光机系统设计大作业1 -
- 格式:docx
- 大小:97.91 KB
- 文档页数:6
机械系统设计大作业机械系统设计大作业目录第1章总体方案设计 (1)1.1 研究给定的设计任务 (1)1.2设计任务抽象化 (1)1.3确定工艺原理方案 (1)1.4工艺方案设计 (2)1.5功能分解功能树 (2)1.6确定每种功能方案 (2)1.7确定边界条件 (2)1.8方案评价 (3)1.9方案简图 (3)1.10总体布置 (4)1.11总要参数的确定 (4)1.12循环图 (4)第2章执行系统设计 (6)2.1运动分析 (6)2.2动力分析 (6)第3章传动系统设计 (9)3.1动力机选择 (9)3.2运动与动力参数的确定 (9)3.3运动与动力参数确定 (9)3.4传动零件设计计算 (10)第1章总体方案设计1.1 研究给定的设计任务表1.1 设计任务书1.2设计任务抽象化图1.1系统黑箱1.3确定工艺原理方案物理振动原理1.4工艺方案设计人工倒入适量谷物打开开关振动工作关闭电源收集分离干净的谷物图1.2工艺路线图1.5功能分解功能树图1.3功能树1.6确定每种功能方案分离功能:铁丝网格、带孔铁板、带孔塑料板动力功能:电机控制功能:开关表1.2 功能解形态学矩阵1.7确定边界条件图1.4边界条件1.8方案评价评价原则:满足功能要求、经济、质量轻评价方式:一对一比较表1.3方案评分表经过评价选择A方案:分离功能:铁丝网格动力功能:电机控制功能:开关1.9方案简图1机架、2振动筛摇杆、3振动筛铁丝网、4振动筛曲柄、5电机图1.5方案简图1.10总体布置图1.6总体布置图1.11总要参数的确定尺寸参数:整体长宽高1500×800×500mm运动参数:曲柄回转速率n=120r/分1.12循环图图1.7曲柄循环图由于仅有一个执行头,不存在干涉情况,所以不需进行时间、空间同步化。
第2章执行系统设计2.1运动分析2.1.1运动参数确定1.偏心曲柄摇杆机构参数确定曲柄回转速率n=120r/分2.1.2运动尺寸确定1.偏心曲柄摇杆机构确定曲柄长度L1,连杆长度L2,摇杆长度L3、机架长L4和偏心距e图2.1偏心曲柄摇杆机构由机器的总体尺寸取L4=1400mm,L2=1300mm,e=60mm;由曲柄存在条件和机器总高取L1=100mm得L2>202mm,取L2=210mm 2.2动力分析1.偏心曲柄摇杆机构动力分析图2.2偏心曲柄摇杆机构动力分析A.运动分析 位移方程1400cos 1300cos 210cos 100=⨯+⨯+⨯δαθ60sin 1300sin 210sin 100=⨯+⨯-⨯δαθ 速度方程0sin 1300sin 210sin 100321=⨯-⨯-⨯-δαθw w w 0cos 1300cos 210cos 100321=⨯+⨯-⨯δαθw w w加速度运动方程0cos 1300cos 210cos 100232221=⨯-⨯-⨯-δαθw w w 0sin 1300sin 210sin 100232221=⨯-⨯+⨯-δαθw w wB.力分析图2.3连杆摇杆力分析对于连杆2有R12=R32,02/2/22222=⨯-+⨯l m M lp g对于摇杆3有R43=R23,02/2/33333=⨯-+⨯l m M lp g图2.4曲柄力分析对于曲柄1有R21=R41,0sin 2/sin 2/22111=⨯⨯++⨯⨯-θθlm M l p g第3章 传动系统设计3.1动力机选择查Y 系列电机表取Y80M1-1型号电机额定功率0.55kw ,额定转速1390r/min 。
目录1光学系统像质评价方法 (1)1.1几何像差 (1)1.1.1色差 (2)1.1.2轴上像点的单色像差 (3)1.1.3轴外像点的单色像差 (4)1.1.4正弦差、像散、畸变 (6)1.2垂轴像差 (6)2光学自动设计方法 (8)2.1光学自动设计程序的数学过程 (8)2.2阻尼最小二乘法光学自动设计程序 (10)2.3适应法光学自动设计程序 (12)3望远镜 (15)3.1望远镜物镜设计 (15)3.1.1选择初始结构 (15)3.1.2优化 (16)3.2望远镜目镜设计 (16)3.2.1参数计算 (17)3.2.2选择初始系统: (17)3.2.3优化 (18)3.3物镜目镜组合 (19)4照相物镜设计 (21)4.1选择初始结构 (21)4.2优化 (22)5变焦系统设计 (24)1光学系统像质评价方法要求:掌握采用常用评价指标评价光学系统成像质量的方法,对几何像差和垂轴像差进行分类和总结。
任何一个光学系统都不可能理想成像,因此存在一个光学系统成像质量优劣的评价问题,从不同的角度出发会得到不同的像质评价指标。
在检测阶段的像质评价指标有星点检测、分辨率检测。
在设计阶段的像质评价指标,可以分为以下两类:1、几何光学方法,包括几何像差、波像差、点列图和几何光学传递函数。
2、物理光学方法,包括点扩散函数、相对中心光强、物理光学传递函数。
1.1几何像差图1- 1几何像差的分类1.1.1 色差光波实际上是波长为400~760nm 的电磁波,不同波长的光在真空中传播的速度都是光速,但在介质中的传播速度随波长而改变,由n=c/v 可知,光学系统中介质对不同波长的光的折射率不同。
薄透镜的焦距公式为:()⎪⎪⎭⎫⎝⎛--=21111'1r r n f由于折射率n 随波长的不同而变化,因此焦距'f 也随之变化。
当对无限远的轴上物体成像时,不同颜色光线所成像的位置也就不同。
我们把不同颜色光线理想像点位置之差称为近轴位置色差,通常用C 和F 两种波长光线的理想像平面间的距离来表示近轴位置色差,也成为近轴轴向色差。
光机系统设计与实践课程报告作者学号:学院(系):理学院专业: 光学题目: 光接收系统设计2014年5月光接收系统设计光接收系统是照相、测距等系统的一个重要组成部分,其主要作用是接收外界光信号,并且将接收到的光传递给后续的光电转换器件,光接收系统的成像质量对整个系统有重要影响。
本次设计主要对光接收望远镜给出的初始结构进行优化,并且设计出优化之后的镜筒结构。
一、透镜像质的优化ZEMAX软件由美国焦点公司开发,它操作简单,价格便宜,提供了十分强大的像质优化功能,可以对合理的初始光学系统进行优化设计,是当今光学设计界的通用软件之一。
设计中光学结构参变量可以使曲率、厚度、玻璃材料参数、圆锥系数、参数数据、特殊数据和多重结构数值。
1.接收望远镜的设计要求如下:D/f=1/4,f=118.596,2ω=5°2.接收望远镜的初始结构参数见表13.透镜初始结构与光学特性参数输入①在ZEMAX主菜单中选择Editor\Lens Data,打开透镜数据编辑器(Lens Data Editor,LDE),输入初始结构,如图1所示。
图1 LDE中输入初始结构数据②光学特性参数输入。
用General对话框定义像空间。
在ZEMAX 主菜单中选择System\General…或选择工具栏中Gen,打开General对话框,选择Aperture Type为Image Space F/#,在Aperture Value中输入4,如图2所示。
图2 用General对话框定义孔径用Field Data对话框定义视场。
在ZEMAX主菜单中选择System\ Fields…或择工具栏中Fie,打开Field Data对话框,选择Field Type为Angle(Deg),在相应文本框Y-Field中输入3个校像差半视场角值:3、-3、0,其余为默认值,如图3所示。
图3 用Field Data对话框定义视场用Wavelength Data对话框定义工作波长。
光机系统设计与实践课程报告作者学号:学院(系):理学院专业: 光学题目: 光接收系统设计2014年5月光接收系统设计光接收系统是照相、测距等系统的一个重要组成部分,其主要作用是接收外界光信号,并且将接收到的光传递给后续的光电转换器件,光接收系统的成像质量对整个系统有重要影响。
本次设计主要对光接收望远镜给出的初始结构进行优化,并且设计出优化之后的镜筒结构。
一、透镜像质的优化ZEMAX软件由美国焦点公司开发,它操作简单,价格便宜,提供了十分强大的像质优化功能,可以对合理的初始光学系统进行优化设计,是当今光学设计界的通用软件之一。
设计中光学结构参变量可以使曲率、厚度、玻璃材料参数、圆锥系数、参数数据、特殊数据和多重结构数值。
1.接收望远镜的设计要求如下:D/f=1/4,f=118.596,2ω=5°2.接收望远镜的初始结构参数见表13.透镜初始结构与光学特性参数输入①在ZEMAX主菜单中选择Editor\Lens Data,打开透镜数据编辑器(Lens Data Editor,LDE),输入初始结构,如图1所示。
图1 LDE中输入初始结构数据②光学特性参数输入。
用General对话框定义像空间。
在ZEMAX 主菜单中选择System\General…或选择工具栏中Gen,打开General对话框,选择Aperture Type为Image Space F/#,在Aperture Value中输入4,如图2所示。
图2 用General对话框定义孔径用Field Data对话框定义视场。
在ZEMAX主菜单中选择System\ Fields…或择工具栏中Fie,打开Field Data对话框,选择Field Type为Angle(Deg),在相应文本框Y-Field中输入3个校像差半视场角值:3、-3、0,其余为默认值,如图3所示。
图3 用Field Data对话框定义视场用Wavelength Data对话框定义工作波长。
光机电一体化技术大作业课题:激光测距仪技术的研究学号:20116316姓名:鲜腾跃指导教师:刘建阳2014年12月1激光测距技术背景在当今这个科技发达的社会,激光测距的应用越来越普遍。
在很多领域都可以用到激光测距仪。
在测距领域,激光的作用更是不容忽视,可以这样说,激光测距是激光应用最早的领域(1960年产生,1962年即被应用于地球与月球间距离的测量)。
测量的精确度和分辨率高、抗干扰能力强,体积小同时重量轻的激光测距仪受到了大多数有测距需求的企业、机构或个人的青睐,其市场需求空间大,应用领域广行业需求多,并且起着日益重要的作用。
激光测距技术与其它测距技术相比,具有测量距离远、抗干扰能力强、非接触目标、测量速度快、测距精度高等特点。
激光测距仪一般具有精确度和分辨率高、抗干扰能力强、体积小、重量轻等优点,因而应用领域广、行业需求众多,市场需求空间大。
当前激光测距仪的发展趋势是向测量更安全、测量精度高、系统能耗小、体积小型化方向发展。
2 激光测距仪的种类及原理激光测距仪一般分为两种:脉冲式激光测距仪和相位式激光测距仪。
当今市场上主流的激光测距仪是基于相位法的激光测距仪。
这是因为基于相位法的激光测距仪轻易地就可以克服超声波测距的一大缺陷:误差过大,使测量精度达到毫米级别。
而基于此法的激光测距仪主要的缺点在于电路复杂、作用距离较短(一百米左右,经过众多科学工作者的努力,现在也有作用距离在几百米的相位法激光测距仪)。
(1)相位法激光测距仪原理相位法激光测距仪是采用无线电波段频率的激光,进行幅度调制并将正弦调制光往返测距仪与目标物间距离所产生的相位差测定,根据调制光的波长和频率,换算出激光飞行时间,再依次计算出待测距离。
该方法一般需要在待测物处放置反射镜,将激光原路反射回激光测距仪,由接收模块的鉴波器进行接收处理。
也就是说,该方法是一种有合作目标要求的被动式激光测距技术。
如下图所示:核心控制电路部分激光二极管数字处理由图所显示的关系,我们可以知道,用正弦信号调制发射信号的幅度,通过检测从目标反射的回波信号与发射信号之间的相移φ,通过计算即可以得到待测距离Δ。
H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:光机系统设计实验名称:双胶合消色差物镜设计院系:电气及自动化与控制系班级:姓名:学号:哈尔滨工业大学1, 实验目的设计一个双胶合消色差透镜,并绘制图形,熟悉应用光学、机械学等相关知识,掌握光机系统设计的流程。
2. 结构特性分析双胶合消色差物镜光学性能要求: 1) f / 6,焦距540mm ; 2) 视场角1.5°;3) 镜片材料选择BAK1 和BK7; 4) 20 线对/mm 处MTF>0.4; 5) 工作波长:可见光3. 初始结构设计当物体处于无穷远时,P ∞=W ∞=0(孔径角消失),设计消色差系数C=0。
透镜的光焦度分配公式: )v 1-v 1/(1-2121)(v c =ψ 12-1ψ=ψ通过应用光学相关知识,算的双胶合透镜的曲率半径依次为: R 1 =345.231 R 2 =-240.89R 3 =-1003.25两个透镜的初始厚度设计各为7mm ,透镜组到成像面的距离设计为近轴光线,由ZEMAX 计算出相应厚度调整值。
图1 双胶合透镜出结构设计图 2 所示,视场90mm;如图 3 所示,视场角设定为1.5°,图 4 所示,入射光线为可见光;如所示为初始透镜结构图。
图2 设定视场图3 设置光场图4 设定入射光4. 系统优化设计焦距值为540mm,设定默认优化函数EFFL target 为540,权重为1,选择透镜的三个曲率半径以及相应的厚度作为优化参数,优化结果如图 5所示。
图5 优化结果参数5. 像质分析由图6所示,优化后最大的波像差大约为4个波长,尚未达到衍射极限,应为焦平面上的彗差影响所致;同时可见这个透镜相对与可见光的低阶色差比较小,满足设计要求。
图8优化后光线追迹曲线如图 6所示,优化后存在彗差,由图中度数可得艾里斑半径为8.595μm,而像差RMS半径为18.570μm,可见此优化结果基本达到设计要求,可以使用。
【作业上交方法】●电子版2013年12月5日12:00之前发给课代表,课代表2013年12月5日24:00之前发到gdyqylysj@●如确有同学不想写电子版,可交纸质版,2013年12月5日上课交给课代表统一上交。
【注意】1、3次小作业和1次设计大作业是平时成绩的主要评定点,平时成绩占课程总评成绩的30%。
2、大作业过期不可补交。
3、大作业如一字不动照抄或复制的(只改格式也算一字不动),所有雷同的本次作业直接记零分,且没有补交机会。
【大作业】光电仪器设计请从下列选题中任选其一,设计一台具有如下功能和指标的光电仪器,并撰写设计报告,要求字数1000字以上,内容必须包括:1)说明工作原理(包括物理原理和简单的指标核算);2)画出原理图或原理框图(主要说明系统组成、结构或信息流向等);3)进行元器件选型(写出对主要元器件的要求,选型依据,并选择实际的元器件,具体到型号和具体参数);4)给出初步预算(进行市场调研,列出主要元器件报价和仪器总价)。
选题如下:1)鸡蛋新鲜度测试仪(对于同一产地相近批次的鸡蛋,要求能进行无损检测,检出变质的鸡蛋,并依据新鲜度进行排序);2)测谎仪(非接触法检测目标是否因说谎导致身体参数发生变化,如脉搏、心跳等);3)室内PM2.5检测仪(检测室内可吸入粒子粒径范围0.3~ 10µm);4)角膜曲率测量仪(曲率半径的测量范围为5.5mm-12mm);5)葡萄酒酒精度检测仪(检测范围酒精度0~25%VOL,分辨率0.2%VOL);6)钻石真伪鉴别仪(无损、快速区分天然钻石和人造钻石);7)红细胞平均直径检测仪(测量新鲜血液样本中的红细胞平均直径);8)洞穴形貌勘探仪(测量并重构洞穴内部地形地貌)。
H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:光机系统设计实验名称:基于ZMAX的光机系统设计班级:0936203姓名:蔡海蛟学号:6090120331哈尔滨工业大学一.实验目的(1)熟悉并掌握ZMAX软件的使用(2)熟悉光学系统设计的步骤及方法(3)了解牛顿式望远镜和施密特—卡塞格林系统,并对其相差有一定了解(4)学会用ZMAX设计简单的光学系统,并对系统进行像质分析和系统优化二.基本原理(1)实验一、牛顿望远镜牛顿望远镜是最简单的用来矫正轴上像差的望远镜。
牛顿望远镜是由一个简单的抛物线形镜面组成的,而且除此之外别无它物。
抛物线很好地矫正了所有阶的球差,将望远镜使用在轴上系统,就没有其他的像差。
(2)实验二、带有非球面矫正器的施密特—卡塞格林系统施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
施-卡望远镜的设计是以伯恩哈德施密特的施密特摄星仪为基础:使用球面镜做主镜(沿袭施密特摄星仪的设计)以施密特修正板来改正球面像差承袭卡塞格林的设计,以凸面镜做次镜,施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
在施密特-卡塞格林系统,光通过薄的非球面校正透镜进入镜筒,然后接触球面主镜。
被球面主镜反射的光线折回镜筒开口中部的第二反射镜,然后再次被第二反射镜反射,光线通过镜筒内部中间的管子聚集在目镜形成图象。
三.系统结构(1)实验一、牛顿望远镜图一.牛顿望远镜原理图利用ZMAX设计牛顿望远镜:设计一个1000mm F/5的望远镜(及需要一个曲率半径为2000mm的镜面,和一个200mm 的孔径)。
移动光标到第一面,即光阑面的曲率半径列,输入-2000.0,负号表示为凹面。
现在在同一个面上输入厚度值-1000,这个负号表示通过镜面折射后,光线将往“后方”传递。
光学系统设计(Zemax初学手册)内容纲目:前言习作一:单镜片(Singlet)习作二:双镜片习作三:牛顿望远镜习作四:Schmidt-Cassegrain和aspheric corrector习作五:multi-configuration laser beam expander习作六:fold mirrors和coordinate breaks习作七:使用Extra Date Editor, Optimization with Binary Surfaces前言整个中华卫星二号「红色精灵」科学酬载计划,其量测仪器基本上是个光学仪器。
所以光学系统的分析乃至于设计与测试是整个酬载发展重要一环。
这份初学手册提供初学者使用软件作光学系统设计练习,整个需要Zemax光学系统设计软件。
它基本上是Zemax使用手册中tutorial的中文翻译,由蔡长青同学完成,并在Zemax E. E. 7.0上测试过。
由于蔡长青同学不在参与「红色精灵」计划,所以改由黄晓龙同学接手进行校稿与独立检验,整个内容已在Zemax E. E. 8.0版上测试过。
我们希望藉此初学手册(共有七个习作)与后续更多的习作与文件,使团队成员对光学系统设计有进一步的掌握。
(陈志隆注)(回内容纲目)习作一:单镜片(Singlet)你将学到:启用Zemax,如何键入wavelength,lens data,产生ray fan,OPD,spot diagrams,定义thickness solve以及variables,执行简单光学设计最佳化。
设想你要设计一个F/4单镜片在光轴上使用,其focal length 为100mm,在可见光谱下,用BK7镜片来作。
首先叫出ZEMAX的lens data editor(LDE),什么是LDE呢?它是你要的工作场所,譬如你决定要用何种镜片,几个镜片,镜片的radius,thickness,大小,位置……等。
然后选取你要的光,在主选单system下,圈出wavelengths,依喜好键入你要的波长,同时可选用不同的波长等。
光学系统设计范文光学系统设计是一门研究光学现象和原理的学科,主要应用于光学仪器和设备的设计、制造和优化。
在现代科技发展中,光学系统设计在通信、医疗、工业和科学研究等领域起着重要作用。
本文将介绍光学系统设计的基本原理、步骤以及一些常见的应用实例。
光学系统设计的基本原理包括光的传播、折射、反射、吸收等光学现象。
光线经过透镜、反射镜、光纤等光学元件的组合和配置,可以实现光束的聚焦、分束、调制、衍射等功能。
设计者通常会利用光学设计软件来模拟和优化光学系统的性能,以满足特定的应用需求。
需求分析是光学系统设计的起点,设计者需要明确系统的功能需求和性能指标。
例如,光学系统的工作波长范围、分辨率需求、光强要求等。
光路设计是根据需求分析,确定光学系统的结构和布局。
设计者需要选择适当的光学元件并进行系统的布置。
常用的光学元件包括透镜、反射镜、光纤等,不同的光路设计可以实现不同的光学功能。
光学元件选型是在光路设计的基础上,根据实际需求选择适合的光学元件。
通过光学元件的参数比较和性能评估,设计者可以选择最佳的光学元件,以满足系统的需求。
系统优化是指对光学系统进行性能优化,以提高系统的成像质量、光强等。
优化的方法可以采用参数调整、光学元件更换等手段,通过模拟和实验验证来提高系统的性能指标。
在通信领域,光学系统设计用于光纤通信和光网络的构建。
光学系统设计师需要设计和优化光纤传输链路、光放大器、光开关等光学元件,以实现高速、高容量的光纤通信。
在医疗领域,光学系统设计用于医疗影像设备的设计和制造。
例如,X射线、CT、MRI等医疗影像设备都需要光学系统来接收、聚焦和检测光信号,以获取生物组织的影像信息。
在工业领域,光学系统设计用于光学仪器的制造。
例如,显微镜、激光切割机、光学传感器等都需要精密的光学系统来实现高分辨率、高精度的成像和测量。
在科学研究领域,光学系统设计用于实验仪器和装置的设计。
例如,激光器、光谱仪、显微镜等科研仪器都需要光学系统来实现特定的实验操作和测量。