柱(端子)部位应有防漏液的设计,并具有专利证明。
阀控式铅酸蓄电池结构及工作原理一、引言阀控式铅酸蓄电池是一种常见的蓄电池类型,广泛应用于汽车、UPS系统、太阳能发电系统等领域。
本文将介绍阀控式铅酸蓄电池的结构和工作原理。
二、结构阀控式铅酸蓄电池由电池正板、负板、隔板、电解液、阀门组成。
1. 电池正板和负板:电池正板和负板是蓄电池的主要组成部分,由铅钙合金制成。
正板上涂有活性物质,如二氧化铅(PbO2),负板上涂有铅(Pb)。
正负板之间通过隔板隔离,防止短路。
2. 隔板:隔板是一种多孔的材料,通常由橡胶或塑料制成。
它的作用是将正板和负板隔离,并防止活性物质的混合。
3. 电解液:电解液是阀控式铅酸蓄电池中的重要组成部分,一般为硫酸溶液。
它起到导电和储存化学能的作用。
4. 阀门:阀控式铅酸蓄电池中的阀门是一个重要的安全装置,用于控制电解液中的气体释放和防止过压。
当电池内部气压过高时,阀门会打开,释放气体,防止电池爆炸。
三、工作原理阀控式铅酸蓄电池的工作原理是通过化学反应将化学能转化为电能。
1. 充电过程:在充电过程中,外部电源施加正向电压,使电池正板上的二氧化铅还原为铅酸铅(PbSO4)。
同时,电池负板上的铅也发生反应,生成二氧化铅。
电解液中的硫酸会被分解,释放出氧气和氢气。
2. 放电过程:在放电过程中,阀控式铅酸蓄电池作为电源供电。
电池正板上的二氧化铅与电解液中的硫酸发生反应,生成铅酸铅和水,同时释放出电子。
电子通过外部电路流动,产生电流供给负载使用。
3. 阀门控制:阀控式铅酸蓄电池中的阀门起到了重要的安全保护作用。
当电池内部气压超过设定值时,阀门会自动打开,释放气体,防止电池爆炸。
四、总结阀控式铅酸蓄电池由电池正板、负板、隔板、电解液和阀门组成。
它通过化学反应将化学能转化为电能,实现充放电的过程。
阀控式铅酸蓄电池广泛应用于各个领域,具有稳定的性能和安全可靠的特点。
在使用时,需要注意充电和放电过程中的安全性,并定期检查和维护电池的状态,以保证其正常工作和寿命。
固定型阀控式铅酸蓄电池标准固定型阀控式铅酸蓄电池标准在现代社会中,随着科技的不断发展,能源存储设备逐渐受到人们的关注。
其中,固定型阀控式铅酸蓄电池作为一种重要的蓄电设备,其标准包括许多方面,如性能要求、安全要求、环境适应性等等。
本文将以固定型阀控式铅酸蓄电池标准为主题,深入探讨其相关内容。
1. 性能要求固定型阀控式铅酸蓄电池具有很高的性能要求,这主要体现在其使用寿命、充放电效率、自放电率等方面。
在实际应用中,蓄电池的使用寿命至关重要,因此其标准中对于使用寿命的要求必须明确。
充放电效率和自放电率也是决定蓄电池性能优劣的重要指标,在标准中必须对这些指标进行详细规定,以确保蓄电池具有良好的性能。
2. 安全要求固定型阀控式铅酸蓄电池作为一种储能设备,其安全性至关重要。
在标准中,需要对蓄电池的过充、过放、短路、高温等情况进行详细规定,以确保在实际应用中能够避免这些安全隐患的发生。
固定型阀控式铅酸蓄电池的设计、安装、使用和维护也需要在标准中得到规范,以确保其在使用过程中的安全性。
3. 环境适应性固定型阀控式铅酸蓄电池通常用于各种不同的环境中,因此其环境适应性也是一个重要的标准要求。
在标准中,需要对蓄电池在不同温度、湿度、气压等环境条件下的性能进行规定,以确保其在各种不同的环境中均能正常运行。
总结回顾固定型阀控式铅酸蓄电池标准具有重要的意义,它为蓄电池的设计、生产、使用和维护提供了统一的规范。
在标准制定的过程中,需要充分考虑蓄电池的性能要求、安全要求和环境适应性,以确保蓄电池在实际应用中能够发挥其最大的效能。
个人观点与理解作为一种储能设备,固定型阀控式铅酸蓄电池在现代社会中扮演着重要的角色。
其标准的制定不仅对于蓄电池行业具有重要的指导意义,也为用户提供了更加安全、可靠的蓄电池产品。
我认为在今后的发展中,固定型阀控式铅酸蓄电池的标准化工作还将继续发挥着重要的作用。
通过本文的深入探讨,相信读者对于固定型阀控式铅酸蓄电池标准已经有了一个全面、深刻和灵活的理解。
阀控式密封铅酸蓄电池1.1. UPS系统常用的储能装置碱性镉镍蓄电池(Alkaline Cd-Ni batteries)碱性蓄电池是以KOH,NaOH的水溶液做为电解质的,镉镍蓄电池是碱性蓄电池,碱性镉镍蓄电池相对于铅酸蓄电池是长寿命、高倍率、,可以做到密封。
IEC285、IEC623标准规定循环寿命500—1000次可以工作5-10年,高低温性能好,高倍率(5-10倍率)放电性能好,除有记忆效应,制造工艺复杂,组成镉镍蓄电池的材料昂贵短缺外,其它各方面都优于铅酸蓄电池,其价格是铅蓄电池的几十倍,单体电压低(1.25V)。
一般UPS系统不宜选用镉镍蓄电池,尤其是大功率UPS系统用镉镍蓄电池造价非常可观。
阀控铅酸蓄电池AGM体系(Valve-reguleted lead-acid batteries Absorptive glass mat)组成蓄电池材料资源丰富,价格便宜,单体电压高(2V),经过阀控达到密封,现在工艺都很成熟,大电流高倍率放电性能基本满足UPS系统工作要求,工作其间对环境没有污染,价格相对镉镍蓄电池便宜很多,尤其是大功率UPS系统所用电池。
是目前UPS系统首选的蓄电池。
富液免维护铅酸蓄电池Freedom体系(最早以美国Delco公司命名为依据Vented lead acid battery)富液免维护铅酸蓄电池国外也称Flooded Sealed Maintenance Free lead acid batteries,其工作原理除氧气阴极复合不如AGM、,其化学反应机理相同。
由于将AGM体系的贫液式改为富液式Freedom体系,用PE (polythylene)隔板、富液密封,能克服AGM贫液体系所产生的热失控、干涸、内阻大等缺点。
由于该体系的流动性大、低温内阻小,从电化学动力学的理论分析,高速放电传质速度优于AGM体系和gel体系。
由于采用过剩电解液气体可以自由进出,通过特殊的复合盖结构设计通过分子筛性质的滤气安全阀,实现了对电池的完全密封,永不漏液。
一、场地选择
1、安装场地应具有良好的排水条件,地势平坦、干燥通风,不受泥泞、污水浸润。
2、场地应离易燃易爆物品至少5米以上。
3、阀控密封式铅酸蓄电池应远离放射源,磁性物品等。
4、阀控密封式铅酸蓄电池安装高度不能超过2500米,维护时安全距离应大于50mm。
二、安装方式
1、阀控密封式铅酸蓄电池应直立安装,安装时应注意蓄电池的正负极相对位置不能颠倒。
2、阀控密封式铅酸蓄电池组的相对距离和水平度要求不大于5mm。
3、安装时应在蓄电池周围预留足够的空间便于检测,维护和更换蓄电池。
三、接线方法
1、接线应精确无误,不得出现短路、接反、逆电等现象,接线前应切断充电、放电电源的电源开关。
2、铅酸蓄电池应按照箱体和蓄电池组的标志进行接线,正负极不能错位。
3、安装单个电池时,应固定其接线端子,使其不受外力振动而断电。
四、维护保养方法
1、定期清洁蓄电池表面,检查主机和蓄电池连接线是否有松动,也要检查蓄电池电解液液位是否正常。
2、在充电和放电时,严格按照电池的要求进行充电和放电操作,以保证铅酸蓄电池的正常使用寿命。
3、定期进行充电和放电测试,以检测蓄电池的状态和容量,及时更换电池。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析
一、阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池是一种成熟的蓄电池技术,广泛应用于UPS电源、太阳能储能系统、通信基站等领域。
该蓄电池采用铅和铅二氧化物为正负极活性物质,硫酸溶液为电解液,利用内置阀控阀控制内部气体的产生和释放,实现密封循环使用。
其主要特点有:
1. 成本较低:阀控式密封铅酸蓄电池生产成本较低,市场价格相对较为便宜,是大规模应用的主要原因之一。
2. 额定电压稳定:阀控式密封铅酸蓄电池的额定电压相对较为稳定,适合于一些对电压要求较高的场景。
3. 充放电性能稳定:该蓄电池具有良好的充放电性能,可以满足长期循环使用的需求。
二、磷酸铁锂蓄电池
磷酸铁锂蓄电池是一种新型的锂离子电池技术,具有高能量密度、长循环寿命、安全性好等优点,因而在电动汽车、储能系统等领域得到了广泛应用。
其主要特点有:
1. 高能量密度:磷酸铁锂蓄电池具有较高的能量密度,相比阀控式密封铅酸蓄电池具有更高的储能效率和更小的体积。
2. 长循环寿命:磷酸铁锂蓄电池的循环寿命远远超过了铅酸蓄电池,可以满足长周期、高强度的使用场景。
3. 安全性好:相比其他类型的锂离子电池,磷酸铁锂蓄电池的安全性更高,更不易发生热失控等问题。
三、对比分析
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池各自有不同的特点和优势,适用于不同的应用场景。
在选择蓄电池时,需要根据实际需求综合考虑各方面因素,以便选择更为适合的产品。
希望本文的对比分析能够为读者提供一定的参考价值。
阀控式铅酸蓄电池阀控式铅酸蓄电池的英文名称为ValveRegulatedLeadBattery(简称VRLA电池),其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,也不会排酸雾,电池盖子上设有单向排气阀(也叫安全阀),该阀的作用是当电池内部气体量超过肯定值(通常用气压值表示),即当电池内部气压上升到肯定值时,排气阀自动打开,排出气体,然后自动关阀,防止空气进入电池内部。
目录相关参数技术特点基本介绍相关参数当蓄电池用导体在外部接通时,正极和负极的电化反应自发地进行,假如电池中电能与化学能转换达到平衡时,正极的平衡电极电势与负极平衡电极电势的差值,便是电池电动势,它在数值上等于达到稳定值时的开路电压。
电动势与单位电量的乘积,表示单位电量所能作的电功。
但电池电动势与开路电压意义不同:电动势可依据电池中的反应利用热力学计算或通过测量计算,有明确的物理意义。
后者只在数字上近于电动势,需视电池的可逆程度而定。
电池在开路状态下的端电压称为开路电压。
电池的开路电压等于电池正极电极电势与负极电极电势之差。
电池工作电压是指电池有电流通过(闭路)的端电压。
在电池放电初始的工作电压称为初始电压。
电池在接通负载后,由于欧姆电阻和极化过电位的存在,电池的工作电压低于开路电压。
电池容量是指电池储存电量的数量,以符号C表示。
常用的单位为安培小时,简称安时(Ah)或毫安时(mAh)。
电池的容量可以分为额定容量(标称容量)、实际容量。
(1)额定容量额定容量是电池规定在在25℃环境温度下,以10小时率电流放电,应当放出限度的电量(Ah)。
a、放电率。
放电率是针对蓄电池放电电流大小,分为时间率和电流率。
放电时间率指在肯定放电条件下,放电至放电终了电压的时间长短。
依据IEC标准,放电时间率有20,10,5,3,1,0.5小时率及分钟率,分别表示为:20Hr,10Hr,5Hr,3Hr,2Hr,1Hr,0.5Hr等。
b、放电停止电压。
阀控式铅酸蓄电池充放电基本原理嘿,朋友们!今天咱来聊聊阀控式铅酸蓄电池充放电的基本原理,这可有意思啦!你想想看,这蓄电池就好比是一个小仓库,里面存着电呢!充电的时候呀,就像是往这个小仓库里使劲儿塞东西,把电能源源不断地放进去。
而放电呢,那就是从这个小仓库里往外拿东西啦,把电给用出来。
那这个过程是咋回事呢?其实啊,在充电的时候,电流通过,就像是一群勤劳的小工人,把电能这个“货物”一件一件地搬进蓄电池这个“仓库”里。
这里面有正负极呢,正极就像是仓库的大门,负极呢就像是仓库的后门,电能就从正极进去,在里面安安稳稳地待着。
然后呢,到了放电的时候,这些电能又从“仓库”里跑出来,通过负极这个“后门”跑出去,给我们要用电的地方提供能量。
这多神奇呀!咱再打个比方,阀控式铅酸蓄电池就像是一个会魔法的小盒子,它能把电给变出来又收进去。
你说厉不厉害?而且它还挺耐用呢,只要我们合理地使用它,它就能为我们服务好久好久。
可别小瞧了这个充放电的过程哦,如果充不好电,那这个“小仓库”里就没多少“货物”啦,那放电的时候不就不够用了嘛!就好比你去超市买东西,结果人家仓库里没货,你不就白跑一趟嘛。
所以啊,充电可得充好咯。
那怎么才能充好电呢?这可得注意一些细节呢。
比如说充电的电流不能太大也不能太小,就像你吃饭,吃太多会撑着,吃太少会饿着,得刚刚好才行。
还有充电的时间也得把握好,充太久了也不行,就像人睡太久了反而没精神一样。
放电的时候也得悠着点呀,别一下子把电都放光了,那这个“小仓库”不就空啦!那下次要用的时候可就没得用咯。
就像你兜里的钱,花光了不就得重新挣嘛。
哎呀,这阀控式铅酸蓄电池充放电的基本原理虽然说起来简单,但是真要做好还真不容易呢!咱可得好好对待它,让它发挥出最大的作用。
反正我觉得这玩意儿挺神奇的,小小的一个蓄电池,居然能有这么大的本事。
你们说是不是呀?咱以后可得多了解了解这些东西,说不定啥时候就用上了呢!。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池对比分析阀控式密封铅酸蓄电池和磷酸铁锂蓄电池是两种常见的储能设备,各有优缺点。
本文将对这两种蓄电池进行对比分析,以便更好地选择适合自己需要的蓄电池。
1. 化学反应机制:阀控式密封铅酸蓄电池是以铅和铅二氧化物反应为主要化学反应机制,通过氧化还原反应来实现电能的储存和释放。
而磷酸铁锂蓄电池是以磷酸铁锂为正极材料,锂为负极材料,通过锂离子在正负极之间的移动来实现电能的储存和释放。
2. 性能比较:(1) 阀控式密封铅酸蓄电池的能量密度较低,循环寿命较短。
相比之下,磷酸铁锂蓄电池的能量密度较高,循环寿命较长。
(2) 磷酸铁锂蓄电池的自放电率低于阀控式密封铅酸蓄电池,可以长时间保存电能。
(3) 阀控式密封铅酸蓄电池在高温环境下容易老化,充放电效率较低。
而磷酸铁锂蓄电池在高温环境下表现更加稳定,充放电效率更高。
3. 安全性比较:(1) 阀控式密封铅酸蓄电池存在严重的酸雾腐蚀和爆炸的安全隐患。
而磷酸铁锂蓄电池则具有较好的安全性能,不存在酸雾腐蚀和爆炸的风险。
(2) 磷酸铁锂蓄电池不含重金属,环保性能较好,废旧电池易于回收利用。
而阀控式密封铅酸蓄电池含有重金属铅,对环境有一定的污染。
4. 成本比较:(1) 阀控式密封铅酸蓄电池的生产成本较低,价格相对较为便宜。
而磷酸铁锂蓄电池的生产成本较高,价格相对较贵。
(2) 从长期运营成本来看,磷酸铁锂蓄电池的循环寿命更长,更耐高温,不需要频繁更换,维护费用更低,因而总体运营成本可能会更低。
阀控式密封铅酸蓄电池和磷酸铁锂蓄电池各有优缺点。
如果对于能量密度和循环寿命要求较高,且对于安全性和环保性有要求的话,可以选择磷酸铁锂蓄电池。
而如果对于价格较为敏感,且对于电池寿命和充放电效率要求不高的话,可以选择阀控式密封铅酸蓄电池。
在选择时应根据自身的需求和实际情况做出选择。
阀控式铅酸蓄电池
构成阀控铅酸蓄电池的主要部件是正负极板、电解液、隔膜、电池壳和盖、安全阀,此外还一些零件如端子、连接条、极柱等。
阀控式铅酸蓄电池的设计
1 板栅合金的选择
参加电池反应的活性物质铅和二氧化铅是疏松的多孔体,需要固定在载体上。
通常,用铅或铅基合金制成的栅栏片状物为载体,使活性物质固定在其中,这种物体称之为板栅。
它的作用是支撑活性物质并传输电流。
1.1正板栅合金
阀控电池是一种新型电池,使用过程中不用加酸加水维护,要求正板栅合金耐腐蚀性好,自放电小,不同厂家采用的正板栅合金并不完全相同,主要有:铅—钙、铅—钙—锡,铅—钙—锡—铝、铅—锑—镉等。
不同合金性能不同,铅—钙。
铅—钙—锡合金具有良好的浮充性能,但铅钙合金易形成致密的硫酸铅和硫酸钙阻挡层使电池早期失效,合金抗蠕变性差,不适合循环使用。
铅-钙-锡-铝、铅-锑-镉各方面性能相对比较好,既适合浮充使用,又适合循环使用。
1.2负板栅合金
阀控电池负板栅合金一般采用铅-钙合金,尽量减少析氢量。
2板栅厚度
正极板厚度决定电池寿命,极板厚度与电池预计寿命的关系见下表:
安全阀
安全阀具有防爆、减压之功能,可释放内部产生过多之气体,并防止酸气外泄、能抗酸、耐撞击,安全阀开启压力值14kPa至18kPa。
当内压上升并高於限定值时,安全阀会自动释放过多的气体,当内压降低并恢复至所设定正常值时,安全阀会密封并严紧以防气体泄漏。
1.2 阀控铅酸蓄电池失效模式
一、电池失水
铅酸蓄电池失水会导致电解液比重增高、导致电池正极栅板的腐蚀,使电池的活性物质减少,从而使电池的容量降低而失效。
铅酸蓄电池密封的难点就是充电时水的电解。
当充电达到一定电压时(一般在2.30V/单体以上)在蓄电池的正极上放出氧气,负极上放出氢气。
一方面释放气体带出酸雾污染环境,另一方面电解液中水份减少,必须隔一段时间进行补加水维护。
阀控式铅酸蓄电池就是为克服这些缺点而研制的产品,其产品特点为:
1、采用多元优质板栅合金,提高气体释放的过电位。
即普通蓄电池板栅合金在2.30V/单体(25℃)以上时释放气体。
采用优质多元合金后,在2.35V/单体(25℃)以上时释放气体,从而相对减少了气体释放量。
2、让负极有多余的容量,即比正极多出10%的容量。
充电后期正极释放的氧气与负极接触,发生反应,重新生成水,即
O2 + 2Pb→2PbO
PbO + H2SO4 →H2O +PbSO4
使负极由于氧气的作用处于欠充电状态,因而不产生氢气。
这种正极的氧气被负极铅吸收,再进一步化合成水的过程,即所谓阴极吸收。
3、为了让正极释放的氧气尽快流通到负极,必须采用和普通铅酸蓄电池所采用的微孔橡胶隔板不同的新超细玻璃纤维隔板。
其孔隙率由橡胶隔板的50%提高到90%以上,从而使氧气易于流通到负极,再化合成水。
另外超细玻璃纤维板具有吸附硫酸电解液的功能,因此阀控式密封铅酸蓄电池采用贫液式设计,即使电池倾倒,也无电解液溢出。
4、采用密封式阀控滤酸结构,使酸雾不能逸出,达到安全、保护环境的目的。
在上述阴极吸收过程中,由于产生的水在密封情况下不能溢出。
因此阀控式密封铅酸蓄电池可免除补加水维护,这也是阀控式密封铅酸蓄电池称为免维电池的由来。
阀控式密封铅酸蓄电池均加有滤酸垫,能有效防止酸雾。
逸出但密封蓄电池不逸出气体是有条件的,即:电池在存放期间内应无气体逸出;充电电压在2.35V/单体(25℃)以下应无气体逸出;放电期间内应无气体逸出。
但当充电电压超过2.35V/单体时就有可能使气体逸出。
因为此时电池体内短时间产生了大量气体来不及被负极吸收,压力超过某个值时,便开始通过单向排气阀排气,排出的气体虽然经过滤酸垫滤掉了酸雾,但必竟使电池损失了气体,所以阀控式密封铅酸蓄电池对充电电压的要求是非常严格的,绝对不能过充电。
二、负极板硫酸化
电池负极栅板的主要活性物质是海棉状铅,电池充电时负极栅板发生如下化学反应:
放电过程发生的化学反应是这一反应的逆反应,当阀控式密封铅酸蓄电池的荷电不足时,在电池的正负极栅板上就有PbSO4 存在,PbSO4 长期在会失去活性,不能再参与化学反应,这一现象称为活性物质的硫酸化,硫酸化使电池的活性物质减少,降低电池的有效容量,也影响电池的气体吸收能力,久之就会使电池失效。
为防止硫酸化的形成,电池必须经常保持在充足电的状态。
三、正极板腐蚀
由于电池失水,造成电解液比重增高,过强的电解液酸性加剧正极板腐蚀,防止极板腐蚀必须注意防止电池失水现象发生。
四、热失控
热失控是指蓄电池在恒压充电时,充电电流和电池温度发生一种累积性的增强作用,并逐步损坏蓄电池。
造成热失控的根本原因是:
普通富液型铅酸蓄电池由于在正负极板间充满了液体,无间隙,所以在充电过程中正极产生的氧气不能到达负极,从而负极未去极化,较易产生氢气,随同氧气逸出电池。
因为不能通过失水的方式散发热量,阀控铅酸蓄电池过充电过程中产生的热量多于富液型铅酸蓄电池。
浮充电压应合理选择,浮充电压是蓄电池长期使用的充电电压,是影响电池寿命至关重要的因素。
一般情况下。
浮充电压定为2.23 ~ 2.25V/单体(25℃)比较合适。
如果不按此浮充范围工作,而是采用2.35V/单体(25℃),则连续充电4个月就可能出现热失控,或者采用2.30V/单体(25℃),连续充电6 ~ 8 个月就可能出现热失控;要是采用2.28V/单体(25℃),则连续12 ~ 18 个月就会出现严重的容量下降,进而导致热失控。
热失控的直接后果是蓄电池的外壳鼓包、漏气、电池容量下降,最后失效。