自由曲面设计之切面迭代法介绍
- 格式:pdf
- 大小:2.64 MB
- 文档页数:42
proe常用曲面分析功能详解现在是针对曲面分析单独做的教程曲面分析应该贯穿在这个曲面外型的设计过程中.而不该最后完成阶段做分析由于时间关系我单独做个分析简单的教程,将来的教程中我将逐步体现造型过程中贯穿分析的教程本文重点在简单的阐述下曲面分析的运用,并不过多的阐述曲面的做法,PRT实物来源于SONJ.无嗔等版大,为求对比好坏,我会将质量好的PRT.修改约束成差点的来深入的阐述曲面分析的作用和看法.在这里先谢谢这些版大无私分享,也求得他们的原谅,未经过允许就转载他们的PRT还乱改.我先道歉…现在这个拉手大家都看见了,这一步是VSS直接扫出来的.现在显示的呢是网格曲面.这个网格曲面和多人认为用处不大.但我想说几点看法,第一看这个面是不是整面,很明显这个面的UV先是连接在一起的,他是个整面.第2看他的UC线的走向,是不是规则在某一方向上,有没有乱,有没有波动。
这些是我们肉眼能看见的,是一个初步的分析,也能帮助大家理解曲面的走向趋势是怎么个事情。
至于曲线的分析其他教程中以有很多阐述我就不在追述,至于什么叫曲面G1和G2相信大家也看到很多类似的教程这个图你就能看见多个曲面的网格在一起时候的显示,说明不是整面。
网格曲面另一个重要作用呢就是观察收敛退化,也就是大家长说的3角面。
收敛退化是我们最不想看到的,但收敛点在那里呢,根据经验呢,比如说我这个,在做边界混合时候2条直线是一组,曲线是另一组,也就是退化点在2条直线相交的地方,但新手一般看见教程是跟着裁减那里的角,至于为什么是在哪个位置可能不是很清楚,就看下网格曲面吧剖面分析来说呢相对的要求比较高,原理呢很简单就是所选择的曲面面组和基准面相交的曲线的曲率梳,他不但能反映出单独曲面在截面基准面那里的曲率走向变化,还可以看出曲面和曲面接头处的曲率变化。
剖面分截面和高亮线2中分析。
截面分析的步骤呢我简单说下1,选取要在其上执行曲面分析的一个或多个曲面、面组、零件或所有模型曲面。
几何画板迭代详解迭代是几何画板中一个很有趣的功能,它相当于程序设计的递归算法。
通俗的讲就是用自身的结构来描述自身。
最典型的例子就是对阶乘运算可看作一下的定义:!(1)!(1)!(1)(2)!n n n n n n =⨯--=-⨯- 。
递归算法的特点是书写简单,容易理解,但是运算消耗内存较大。
我们先来了解下面这几个最基本的概念。
迭代:按一定的迭代规则,从原象到初象的反复映射过程。
原象:产生迭代序列的初始对象,通常称为“种子”。
初象:原象经过一系列变换操作而得到的象。
与原象是相对概念。
更具体一点,在代数学中,如计算数列1,3,5,7,9......的第n 项。
我们知道12n n a a -=+,所以迭代的规则就是后一项等于前一项加2。
以1作为原像,3作为初像,迭代一次后得到5,再迭代一次得到7,如此下去得到以下数值序列7 , 9,11, 13, 15......如图1.1所示。
在几何学中,迭代使一组对象产生一组新的对象。
图1.2中A 、B 、C 、D 、E 、F 、G ,各点相距1cm ,那么怎么由A 点和B 点得到其它各点呢?我们可以发现其中的规律就是从左到右,每一个点相当于前面一个点向右平移了1cm 。
所以我们以A 点作为原像,B 点作为初像,迭代一次得到B 点,二次为C 点,以此类推。
所以,迭代像就是迭代操作产生的象的序列,而迭代深度是指迭代的次数。
那么下面我们通过例子来进一步地了解迭代以及相关的概念。
几何画板中迭代的控制方式分为两种,一种是没有参数的迭代,另一种是带参数的迭代,我们称为深度迭代。
两者没有本质的不同,但前者需要手动改变迭代的深度,后者可通过修改参数的值来改变迭代深度。
我们先通过画圆的正n 边形这个例子来看一下它们的区别。
【例1】画圆的内接正7边形。
【分析】由正7边形的特征,我们知道,每一个点都相当于前面的点逆时针旋转360,抓住这个规律,我们可以用迭代功能来解决。
7【步骤】1.新建圆O,在圆O上任取一点A。
几何画板迭代详解之:迭代与分形几何佛山市南海区石门中学谢辅炬分形的特点是,整体与部分之间存在某种自相似性,整体具有多种层次结构。
分形图片具有无可争议的美学感召力,特别是对于从事分形研究的科学家来说。
欣赏分形之美当然也要求具有一定的科学文化知识,但相对而言,分形美是通俗易懂的.分形就在我们身边,我们身体中的血液循环管道系统、肺脏气管分岔过程、大脑皮层、消化道小肠绒毛等等都是分形,参天大树、连绵的山脉、奔涌的河水、漂浮的云朵等等,也都是分形。
人们对这些东西太熟悉了,当然熟悉不等于真正理解。
分形的确贴近人们的生活,因而由分形而来的分形艺术也并不遥远,普通人也能体验分形之美。
因为分形几何的迭代的原像一般不止一个,而且均为多映射迭代,为了叙述的方便,我们先作以下两个约定。
1.用(A,B,C)表示有顺序的两点A、B和C.2.(A,B,C)(D,E,F,),(G,H,I)表示A映射到D,B映射到D,C映射到F,然后添加映射A映射到G,B映射到H,C映射到I,如此类推。
【Sierpinski三角形】波兰著名数学家谢尔宾斯基在1915-1916年期间,为实变函数理论构造了几个典型的例子,这些怪物常称作“谢氏地毯"、“谢氏三角”、“谢氏海绵”、“谢氏墓垛"。
如今,几乎任何一本讲分形的书都要提到这些例子。
它们不但有趣,而且有助于形象地理解分形。
著名的Sierpinski三角形,它是很有代表性的线性分形,具有严格的自相似特点。
不断连接等边三角形的中点,挖去中间新的小三角形进行分割——-随着分割不断进行Sierpinski三角形总面积趋于零,总长度趋于无穷。
Sierpinski三角形在力学上也有实用价值,Sierpinski 三角形结构节省材料,强度高,例如埃菲尔铁塔的结构与它就很相似。
【步骤】1.在平面上任意画一个三角形ABC,取三边中点为D、E、F,连接DEF.2.新建参数n=33.顺次选择B,C,A三点和参数n,作深度迭代,(B,C,A)(D,F,A)⇒。
迭代法详解迭代法(iteration)也称辗转法,是⼀种不断⽤变量的旧值递推出新值的解决问题的⽅法,迭代算法⼀般⽤于数值计算。
累加,累乘都是迭代算法的基础应⽤。
利⽤迭代法解题的步骤:1)确定迭代模型根据问题描述,分析出前⼀个(或⼏个)值与下⼀个值的迭代关系数学模型。
2)建⽴迭代关系式递推数学模型⼀般是带下标的字母,算法设计中要将其转化为“循环不变式”----迭代关系式,迭代关系式就是⼀个直接或间接地不断由旧值递推出新值的表达式,存储新值的变量称为迭代变量。
3)对迭代过程进⾏控制。
确定在什么时候结束迭代过程。
迭代过程是通过⼩规模问题的解逐步求解⼤规模问题的解,表⾯上看正好与递归相反,但也找到了⼤规模问题与⼩规模问题的关系。
本节的例⼦是⽤迭代完成的,也都可以⽤递归完成。
相信尝试后,定能体会到递归的简便之处。
1,递推法(recursion)是迭代算法的最基本表现形式。
⼀般来讲,⼀种简单的递推⽅法,就是从⼩规模的问题解出⼤规模问题的⼀种⽅法,也称其为“正推“。
如”累加“。
兔⼦繁殖问题:⼀对兔⼦从出⽣后第三个⽉开始,每⽉⽣⼀对兔⼦,⼩兔⼦每到第三个⽉有开始⽣兔⼦,问⼀年中每个⽉各有多少兔⼦?我们通常⽤的迭代:print(a,b)for(i=1;i<=10;i++){c=a+b; print(c); a=b; b=c;}另⼀种构造不变式的⽅法:1 2 3 4 5 6 7 8a b c=a+b a=b+c b=a+c c=a+b这样,⼀次循环其实是递推了三步,循环次数就要减少了。
#include<stdio.h>int main(){int i,a=1,b=1;int c;printf("%d %d ",a,b);for(i=1;i<=4;i++){c=a+b;a=b+c;b=c+a;printf("%d %d %d ",c,a,b); //注意输出顺序是c,a,b}}上⾯输出的共2+3*4=14项,这样的算法不太完美。
3.4 利用pro/e进行曲面造型曲面是一种没有厚度、质量、界限的薄膜。
一般对较规则的3D零件来说,实体特征提供了迅速且方便的造型建立方式。
但对复杂较高的造型设计而言,单单使用实体特征来建立3D 模型就显得很困难了,这是因为实体特征的造型建立方式较为固定化(如仅能使用拉伸、旋转、扫描、混合等方式来建立实体特征的造型),因此曲面特征应运而生,提供了非常弹性化的方式来建立单一曲面,然后将许多单一曲面集成为完整且没有间隙的曲面模型,通过封闭曲面转化为实体或者加厚曲面成为实体,来达到设计的目的。
它有别与实体造型,但是也和它息息相关。
曲面造型是一种用曲面表达实体形状的造型方法。
曲面特征的建立方式除了与实体特征相同的拉伸、旋转、扫描、混合等方式外,也可由点建立为曲线,再由曲线建立为曲面。
此外,曲面间也有很高的操作性,例如曲面的合并(merge),修剪(trim),延伸(extend)等(实体特征缺乏该类特征)。
由于曲面特征的使用较弹性化,因此其操作技巧性也较高3.4.1 基本曲面造型简介在造型的方法中,基本曲面由一下几种:填充、拉伸、旋转、扫描、混成。
第一种:填充曲面():以填充材料的方式构成曲面:先草绘封闭曲线,之后将在曲线边界内填充材料生成曲面,填充曲面一般为平面。
注意在pro/e中平面是有大小的,不像几何中的平面无限大,没有边界。
第二种:拉伸曲面(Extrude):拉伸曲面是指在绘图平面上的一条直线或曲线向垂直与绘图平面的一个或相对的两个方向拉伸说生成的曲面,平面是拉伸曲面最特殊的情况,结果类似与填充曲面。
第三种:旋转曲面(Revole):旋转曲面是指一条直线或曲线围绕一条中心轴线,按一定的角度旋所成的曲面(如图3-194所示图3-194第四种:扫描曲面(Sweep):扫描曲面是指一条直线或曲线(截面线)或直线或曲线(扫描路径)运动所生成的曲面,如图3-195所示。
图3-195第五种:混成曲面:混成曲面是由一系列直线或曲线的对应点串联所形成的曲面,混成曲面可根据对应点只见不同的数学过渡表达方式,可以是直线过渡,也可以是曲线过渡。
当前位置:模具学院首页>> Pro/E >> pro/E综合技巧>> ProE曲面设计方法总结及心得ProE曲面设计方法总结及心得2009-12-03 10:38:56 作者:未知来源:互联网浏览次数:437 文字大小:【大】【中】【小】在bound时,最好将破碎的边界近似结合后再邦面,虽然邦面后可能不能生成实体,可以将曲面同曲面延伸后生面实体1、curve和tanget chain的区别。
比如做两个连续的四边曲面,曲面A引用了curve1,则在创建曲面B时,最好引用A的tangent chain而不是其原始curv e。
因为尽管原理上A的边(tangent chain)即curve1,但在生成曲面后,它的边已经和原始c urve有了精度上的偏差。
所以为了保证曲面的连续性,应尽量选用tangent chain。
补充:在定义边界条件时,tangent chain无须选择曲面(因为本来就在曲面上),而curv e则需选择相切曲面,也就是先前通过此curve创建的曲面。
(2)、变截面扫描时选项Pivot Dir(轴心方向)的理解。
首先把原始轨迹线看成无数个原点的组合,在任一原点处的截面参照为:原点、原点处的切线、以及过原点且与datum面垂直的直线(可以把它理解为创建point-on-plane轴)。
一个很好的例子是ice的鼠标面教程,以分模面作为变截面扫描的datum面,因此能保证任一扫描点处的脱模角。
(3)、创建连续的混合曲面,其curve要连续定义,以保证曲率连续;而曲面则可以先分开生成,再创建中间的连接面。
(4),在通过点创建曲线时,可以用tweak进行微调,推荐选择基准平面进行二维的调节,然后再选择另一个基准进行调节,这样控制点就不会乱跑了。
(5),如果曲面质量要求较高,尽可能用四边曲面。
(6),扫描曲面尽可能安排在前面,因为它不能定义边界连接。
(7),当出现>4边时,有时可以延长边界线并相交,从而形成四边曲面,然后再进行剪切处理。