当前位置:文档之家› 深圳气象资料

深圳气象资料

深圳气象资料
深圳气象资料

深圳气象资料

气象要素月平均气候值(1971-2000年)

月份月平均月平均最高月平均最低月平均降雨日数月平均月平均日照月平均日雨量0.1 日雨量50毫米日雨量100毫米气温(度) 气温(度) 气温(度) 雨量(毫米) (天) 气压(百帕) 日照时数(小时) 相对湿度(%) 0.1毫米或以上米或以上或以上

1 14.9 19.7 11.7 29.8 7.07 0.03 0.00 1017.0 147.9 71.7

2 15.5 19.7 12.7 44.1 10.07 0.00 0.00 1015.4 98.8 76.8

3 18.7 22.7 16.0 67.5 10.77 0.20 0.03 1012.9 101.

4 79.5

4 22.

5 26.3 19.9 173.

6 12.73 0.9

7 0.17 1009.5 110.2 81.0

5 25.7 29.3 23.2 238.5 15.60 1.33 0.27 1006.1 149.8 81.7

6 27.8 31.1 25.2 296.4 18.4

7 1.47 0.20 1002.9 173.6 81.8

7 28.6 32.2 25.7 339.3 17.00 1.80 0.53 1002.3 220.0 80.5

8 28.2 32.0 25.5 368.0 18.30 1.93 0.47 1002.0 188.6 81.8

9 27.2 31.2 24.3 238.2 14.83 1.13 0.37 1006.2 181.2 78.8

10 24.7 28.9 21.6 99.4 7.63 0.50 0.17 1010.8 199.5 72.4

11 20.4 25.1 17.1 37.4 5.63 0.23 0.00 1014.9 184.3 68.4

12 16.4 21.5 12.9 34.2 5.97 0.10 0.00 1017.4 178.5 67.1

年值 22.5 26.6 19.6 1966.3 144.07 9.70 2.20 1009.8 1933.8 76.8

深圳市各季的入季时间及各季平均天数、气温、雨量统计表

项季春季夏季秋季冬季

入季时间最早12 月21 日 3 月27 日9 月28 日11 月19 日

最迟 3 月6 日 5 月23 日11 月17 日 2 月28 日

平均 2 月6 日 4 月23 日10 月25 日 1 月13 日

平均季长76 天185 天80 天24 天

平均气温19.0 ℃26.7 ℃17.7 ℃14.4 ℃

平均雨量212 毫米1606 毫米81 毫米25 毫米

极端最低、最高气温

极端最低、最高气温对工农业生产以及人们的身体健康都有较大的影响。按照广东省气象低温标准,日最低气温≤ 5 ℃为低温,深圳出现低温的时间主要集中在1 月份,2 、12 月次之,3 、11 月只有个别年份出现低温。历年中,极端最低气温为0.2 ℃,出现在1957 年2 月11 日。

深圳历年极端最高气温为38.7 ℃,出现在1980 年7 月10 日,高温天气主要集中在7 ~8 月,以7 月为最多。日最高气温≥ 35 ℃的日数在 5 ~9 月均可出现,年平均2.4 天,7 月出现几率最大,年平均为1 天,而年出现日数最多在8 月份,达7 天。

太阳辐射量

深圳市太阳辐射量丰富,年太阳辐射量为5225 兆焦耳/ 平方米。一年中,以7 月为最多,2 月最少,太阳辐射的年变化曲线呈单峰型。与广东省其它地区相比,深圳市的年太阳辐射量属于较多的地区,而且偏多部分并非分布在总量较多的7 ~8 月份,而是分布在2 ~6 月和9 ~12 月。各月太阳总辐射量(0.1 兆焦耳/ 平方米)

月份 1 2 3 4 5 6 7 8 9 10 11 12

辐射量3448 2988 3518 3988 4887 4792 5690 5208 5047 4930 4042 37 13

日照时数

深圳市年日照时数平均为2060 小时,日照时数最多为7 月份,最少是2 月份。年日照百分率达47% ,下半年日照百分率较高,均大于50% ,上半年在29 ~46% 之间,最低是3 月份,为29% 。从日照时数年际变化看,八十年代以后和以前相比,日照时数明显减少,1980 年以前年平均日照时数为2206.2 小时,1980 年以后只有1860.5 小时,相差345.7 小时。

各月平均日照时数(0.1 小时)和日照百分率(% )

月份 1 2 3 4 5 6 7 8 9 10 11 12

日照时数累年平均1555 1052 1088 1247 1687 1746 2314 2041 1918 2145 1942 18 67

80 年以前1642 1215 1235 1414 1889 1819 2440 2154 2037 2269 2012 19 37

80 年以后1435 829 886 1018 1412 1647 2141 1887 1756 1975 1846 1772 日照百分率46 33 29 33 41 43 56 51 52 60 59 56

全国地面气象资料数据模式

全国地面气象资料数据模式 1.总则 1.1地面气象资料是探索气候演变规律、预测气候变化趋势的基础,是我国天气监测网收集的最重要的资料之一。为了适应我国大气探测自动化采集仪器的更新,确保及时收集到可靠的地面气象观测资料,有必要统一我国已有的各类地面气象资料数据模式。 1.2本模式主要根据1979年版“地面气象观测规范”中的“地面气象记录月报表”(气表-1)和“基准气候站地面气象记录月报表”(气表-1(基准))的格式,除包括“全国地面气象资料信息化基本模式暂行规定及补充规定”、“全国基准气候站地面气象资料信息化基本模式暂行规定”字符文件(A0、A1、A6/A7)格式内容外,还将自动观测基本数据统一归入本模式,并命名为文件A格式。本模式与配套的“气表-1封面、封底V文件格式”相结合,其内容涵盖了气表-1的全部内容。 1.3为了适应新仪器采集的时间分辨率更高的数据的需要,制定了单要素分钟数据文件格式,作为文件A格式的补充。1分钟降水量文件格式命名为文件J格式,其它单要素文件格式,将根据需要及业务技术发展另行制定。 1.4本模式与历史资料信息化模式相兼容,其文件框架、要素指示码排列顺序、方式位、特殊字符的表示等与原信息化模式完全相同,历史资料中有关的技术规定请参照“全国地面气象资料信息化基本模式暂行规定”和“补充规定”,本模式不再赘述。同时为适应投入业务运行的我国自行研制或引进国外的自动气象站采集的数据,增添了部分要素的方式位和数据内容。每个要素在同一文件中方式位的设置是唯一确定的。 1.5本模式适用于我国地面气象观测各类台站、各种类型观测仪器采集的数据。 2.A文件编制技术规定 2.1文件名编制规定 A文件为地面气象资料基本数据文件,由地面19个要素一个站一个月的原始数据构成。文件类型为文本(或称作字符)文件。 文件名以字母“A”打头,由11位字母、数字组成。文件名的结构为: AIIiiiMM.YYY 其中“A”为文件类别标识符(保留字),用大写字母表示。“IIiii”为区站号。“MM” 为资料月份,位数不足,高位补“0”。“YYY”为资料年份,取年后三位。 2.2文件结构 A文件由文件首部、尾部和文件体三个部分构成(见附表一)。 2.2.1文件首部

气象资料分析与应用系统设计与实现

2012年12月 内蒙古科技与经济 December 2012 第24期总第274期 Inner M o ngo lia Science T echnolo gy &Economy N o .24T o tal N o .274 气象资料分析与应用系统设计与实现 康 利,张 立,温建伟,于溥天,杜 宇 (内蒙古自治区气象信息中心,内蒙古呼和浩特 010051) 摘 要:以内蒙古自治区地面观测台站的常规资料、自动站资料、区域加密观测资料中的温度、降水量等气象要素信息为数据源,进行任意一种资料或多种资料间相同要素数据的补充叠加,实现等值线绘制、着色、图形缩放和拖动、查看数据等功能,为用户提供方便的绘制、浏览、查询地区任意时间段内等值线分析图和要素信息对比分析图等服务。 关键词:B/S 架构;等值线;F lex 技术;气象资料;气象信息网络 中图分类号:T P 311.52(226) 文献标识码:B 文章编号:1007—6921(2012)24—0052—03 随着现代科学技术与管理技术的提高、生产信息的多元化和复杂化,使得信息的处理、管理和应用也越来越重要,人类进入21世纪后,信息化水平高低成为衡量一个地区的现代化水平,一个国家的综合国力的重要指标。 近年来,由于国家和部门内部的重视,使得全区气象信息网络以及气象观测、探测系统的建设得到了飞速发展,各种气象信息资料不断丰富,为气象科研、业务以及服务人员开展各方面工作奠定了信息基础。尤其是近几年随着全国开展的气象科学数据共享、风能资源数据库等项目的建设,推动了历史气象资料信息化建设的步伐。 为了更好地共享气象信息资源,避免在信息分析、应用方面的重复建设,使全区各级业务人员更加便捷地使用内蒙古自治区气象资料信息资源,同时提供符合实际业务应用需求的分析工具,最大程度地降低资料分析处理的工作强度,提高信息利用价值,通过综合利用计算机网络、数据库、图形图像绘制处理以及网站建设等先进的计算机技术,建立内蒙古自治区的《气象资料分析与应用系统》,为各级预报、科研、决策服务以及业务管理人员提供统一的气象要素分析平台,解决目前内蒙古自治区气象信息服务缺乏多种自动分析手段和便捷信息服务平台的问题,为气象系统各业务部门进一步的信息综合分析及决策应用提供支撑。1 系统总体设计1.1 系统整体结构 系统整体采用B/S(Brow ser/Server)架构设计,数据源为文件存储管理系统以及数据库系统存储的各类气象资料,应用依托于区局现有网络环境,用户通过WWW 浏览器访问系统,系统在服务器端响应用户各种查询、浏览、数据分析应用需求,将查询、分析结果和形成产品提供给用户(Bro wser)端(见图1所示) 。 图1 系统整体结构 系统采用模块化设计,包括基础数据服务模块和数据分析应用模块,基础数据服务模块用来实现用户直接浏览和下载资料的应用需求,数据分析应用模块由等值线绘制模块、气象要素对比分析模块和实时资料分析模块组成,用来综合利用实时和历史气象资料,实现用户对气象资料较为复杂的分析应用需求。 1.2 系统核心技术创新点 1.2.1 利用优化的插值算法绘制等值线。等值线法又称等量线法,是用一组等值线来表示连续面状分布的制图现象数量特征渐变的方法。每两条等值线之间的数量差额多为常数,可通过等值线的疏密程度来判断现象的数量变化趋势。等值线法往往与分层设色的表示手段配合使用,即采用改变颜色深浅、冷暖和阴暗来表示现象的数值变化趋势,使图面更清晰、易读。等值线法除用于表示空间现象数量的连续而逐渐变化的特征外,还可表示现象随时间的变化,现象的重复性(频度)等。因为等值线具有上述特点,因此它被广泛地应用在气象降水以及温度要素变化分析过程中。 系统通过优化的插值算法,利用新型的曲线生成模型,绘制符合气象部门需求的较为直观地体现气象要素分布情况的等值线图形。 系统在现有的矩形算法和三角算法的基础上,结合最新的三维图像绘制技术,针对特定区域已知的、离散的、不规则的气象空间数据进行整体分析优化,利用离散数据来估计规定点上的非观测数据,进行“空间插值”,实现有限数据资源的气象空间数据的筛选整合,然后利用新型的曲线生成模型,最终实现了把空间分布不规则和有限的点数据转换成指定区域的规则的网格化数据分布模型,绘制符合气象部分需要的较为直观的体现气象要素分布情况的等值线图形。 1. 2.2 Fl ex 技术的应用。F lex 是一种的presentat ion server (展现服务),它是java w eb cont ainer 或者.net server 的一个应用,根据.x ml 文件(纯粹的x ml 描述文件和act ionscript )产生相应得.sw f 文件,传送到客户端,由客户端的f lash player 或者shockw ave pl ay er 解释执行,给用户以丰富的客户体验。 系统应用Adobe 公司的F lex 技术,通过客户端(Flash)对后台历史数据进行访问,通过结合图形方式更好的展示数据,丰富了数据显示形式,实现了对 28

气象大数据资料

1 引言 在气象行业内部,气象数据的价值已经和正在被深入挖掘着。但是,不能将气象预报产品的社会化推广简单地认为就是“气象大数据的广泛应用”。 大数据实际上是一种混杂数据,气象大数据应该是指气象行业所拥有的以及锁接触到的全体数据,包括传统的气象数据和对外服务提供的影视音频资料、网页资料、预报文本以及地理位置相关数据、社会经济共享数据等等。 传统的”气象数据“,地面观测、气象卫星遥感、天气雷达和数值预报产品四类数据占数据总量的90%以上,基本的气象数据直接用途是气象业务、天气预报、气候预测以及气象服务。“大数据应用”与目前的气象服务有所不同,前者是气象数据的“深度应用”和“增值应用”,后者是既定业务数据加工产品的社会推广应用。 “大数据的核心就是预测”,这是《大数据时代》的作者舍恩伯格的名言。天气和气候系统是典型的非线性系统,无法通过运用简单的统计分析方法来对其进行准确的预报和预测。人们常说的南美丛林里一只蝴蝶扇动几下翅膀,会在几周后引发北美的一场暴风雪这一现象,形象地描绘了气象科学的复杂性。运用统计分析方法进行天气预报在数十年前便已被气象科学界否决了——也就是说,目前经典的大数据应用方法并不适用于天气预报业务。 现在,气象行业的公共服务职能越来越强,面向政府提供决策服务,面向公众提供气象预报预警服务,面向社会发展,应对气候发展节能减排。这些决策信息怎么来依赖于我们对气象数据的处理。

气象大数据应该在跨行业综合应用这一“增值应用”价值挖掘过程中焕发出的新的光芒。 2 大数据平台的基本构成 2.1 概述 “大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。 从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘(SaaS),但它必须依托云计算的分布式处理、分布式数据库(PaaS)和云存储、虚拟化技术(IaaS)。 大数据可通过许多方式来存储、获取、处理和分析。每个大数据来源都有不同的特征,包括数据的频率、量、速度、类型和真实性。处理并存储大数据时,会涉及到更多维度,比如治理、安全性和策略。选择一种架构并构建合适的大数据解决方案极具挑战,因为需要考虑非常多的因素。 气象行业的数据情况则更为复杂,除了“机器生成”(可以理解为遥测、传感设备产生的观测数据,大量参与气象服务和共享的信息都以文本、图片、视频等多种形式存储,符合“大数据”的4V特点:Volume(大量)、Velocity(高速)、

气象资料的分析与预测问题建模

气象资料的分析与预测建模 摘要:本文建立了用于气象资料的分析与预测的数学模型。经对比该城市与北京的海拔、气候等极为相似,因此,我们以北京的标准气象指数为参照建立模型。 首先针对问题一:对该城市两年来的总体气象进行整体评价,并对该城市气候走势进行中长期预测。我们仿照科学家对环境空气质量综合指数评价的数学模型,以第一年每个月的平均气压、平均气温、平均相对湿度、平均风速、最高气压、最高气温、最高相对湿度、最高风速和北京的标准气候指数为参数,通过matlab建立与之相关的方程来确定该城市当月的气象质量指数,按照指数数值的大小分为优、良、差三大类,从而评价每个月的气候质量。运用第二年的数据进行检验模型的正确性:随机选取几个月的气象因素数据,并各自与对应的北京标准气象数据做差,数值越小则气象质量越好,将分析结果与通过权重综合指数法计算得出的结论做比较。跟据建立的气象质量评价数学模型和第一、第二两年数据对比趋势图,对该城市气候进行整体评价和中长期的分析预测。 然后针对问题二:对影响极端天气发生的主要指标,比如:降水、温度等建立监控预报体系的数学模型,并用两年内的累积气象资料进行验证。我们运用多元线性回归分析的数学方法,建立了监控预报最高温度的数学模型。该模型中我们先假设了最高温度的主要影响因素是平均气压、平均气温、平均湿度、日照时数、地面平均温度、降水量等,通过matlab编写程序验证取舍得出平均气压、平均气温、平均湿度、日照时数、地面平均温度是影响降水和温度的主要影响因素;然后,检验多元线性回归方程的拟合优度、相关性;最后,带入两年内的累积气象资料进行验证。 最后我们评价了模型的优缺点,并对模型的不足之处进行了改进。 关键词:权重综合气象质量指数;多元线性回归;正态分布。

气象个例分析

赴上海气象局个例分析 学校: 院系: 专业: 班级: 姓名: 学号: 交流实习时间:2014-8-25~2014-9-15

1 过程简述 7月14日,一个低压区在帕劳东北部海面上生成,18日,联合台风警报中心将其升格为热带风暴。日本气象厅将其升格为热带风暴,并命名为麦德姆。23日0时在台湾省台东县长滨乡沿海登陆,登陆时中心附近最大风力有14级,中心最低气压为955百帕。23日15时在福建省福清市高山镇沿海登陆,登陆时减弱为强热带风暴,在之后的漫长旅途中一直维持强热带风暴等级。 25日17点在山东省荣成市虎山镇沿海登陆,山东在台风的势力影响下产生了强降水。 图1 7月18日-26日台风路径图 图2 7月25日降水实况

麦德姆路径分析 图3 7月23日20时500hPa图 台风路径主要受副高的影响,沿588线边缘北上。由图3可以看到,在台湾中北部地区高空存在急流,即台风的引导气流。 图4 7月24日08时500hPa高度场与温度场图 由图4 可以看到在东北、华北地区一带有强冷平流,促进槽发展。

图5 7月24日20时500hPa图 到7月24日,由图5显示,台风中心到达安徽南部地区,台风低压系统的影响使副高东撤。台风位于槽前,低空辅合、高空辐散的强对流系统促进台风又一次加强。槽前及副高配合生成强大引导气流使台风在华东地区划了一道弧线,最终擦山东东部地区离去。 陆上台风强度维持原因分析 图6 7月24日20时850hPa湿度图

由图6显示,7月24日20时,850hPa的华东大部分地区水汽达到了100%,产生了强降水。产生强降水需要满足的条件有:持续的水汽输送,强烈的上升运动,持续的作用时间。如此充足的水汽又是怎么来的呢? 图7 7月24日08时850hPa风场图 由图7显示,在南海区域存在西南风急流,将南海大量水汽不断输送入华东地区,为台风的发展提供了充足的水汽。低空辅合上升,水汽遇冷凝结形成降水,同时释放出的能量维持台风的强度。 图8 7月24日01时FY2D红外图

气象领域的GIS应用

气象领域的GIS应用 1 GIS在气象领域的应用 我国地域辽阔,地形地貌复杂,气象的时空分布差异大,自然灾害频繁。从古到今我国人民既受益于天气,也受害于天气,与自然灾害进行了长期的斗争。随着经济的增长、人口的增加、环境的变化,气象问题越来越受到各级政府及人民的重视。因此在传统调查、规划、管理技术的基础上引进先进的技术,将更有助于加快信息的获取、更新,促进气象行业的发展。 地理信息系统(GIS),作为一门重要的空间信息技术,在越来越多的信息系统建设中发挥了重要作用。气象信息既包括空间地理信息,又包括大量与空间密不可分的气象属性信息。气象数据本质上也是地理信息,因为气象中的风速、温度、气压等都是相对于具体的空间域和时间域而言,没有地理位置的气象要素是没有任何意义的。GIS技术优势在于可以海量管理和查询气象信息,可以对地理空间数据进行分析处理,与数值模型计算相结合,还可以形象直观的可视化表达模型计算结果;GIS空间分析能力还可以与气象信息技术相结合,提供空间和动态的地理信息,并采用一定模型为决策服务提供科学依据。因此,在气象领域中引入GIS系统具有非常重要的意义。 GIS在气象领域的应用非常广泛,并不觉限于空间数据的管理发布,它辐射到整个系统的各个环节,从数据组织、存储、管理到功能的实现与应用,能够与气象业务充分结合,为整个气象信息化系统提供一个全面的解决方案。GIS是一个功能强大的平台,针对气象领域的特点,提供数据组织策略、强大的GIS功能集成、丰富的Web展现、三维渲染和遥感处理等功能。 2 基于GIS的数据组织 GIS平台数据管理机制能够克服异构和分布式带来的气象数据使用障碍,建立一个理想的应用环境,既可以保留数据异构和分布性的优势,同时也可以为更多资源共享、处理协同与任务合作方面的用户提供一致化的服务接口和方式。 2.1 分布式数据管理 基于GIS的气象数据可以实现分布式数据管理,采取“纵向多级、横向网格”的组网方案。分布式数据的存取操作、增量式订阅和发布技术均采用面向“服务”方式进行,充分体现“面向服务”的最新设计思想。通过面向“服务”设计思想和面向“地理实体”的数据模型相结合,增量式订阅和发布技术使网络节点之间、父节点与子节点之间,因不同操作系统、不同数据库平台、不同数据大小而产生的“异构数据库”可实现增量更新与同步。 图2-1 气象GIS平台分布式数据管理原理图

第22课 气象分析——数字气象站

第22课气象分析——数字气象站 【教材分析】 数字气象站是基于物联网技术的综合气象智能应用系统。教材介绍了数字气象站的基本组成和工作流程,在传感器方面,主要是与气象数据相关的多类型传感器。校园气象站网站是一个平台,通过平台可以查询一定区域的气象数据等,学生利用气象数据,可以探究气象数据的变化规律。 【学情分析】 学生对一般生活中的气温、天气状况等气象信息有所了解,但对气象站是如何工作的,气象数据是如何取得的等问题则比较陌生,基于气象数据而开展的研究活动基本没有。 【教学目标与要求】 1. 知识与技能 (1)了解数字气象站的基本组成及工作流程。 (2)熟悉无锡校园气象站网站的各项功能。 2. 过程与方法 能通过分析无锡校园气象站所提供的各项数据,了解气温的一般变化规律,并利用该网站开展探究活动。 3. 情感、态度与价值观 能养成科学地分析、整理数据的能力,并体会先进的科学技术在科学探究中的作用。 4. 行为与创新 尝试基于气象数据,开展相应的研究活动。 【教学重点与难点】 重点:熟悉无锡校园气象站网站的各项功能。 难点:让学生利用无锡校园气象站网站开展探究活动。 【教学方法与手段】 教师演示法、信息搜集法、探究发现法、小组合作法。 【课时安排】 安排1课时。

【教学准备】 课件,实验记录表,学生计算机及气象站网站等。 【教学过程】 一、导入 师:同学们,大家都很喜欢猜谜语吧,今天老师就带来两个谜语,大家想来猜猜吗? “我到处乱跑,谁也捉不到,我跑过树林,树木都弯腰,我跑过大海,大海的波浪高又高。”(风) “千条线,万条线,掉到水里看不见。”(雨) (学生回答) 师:刚才这两种天气现象是生活中最常见的,你能说说今天的天气情况吗? (学生回答) 师:如果我们想知道今天详细的天气信息,我们可以怎样获得呢? (上网、手机、电视、广播、电话……) (学生回答) 师:现在获得天气信息的途径可真多啊,那么这些气象信息是从哪里来的呢? (气象站)(学生回答) 师:以前气象站观测员的工作很辛苦,每天晚上别人睡得很香的时候,他们还要去测量气象数据。随着科学技术的发展,我们有更简单有效的方法来收集气象数据。今天我们就来学习数字气象站。 (出示课题) 二、新授 (一)介绍数字气象站 师:我们先来了解一下数字气象站(图片略),数字气象站主要由传感器模块、数据传输和数据处理中心这三大块组成。这是风向传感器。这是风力传感器,用来测量风向和风力。这是雨量传感器,用来监测每天的降水量。这是温、湿度传感器和大气压传感器,用来测量温度、湿度和大气压。 师:数字气象站的这些组成部分你都了解了吧!我们一起来看看这些组成部

全国地面气象资料数据模式 A格式

四、地面气象观测数据文件格式 1、总则 1.1地面气象观测数据是认识和预测天气变化、探索气候演变规律、进行科学研究和提供气象服务的基础,是我国天气气候监测网收集的最重要的资料之一。为适应地面气象观测业务的发展,有必要对2001年版的“全国地面气象资料数据模式”(简称2001年版A格式)进行补充、修改。 1.2 本格式以中国气象局2003年版《地面气象观测规范》中的“地面气象记录月报表”为依据,对2001年版A格式作了必要的修改和补充,并将格式命名为“地面气象观测数据文件格式”,作为原“全国地面气象资料数据模式”的2003年版。 1.3本格式由一个站月的原始观测数据、数据质量控制标识及相应的台站附加信息构成,包括A文件和J文件两个文件,附加信息即2001年版的“气表-1封面、封底V文件”,作为A文件的一部分。因此本格式涵盖了气表-1的全部内容。 1.4 根据2003年版的《地面气象观测规范》,本格式在2001年版A格式基础上增加了相关的要素项目;为了更好地表述数据质量,增加了数据质量控制标识。观测数据部分历史资料中的技术规定可参照“全国地面气象资料信息化基本模式暂行规定”和“补充规定”,本格式不再赘述。 1.5 根据2003年版《地面气象观测规范》的规定,本格式将2001年版单要素分钟降水量J 文件更改为多要素分钟观测数据文件,作为A文件的补充,简称J文件。 1.6 2001年版与2003年版A、J格式具体变动内容见附件“2001年版与2003年版格式变动对照表”。 1.7 本格式适用于我国现行各类地面气象台站和不同观测仪器采集的数据。 2、A文件 2.1 文件名 “地面气象观测数据文件”(简称A文件)为文本文件,文件名由17位字母、数字、符号组成,其结构为“AIIiii-YYYYMM.TXT”。 其中“A”为文件类别标识符(保留字);“IIiii”为区站号;“YYYY”为资料年份;“MM”为资料月份,位数不足,高位补“0”;“TXT“为文件扩展名。 2.2 文件结构 A文件由台站参数、观测数据、质量控制、附加信息四个部分构成。观测数据部分的结束符为“??????”,质量控制部分的结束符为“******”,附加信息部分的结束符为“######”。具体结构详见附录1:A文件基本结构。 2.3 台站参数 台站参数是文件的第一条记录,由12组数据构成,排列顺序为区站号、纬度、经度、观测场拔海高度、气压感应器拔海高度、风速感应器距地(平台)高度、观测平台距地高度、观测方式和测站类别、观测项目标识、质量控制指示码、年份、月份。各组数据间隔符为1 位空格。 2.3.1 区站号(IIiii),由5位数字组成,前2位为区号,后3位为站号。 2.3.2 纬度(QQQQQ),由4位数字加一位字母组成,前4位为纬度,其中1~2位为度,3~4位为分,位数不足,高位补“0”。最后一位“S”、“N”分别表示南、北纬。 2.3.3 经度(LLLLLL),由5位数字加一位字母组成,前5位为经度,其中1~3位为度,4~5位为分,位数不足,高位补“0”。最后一位“E”、“W”分别表示东、西经。 2.3.4 观测场拔海高度(H1H1H1H1H1H1),由6位数字组成,第一位为拔海高度参数,实测

气候应用的定义 内容和现状

气候应用的定义内容和现状 气候应用是应用气候学中的基本理论和信息解决国民经济各行业遇到的具体的气候问题,应用气候学则是运用气候学中的基本理论和信息解决国民经济各行业遇到的具体气候问题的 一门实用性科学。应用气候学将气候学知识结合人类活动的特点与需要,分析对其有利与不 利的气候影响指标,提出适应措施,甚至做出区划,以供规划、布局时参考的一系列边缘性 学科。 世界气象组织气象学和气候学专门应用委员会主席M.K.Thomas先生在1980年将应用气候学的内容概括为5个部分:粮食(农业和渔业)、水(水资源和水灾)、健康(人类生物 气象、人类舒适、污染、旅游和休养)、能源(化石燃料、再生资源)、工业和商业(建筑 与结构、交通、森林、运输、服务)。就我国国情而言,气候应用为经济建设服务主要体现 在制订规划、气候资源调查、工程设计、气候评价、生产管理等5个方面。 为了适应工农业发展的需要,我国开展了大量的应用气候研究工作,如全国农业气候区划、全国建筑气候区划、全国电力通讯网气候区划、全国太阳能风能资源分析和区划、全国 道路气候区划、全国各流域区划等工作,也开展了桥涵孔径设计的暴雨强度公式及其气候系 数的研究、全国各流域可能最大暴雨的研究、城市规划与气候研究、工厂总体布局与大气污 染扩散的研究、常见疾病与气候关系的研究等工作,这些成就在国民经济建设和国防建设中 起到了很大的作用。 1 气候可行性论证 气候可行性论证是指对气候条件密切相关的规划和建设项目进行气候适宜性、风险性以 及可能受局地气候产生影响的分析、评估活动[1]。对与气候条件密切相关的城市规划、重大工程开展气候可行性论证,进行气候适宜性、灾害风险性分析,旨在充分考虑有利气候条件,并在规定的水平上抵御气象灾害风险,尽可能减小潜在的损失。 城市规划或建设项目缺少气候可行性论证可能导致:(1)无法合理利用有利的气候条件;(2)无法准确进行工程气象设计参数推算;(3)无法准确评估项目所在地的气象灾害风险 以及可能对建设项目所带来的负面影响。气候可行性论证的技术总目标是科学的、合理的防 灾和投资。简而言之,气候可行性论证旨在指定安全系数的条件下,为规划和建设项目算好 经济账,既要保障安全又要尽量节约资金。 2 气候背景分析 按照项目要求分析参考气象站的观测数据,包括蒸发、相对湿度、日照、风向风速、降水、气温等气象要素。分析影响本区域的强影响天气系统,如副热带高压、锋面和飑线等发 生持续时间、移动速度和方向的范围、季节性发生频率。 3 工程气象参数推算 风压、最大风速、最大降水、最高(低)气温等重现期推算。所用气象资料应是从参考 气象站建站至项目论证的当年为止。如果参考气象站的资料不能代表项目所在地的实况,应 在项目所在地建立临时气象观测站进行短期气象观测,以确定推算要素两地之间的差异,并 用统计方法进行修正。 4 气候与人居环境 由于城市的发展,城市数目日益增多,城市建筑面积不断扩大,据《2003年世界发展报告》估计,到21世纪中叶,世界的2/3的人口将居住在城市。人类活动能力的迅速增强改变了气候,正确认识城市气候特征,科学系统地研究气候与城市规划和建筑的关系,对城市节 能降耗、完善功能布局、理性选址、走可持续发展之路有着不同寻常的意义。气候与城市建 筑之间相互影响和相互作用。气候对城市规划和建筑的影响涉及城市规划及建筑的各个领域。不同地区气候条件下,城市建设时需要考虑城市建筑群体布局、建筑设计、建筑通风降温等 方面,甚至在建筑单体上还要考虑、建筑的朝向、空间的组织、建筑结构的形式等方面。另 一方面,城市是一个建筑林立,生态环境已经次生人工化的环境,城市建设逐步扩大、建筑

气象数据的“大数据应用”浅析

气象数据的“大数据应用”浅析 2014-03-24 17:03:19 作者:国家气象总局沈文海来源:CIO时代网 摘要:气象数据在“大数据应用”浪潮中亟待解决的信息技术问题,是海量气象结构化数据的高效应用。这是气象数据能否参与“大数据应用”的技术基础和前提。 关键词:气象数据大数据 1、引言 据统计,2011年全球的数据规模为1.8ZB,这些信息将填满575亿个32GB的ipad,以这些ipad做砖石,足可以垒建起两座中国的万里长城。而到2013 年,仅中国当年产生的数据总量就已超过0.8ZB,2倍于2012年,相当于2009年全球的数据总量。预计到2020年,中国产生的数据总量将是2013年的10倍,超过8.5ZB.【1】而届时全球的数据总量预计将达到40ZB,如果将这些数据全部刻录成蓝光光盘,则这些光盘的总重量相当于424艘满载荷的尼米兹航空母舰。 数据量暴增的速度令人瞠目结舌,我们的确已进入“大数据时代”. 很快地,“地理大数据”、“水利大数据”、“环境大数据”、“金融大数据”、“互联网大数据”乃至“气象大数据”等名词陆续出现在有关媒体上。“大数据”逐渐成为近来人们谈论最多、思考最多的技术话题之一。一些人憧憬于“大数据”可能带来的十分珍稀的高价值信息和珍贵商机,也有许多人困惑于目前所知“大数据”的应用范式,以此研判着可能给本行业带来的变化和新的业务契机--气象部门也是如此。 做为抛砖引玉,笔者拟就如下问题提出自己的看法: (1)气象数据是否具备“大数据”的核心特征? (2)业界公认的“大数据应用”的主要形态是什么? (3)“大数据时代”背景下气象数据应用中新的价值领域在何处?需要首先具备哪些必要条件? (4)气象信息技术领域当务之急需要解决的关键技术问题。 2、大数据的现实以及气象数据的体量构成 2.1 大数据的行业分布 就数据量而言,中国的大数据近期具有如下行业分布特征: (1)互联网公司 目前国内的互联网公司,拥有总计约2EB的数据,而其中的互联网三巨头BAT(百度、阿里巴巴、腾讯)占有了其中的3/4(约1.5EB)。 (2)电信、金融、保险、电力、石化系统

陆地生态气象数据库表说明、数据编码

附录 A (规范性附录) 生态气象数据库表说明 A.1 区域级参数表 表A.1规定了区域级参数表的表名及内容。 表名:T_TEMO_REG_PAR。 表A.1 区域级参数表 A.2 区域级多媒体生态场景数据表 表A.2规定了区域级多媒体生态场景数据表的表名及内容。表名:T_TEMO_REG_M01。 表A.2 区域级多媒体生态场景数据表

A.3 区域级生态特征数据表 表A.3规定了区域级生态特征数据表的表名及内容。 表名:T_TEMO_REG_F01。 表A.3 区域级生态特征数据表

注:一般情况下,林木蓄积量无需观测,但当发生间阀、砍阀时有一定意义。 A.4 区域级生态气象灾害与天象、异常生态事件数据表 表A.4规定了区域级生态气象灾害与天象、物候、异常生态事件(仅限野生、散放动物、天灾等)数据表的表名及内容。 表名:T_TEMO_REG_E01。 表A.4 区域级生态气象灾害与天象、物候、异常生态事件(仅限野生、散放动物、天灾等) 数据表 A.5 区域级生态活动事件数据表 表A.5规定了区域级生态活动事件数据表的表名及内容。 表名:T_TEMO_REG_E02。 表A.5 区域级生态活动事件数据表 A.6 区域级大气层气象要素分钟数据表 表A.6规定了区域级大气层气象要素分钟数据表的表名及内容。 表名:T_TEMO_REG_D00_MIN。 表A.6 区域级大气层气象要素分钟数据表

A.7 区域级辐射分钟数据表 表A.7规定了区域级辐射分钟数据表的表名及内容。 表名:T_TEMO_REG_D01_MIN。 表A.7 区域级辐射分钟数据表

气象中的统计方法总结

51气象中的统计方法总结 2、判别分析;广东省徐闻气象局[20]用二级判别做台风登陆地段; 3、相关分析;近20年来在气象统计中用得较多的主要有典型相关(;奇异值分解(SVD)也是提取两个场的最大线性相关; 4、气象场的分解及其应用;50年代中期由Loreng引入到大气科学研究中的;4.1经验正交函数(EOF)分解;章基嘉等[30]应用经验正交函数对亚洲500hP;4.2主成份(主分量) 2、判别分析 广东省徐闻气象局[20]用二级判别做台风登陆地段的预报。Fisher、Bayes以及逐步判别等虽然在气象实际中广泛应用,但严格地说,这些方法仅当变量为正态分布时才可应用, Logistic判别对变量的基本假设条件较宽,对未经正态检验的变量应用本方法是可行的,且可用于既有连续变量又有多值离散变量的情形。吕纯濂等[21] 将Logistic判别引入中国气象界,并研究了二次Logistic判别[22]分析及逐步判别[23]在气象中的应用。 3、相关分析 近20年来在气象统计中用得较多的主要有典型相关(CCA)分析和奇异值分解(SVD)方法。CCA是提取两个气象场的最大线性相关摸态的方法。朱盛明、祝浩敏[24]在数值预报的解释应用中用典型相关分析提取有物理意义的预报因子作预报方程。陈嘉玲、谢炯光[25]用典型相关分析作中期冷空气预报。黄嘉佑[26]用典型相关分析作副高的统计动力预报。近年来发展了一种新的CCA改进方法,称为典型相关分析的BP(Barnert 和Preisendorfer)方法,在气象统计中也得到了应用[27]。 奇异值分解(SVD)也是提取两个场的最大线性相关摸态的方法,SVD 方法可以变成是两个要素场关系的扩大EOF分析。谢炯光等[28]用奇异值分解方法,求出了广东省前汛期(4-6月)西太平洋场海温与广东省降水场的6对奇异向量,来作汛期降水趋势预报。江志红等[29]用SVD方法讨论了中国夏半年降水与北太平洋海温异常的关系。

气象数据处理流程

气象数据处理流程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

气象数据处理流程1.数据下载 1.1.登录中国气象科学数据共享服务网 1.2.注册用户 1.3.选择地面气象资料 1.4.选择中国地面国际交换站日值数据 选择所需数据点击预览(本次气象数据为:降水量、日最高气温、日最低气温、平均湿度、辐射度、积雪厚度等;地区为:黑龙江省、吉林省、辽宁省、内蒙古) 下载数据并同时下载文档说明

1.5.网站数据粘贴并保存为TXT文档 2.建立属性库 2.1.存储后的TXT文档用Excel打开并将第一列按逗号分列 2.2.站点数据处理 2.2.1.由于站点数据为经纬度数据 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标 并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库(注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。 2.2.2.利用VBA程序 Sub we() i = 6 For j = 1 To 30 Windows("").Activate Rows("1:1").Select Field:=5, Criteria1:=i

Field:=6, Criteria1:=j Windows("").Activate Rows("1:1").Select Windows("book" + CStr(j)).Activate Range("A1:n100").Select Range("I14").Activate ChDir "C:\Documents and Settings\王\桌面" Filename:="C:\Documents and Settings\王\桌面\6\" & InputBox("输入保存名", Title = "保存名字", "20070" + CStr(i) + "0" + CStr(j)), _ FileFormat:=xlDBF4, CreateBackup:=False SaveChanges:=True Next j End Sub 将数据库按照日期分为365个文件 3.建立回归模型增加点密度 由于现有的日辐射值数据不能覆盖东三省(如图),需要对现有数据建模分析,以增加气象数据各点密度。 已有数据10个太阳辐射站点,为了实现回归模型更好拟合效果,将10个样本全部作为回归参数。利用SPSS软件建模步骤:

战场环境分析之气象

联合作战战场环境分析 --气象武器

气象武器 摘要:自古以来,能否及时了解并利用战场环境,都是决定战争胜利不可忽视的因素。然而对于高科技时代的现代战争来说,单纯地获取战场环境信息,利用现有条件已远远满足不了要求。基于对环境的改造,一种新概念武器——气象武器已成为现代战争的宠儿。本文着重介绍了气象武器的原理、种类、特点及研发现状和前景。 关键词:战场环境、气象武器、原理、种类、特点、现状前景 所谓“气象武器”是指运用现代科技手段,人为地制造地震、海啸、

暴雨、山洪、雪崩、热高温、气雾等自然灾害,改造战场环境,以实现军事目的的一系列武器的总称。随着科学和气象科学的飞速发展,利用人造自然灾害的“地球物理环境”武器技术已经得到很大提高,必将在未来战争中发挥巨大的作用。 一、气象武器的原理 采用人工手段影响天气,主要是用飞机、火箭、火炮等手段向敌某些地区低空大气层播撒催雨物质进行降雨、播撒其他化学物质进行消雾和造雾,或通过其他手段改变敌方上空的臭氧含量等方法,以制造恶劣天候,对敌方造成各种危害。采用人工手段之所以能够使天气产生变化,这是因为大气层中所包含的水汽、水滴、冰晶和各种悬浮物质,时常处于一种不稳定的状态之中,只要人们掌握这些不稳定因素的变化规律,就可以使用较少的能量去引发和催化它们,即形成一种使天气产生变化的触发机制,天气中的不稳定因素就会产生较大的能量转换。而大气层中这种能量转换的结果,就会导致某些地区、某些空间天气、气候的变化。气象武器就是根据这一原理,按照一定的军事目的给大气施加某种能量,使天气按照有利于自己,不利于敌人的方向发展,以制造恶劣的天气和气候去直接攻击敌人,或为间接攻击敌人创造有利的战场环境。 二、气象武器的主要种类 (一)温压炸弹

气象资料数据接口需求

1、规范设计实时业务数据表格,规范化设置表格字段命名,并形成数据表格设计技术文档。规划各种数据表格(实时数据表、配置管理表、元数据表、工作日志表)在数据库空间的分配和保存时效等。 2、数据的定时删除,数据维护,数据归档,表空间的规划、维护方案,数据备份、恢复方案。 3、采用模块化设计数据接收和数据解码进库软件,具备可扩展能力强等特点,能够适应不断增长的数据种类处理要求。设计的数据接收和处理软件具备性能调优和多进程并发运行能力,能满足大数据量的迅速处理进库性能要求。 4、规划各种实时数据接收入口组织,适应不同种类信息通信方式的数据接收方式,支持文件级和GPRS通信的TCP数据报文等数据接收;实现全省数据快速接收处理进库技术。 5、安装部署J2EE技术规范的数据库应用服务器(IBM WEBSPHERE SERVER、WEBLOGICSERVER软件),合理设置数据库数据检索用户访问角色和系统管理角色,开发数据库数据检索接口软件,进行数据检索接口软件编程。 6、进行基于微软技术的多层数据库应用服务器软件设计,满足全省台站MICAPS系统对实时数据库的数据检索应用。 7、采用探测要素极值设置、站点区域范围内要素值均方差等技术方法进行探测要素质量检测技术研究,,形成报警显示功能。 进行数据库管理系统的远程管理软件的技术开发,满足数据库业务系统的运行状态监控、工作日志监视、运行参数配置以及进程启动或停止和系统资源等管理工作要求。 8、在用户调用Web Service方法获取气象数据时,进行方法调用的安全验证,通过密钥和数字证书技术,保护数据共享方法的安全。 9、将关系型数据库中的气象科学数据封装为结构化气象数据格式。

中国地面气候资料月值数据集2

气象数据集元数据 数据集标识信息 数据集名称:中国地面气候资料月值数据集 数据集代码:SURF_CLI_CHN_MUL_MON 摘要:本数据集由各省上报的全国地面月报信息化文件根据《全国地面气候资料(1961-1990)统计方法》及《地面气象观测规范》有关规定,进行整编统计而得。数据集为中国752个基本、基准地面气象观测站及自动站1951年以来气候资料月值数据集,本数据集内容包括气温、气压、相对湿度、降水、风、日照等要素的历年月值数据,文件类型为ASCII码文件。 数据质量 数据质量描述: (1)中国地面月报信息化文件经过较严格的质量控制和检查。 (2)将中国722个站点,1971--2000出版项目的统计结果经过极值检验和时间一致性检验人工抽查,数据无误。 审核中发现:1)江西省吉安站(57799)1971年1-8月40cm地温资料,由于观测时仪器出问题,40cm地温比气候平均值普遍偏高,故1-8月40cm地温记录可疑仅供参考。 2)对于极大风速原始数据中大于50m/s的记录,在统计时都作为超刻度处理,但实际上有可能是真实观测记录。3)四川省阿坝站(56171)1954年5月,降水量记录比历年值普遍偏高,记录有误,仅供参考。由于56171站从1954年8月开始有报表,则该值对、错无法判断。 数据处理过程:根据《全国地面气候资料(1961-1990)统计方法》,读取原始文件中的定时值数据,先进行日值统计,再统计月平均值和总量值。 2.数据来源:各省、市、自治区气候资料处理部门逐月上报的《地面气象记录月报表》的信息化资料。 数据集分类:地面气象资料 更新频率:不定期 关键词 学科分类关键词: 地面气象资料 气压 气温 相对湿度 风 降水 日照 地理范围关键词:中国 层次关键词:地面 3.4.3.空间分辨率:全国752个站点。 参考系:无 时间标识 制作时间:20050726 制作类型:生产 地理覆盖范围 地理范围描述:中国 最西经度:73.66E 最东经度:135.08E

天气预报基础之一-天气分析的内容和方法

1.1 天气图分析 1.1.1 地面天气图 地面天气图反映了某区域某时刻的地面天气系统和天气状况。一张地面图上用数值或符号填写各个气象观测站在同一时刻的气象要素观测记录。它填有观测时刻地面各种气象要素和天气现象,如气温、露点温度、风向、风速、海平面气压、能见度和雨、雪、雾等;还填有能反映空中大气现象的一些记录,如总云量、低云量、低云高以及高云、中云和低云的云状等;既有当时的记录,又有一些能反映短期内天气演变实况的记录,如3h变压、过去6h内的天气,过去6h降水量等。地面天气图是填写气象观测项目最多的一种天气图,是天气分析和预报中很重要的工具。 图1.1 MICAPS中地面填图格式

地面图主要分析海平面气压场(即海平面气压等值线),分为低压、高压、低压槽、高压脊、鞍形气压场五种基本形式,任一张海平面气压图都是由这五种基本形式构成的。 图1.2a MICAPS中显示的2009年8月17日08:00 500hPa天气图 1.1.1.1 锋面 锋面是冷暖气团的过渡带,是水平温度梯度大的区域,斜压性强,有利于垂直环流的发展和能量转换,锋面附近常有剧烈的天气发生。锋面是天气预报中重点关注的天气系统之一。因此,锋面的识别和分析是地面天气图分析中的重点。根据锋面在移动过程中冷、暖气团所占的主、次地位,可将锋面分为:冷锋、暖锋、准静止锋和锢囚锋。 ⑴冷锋: 锋面移动过程中,冷气团起主导作用,推动锋面向暖气团一侧移动,这种锋面称为冷锋。冷锋过境后,冷气团占据了原来暖气团所在的位置,导致气温下降。需要注意的是,气团在移动过程中,由于变性程度不同,或有小股冷空气补充南下,在主锋后常有副冷锋形成,一般主锋两侧的温度差值较大,副冷锋两侧温差较小。图1.2a中有两条冷锋,一条是从低压中心向南向西伸的气旋中的冷锋,称为主锋;另一条是其后部补充南下冷空气而形成的副冷锋。

地面气象观测资料在气象服务中的应用分析

地面气象观测资料在气象服务中的应用分析 摘要:地面观测的主要作用之一便是为我国农业生产活动提供气象预警,使农 民在从事农业活动的过程中提前获得未来几日内的气象信息,并根据自身种植农 作物的实际情况进行有效的调整,以免由于气象灾害导致农作物大范围减产,为 我国农业经济的有效发展提供必要的保障。文章主要分析了地面气象观测资料在 农业气象服务中的应用,以供参考。 关键词:气象观测;农业;气象服务 引言 在气象工作中,气象观测发挥着重要的作用。作为气象观测单位,必须提高 观测资料质量,为农业生产生活提供正确的指导与充足的依据。在工作实践中, 气象观测单位应针对工作中存在的问题,采取科学、合理的方法,提高观测水平 与质量,为推动农业气象观测事业的发展提供强有力的支持。 1地面气象观测的内容 1.1天气观测 天气的观测主要可以分为天气分析与天气预报两种种。天气分析是对地面气 象观测的结果,根据用途方面的不同进行针对性的分析。而天气预报则是对地面 气象观测结果进行提前预报,为农民从事的农业种植活动提供准确的天气预警, 使农民可以对其农业种植活动进行合理安排。 1.2气候观测 气候观主要是为了分析与研究积累的资料而进行的观测。其观测时间与内容 主要是根据实际的需要而制定,由于国家与国家在气候观测中的实际目的不同。 我国气象部门基本将气候观测的时间段与基本天气观测保持一致,项目也与天气 观测大致相同。此外,还要添加一些类似于日照时长、土壤层之间的相互温差、 空气中水份蒸发量及积雪厚度等特殊数据的观测。 1.3气温的测量 气温的测量主要是用于天气预报当中,尤其是一些气温突变的季节,气温测 量的结果可以准确地分析出未来几日内的气温变化情况。有助于农民提前对所从 事的农业活动进行科学、有效的安排,对现代农业的发展起到了积极的作用。 1.4湿度的测量 空气中的湿度对于农业生产看似影响不大,实际上却有着很深的影响。如果 空气中湿度过低,会导致植物的气孔自动关闭,减少光合作用产生的效果,不利 于植物的生长发育;如果湿度过高,则会加速植物的蒸腾作用,使农作物在生长 的过程中出现失水或萎蔫的状况,影响农作物的最终产量。地面观测对湿度的测 量主要是测量空气中的湿度情况,并对其进行及时的播报,使农民能够及时对存 在问题的农作物进行人工补救。 2地面气象观测资料在农业服务中的重要性 随着新农村建设步伐的加快,农牧业科技也得到不断的进步,农民生产活动、出行与气象关系密切。气象在农村小康建设、农业发展、农民增收方面起着重要 的作用。农村抵御自然灾害的能力较为脆弱,极易遭受气象灾害破坏。农村经济 发展日新月异,根据地域气候的不同,农牧业产业结构也大不相同,在农村农牧 业生产过程中需要第一时间掌握和了解温度、降水等气象要素的变化,农户需要 知道产期、产中、产后天气的晴雨冷暖,产后作物的加工、存储、运输更是离不 开气象信息。但是影响农业经济发展的主要气象灾害还是以冰雹、低温冻害、干

相关主题
文本预览
相关文档 最新文档