MATLAB数值积分与微分
- 格式:ppt
- 大小:314.50 KB
- 文档页数:11
Matlab中常用的数值计算方法数值计算是现代科学和工程领域中的一个重要问题。
Matlab是一种用于数值计算和科学计算的高级编程语言和环境,具有强大的数值计算功能。
本文将介绍Matlab中常用的数值计算方法,包括数值积分、数值解微分方程、非线性方程求解和线性方程组求解等。
一、数值积分数值积分是通过数值方法来近似计算函数的定积分。
在Matlab中,常用的数值积分函数是'quad'和'quadl'。
'quad'函数可以用于计算定积分,而'quadl'函数可以用于计算无穷积分。
下面是一个使用'quad'函数计算定积分的例子。
假设我们想计算函数f(x) = x^2在区间[0, 1]上的定积分。
我们可以使用如下的Matlab代码:```f = @(x) x^2;integral = quad(f, 0, 1);disp(integral);```运行这段代码后,我们可以得到定积分的近似值,即1/3。
二、数值解微分方程微分方程是描述自然界各种变化规律的数学方程。
在科学研究和工程应用中,常常需要求解微分方程的数值解。
在Matlab中,可以使用'ode45'函数来求解常微分方程的数值解。
'ode45'函数是采用基于Runge-Kutta方法的一种数值解法。
下面是一个使用'ode45'函数求解常微分方程的例子。
假设我们想求解一阶常微分方程dy/dx = 2*x,初始条件为y(0) = 1。
我们可以使用如下的Matlab代码:```fun = @(x, y) 2*x;[x, y] = ode45(fun, [0, 1], 1);plot(x, y);```运行这段代码后,我们可以得到微分方程的数值解,并绘制其图像。
三、非线性方程求解非线性方程是指方程中包含非线性项的方程。
在很多实际问题中,我们需要求解非线性方程的根。
Matlab中常用的积分和微分算法解析积分和微分是数学中重要的概念和工具,广泛应用于科学、工程和计算领域。
在Matlab中,提供了丰富的积分和微分算法,可以方便地进行数值计算和符号计算。
在本文中,我们将解析Matlab中常用的积分和微分算法,并探讨其应用。
一、数值积分算法数值积分是通过将求和转化为积分的方式,对函数在一定区间内的近似计算。
在Matlab中,有许多数值积分算法可供选择,包括梯形法则、辛普森法则和高斯求积法等。
1. 梯形法则梯形法则是一种基本的数值积分算法。
它将区间分成多个小梯形,并将每个小梯形的面积近似表示为梯形的面积,然后将这些面积相加得到最终的近似积分值。
在Matlab中,可以使用trapz函数来实现梯形法则的计算。
例如,对函数f(x)在区间[a, b]上进行积分,可以使用如下代码:```matlaba = 0;b = 1;x = linspace(a, b, 100);y = f(x);integral_value = trapz(x, y);```其中,linspace函数用于生成均匀分布的点,f(x)是待积分的函数。
trapz函数可以自动计算积分值。
2. 辛普森法则辛普森法则是一种更精确的数值积分算法。
它将区间分成多个小三角形,并将每个小三角形的面积近似表示为一个带有二次多项式的面积,然后将这些面积相加得到最终的近似积分值。
在Matlab中,可以使用quad函数来实现辛普森法则的计算。
例如,对函数f(x)在区间[a, b]上进行积分,可以使用如下代码:```matlaba = 0;b = 1;integral_value = quad(@f, a, b);```其中,@f表示函数句柄,quad函数可以自动计算积分值。
3. 高斯求积法高斯求积法是一种更高精度的数值积分算法。
它利用多个节点和权重,通过插值的方式来近似积分值。
在Matlab中,可以使用gaussquad函数来实现高斯求积法的计算。
Matlab中的数值积分和微分方法在数学和工程领域,数值积分和微分是解决问题的常见方法之一。
而在计算机科学中, Matlab作为一种强大的数值计算软件,提供了许多数值积分和微分的函数,使得这两个问题的解决变得更加简单和高效。
本文将探讨 Matlab 中常用的数值积分和微分方法,包括不定积分、定积分、数值微分和高阶数值微分。
我们将逐一讨论这些方法的原理和使用方法,并展示一些实际的应用案例,以帮助读者更好地理解和应用这些技术。
一、不定积分不定积分是指求一个函数的原函数。
在 Matlab 中,我们可以使用 `int` 函数来实现不定积分的计算。
例如,如果我们想求解函数 f(x) = x^2 的不定积分,可以使用下面的代码:```syms x;F = int(x^2);```这里的 `syms x` 表示将 x 定义为一个符号变量,`int(x^2)` 表示求解函数 x^2 的不定积分。
得到的结果 F 将是一个以 x 为变量的符号表达式。
除了求解简单函数的不定积分外,Matlab 还支持求解复杂函数的不定积分,例如三角函数、指数函数等。
我们只需要将函数表达式作为 `int` 函数的参数即可。
二、定积分定积分是指求函数在一个闭区间上的积分值。
在 Matlab 中,我们可以使用`integral` 函数来计算定积分。
例如,如果我们想计算函数 y = x^2 在区间 [0, 1] 上的积分值,可以使用下面的代码:```y = @(x) x^2;result = integral(y, 0, 1);```这里的 `@(x)` 表示定义一个匿名函数,`integral(y, 0, 1)` 表示求解函数 y = x^2 在区间 [0, 1] 上的积分。
得到的结果 result 将是一个数值。
与不定积分类似,Matlab 还支持对复杂函数求解定积分,只需要将函数表达式作为 `integral` 函数的第一个参数,并指定积分的区间。
数值积分与微分实验目的:1)用matlab软件掌握梯形公式、辛普森公式和蒙特卡罗方法计算数值积分;2)通过实例学习用数值积分和数值微分解决实际问题。
实验内容:第一题:用梯形、辛普森和蒙特卡罗方法计算积分。
改变步长(对梯形),改变精度要求(对辛普森),改变随机点数目(对蒙特卡罗),进行比较、分析。
1e22x-,-2≤x≤2y=π2解:用三种方法计算积分的源程序如下:10-,108-;对对梯形公式取h=4/50,4/100,4/10000;对辛普森分别取精度为103-,7从得到的结果可以看到对梯形公式,步长越小,计算的积分结果越准确;对于辛普森公式,在一般的103-精度下结果已经很准确(小数点后前六位均为准确数字),提高精度后结果更加精确,可见辛普森具有很高的优越性,但它的局限性在于必须要有函数解析式;对于蒙特卡罗方法,虽然结果具有随机性,但随着n 增大,得到的结果越来越接近准确值。
解:用中点公式计算导数k.则∆P=k∆V。
因为∆V=1,所以∆P数值上等于k。
取h=0.1,利用三次样条计算P在V-h,V+h处的数值,从而利用中点公式计算导数。
结果为 ∆p =2.3341(2/in lbf ) 同理可以算出V=50时,∆p=2.7891(2/in lbf ) 求导的问题也可以用书后补充知识中样条求导的方法解决,计算后可以得到相同结果。
利用三次样条插值计算V 在40~70之间时相应的一系列P 值,然后用梯形公式计算积分即得气体作功。
第三题:冰淇淋的下部为锥体,上部为半球。
设它由锥面z=22y x +和球面1)1(222=-++z y x 围成,用蒙特卡罗方法计算它的体积。
解:两个曲面方程联立可以解得几何体的边界方程为单位圆:22y x +=1。
应用蒙特卡罗均值估计法计算体积的思路如下:利用计算机每次产生两个0~1的随机数x,y ,若落在单位圆内,则计算球面与锥面上在(x,y )处的z 值之差,产生n 次随机数,并将得到的z 值累加,累即所求冰淇淋的体积为3.1336。
matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。
本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。
一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。
在Matlab中,可以使用diff函数来计算函数的导数。
例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。
在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。
例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。
在Matlab中,可以使用\操作符来求解线性方程组。
例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。
通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。
数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。
MATLAB教程第8章MATLAB数值积分与微分1.数值积分数值积分是计算函数的定积分值的近似方法。
在MATLAB中,有几个函数可以帮助我们进行数值积分。
(1) quad函数quad函数是MATLAB中用于计算一维定积分的常用函数。
它的语法如下:I = quad(fun, a, b)其中,fun是被积函数的句柄,a和b分别是积分区间的下界和上界,I是近似的积分值。
例如,我们可以计算函数y=x^2在区间[0,1]内的积分值:a=0;b=1;I = quad(fun, a, b);disp(I);(2) integral函数integral函数是在MATLAB R2024a版本引入的新函数,它提供了比quad函数更稳定和准确的积分计算。
integral函数的语法如下:I = integral(fun, a, b)其中fun、a和b的含义与quad函数相同。
例如,我们可以使用integral函数计算函数y = x^2在区间[0, 1]内的积分值:a=0;b=1;I = integral(fun, a, b);disp(I);2.数值微分数值微分是计算函数导数的近似方法。
在MATLAB中,可以使用diff 函数计算函数的导数。
(1) diff函数diff函数用于计算函数的导数。
它的语法如下:derivative = diff(fun, x)其中,fun是需要计算导数的函数,x是自变量。
例如,我们可以计算函数y=x^2的导数:syms x;fun = x^2;derivative = diff(fun, x);disp(derivative);(2) gradient函数gradient函数可以计算多变量函数的梯度。
它的语法如下:[g1, g2, ..., gn] = gradient(fun, x1, x2, ..., xn)其中fun是需要计算梯度的函数,x1, x2, ..., xn是自变量。
例如,我们可以计算函数f=x^2+y^2的梯度:syms x y;fun = x^2 + y^2;[gx, gy] = gradient(fun, x, y);disp(gx);disp(gy);以上是MATLAB中进行数值积分和微分的基本方法和函数。
Matlab数值积分与数值微分M a t l a b数值积分与数值微分Matlab数值积分1.⼀重数值积分的实现⽅法变步长⾟普森法、⾼斯-克朗罗德法、梯形积分法1.1变步长⾟普森法Matlab提供了quad函数和quadl函数⽤于实现变步长⾟普森法求数值积分.调⽤格式为:[I,n]=Quad(@fname,a,b,tol,trace)[I,n]=Quadl(@fname,a,b,tol,trace)Fname是函数⽂件名,a,b分别为积分下限、积分上限;tol为精度控制,默认为1.0×10-6,trace控制是否展开积分过程,若为0则不展开,⾮0则展开,默认不展开.返回值I为积分数值;n为调⽤函数的次数.--------------------------------------------------------------------- 例如:求∫e0.5x sin(x+π)dx3π的值.先建⽴函数⽂件fesin.mfunction f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));再调⽤quad函数[I,n]=quad(@fesin,0,3*pi,1e-10)I=0.9008n=365--------------------------------------------------------------------- 例如:分别⽤quad函数和quadl函数求积分∫e0.5x sin(x+π6)dx3π的近似值,⽐较函数调⽤的次数.先建⽴函数⽂件function f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));formatlong[I,n]=quadl(@fesin,0,3*pi,1e-10)I=n=198[I,n]=quad(@fesin,0,3*pi,1e-10)I=n=365--------------------------------------------------------------------- 可以发现quadl函数调⽤原函数的次数⽐quad少,并且⽐quad函数求得的数值解更精确.1.2⾼斯-克朗罗德法Matlab提供了⾃适应⾼斯-克朗罗德法的quadgk函数来求震荡函数的定积分,函数的调⽤格式为:[I,err]=quadgk(@fname,a,b)Err返回近似误差范围,其他参数的意义与quad函数相同,积分上下限可以是-Inf或Inf,也可以是复数,若为复数则在复平⾯上求积分.--------------------------------------------------------------------- 例如:求积分∫xsinx1+cos2xdx π的数值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2);再调⽤quadgk函数I=quadgk(@fsx,0,pi)I=2.4674--------------------------------------------------------------------- 例如:求积分∫xsinxdx +∞∞的值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2); 再调⽤quadgk函数I=quadgk(@fsx,-Inf,Inf)I=-9.0671e+017---------------------------------------------------------------------1.3梯形积分法对于⼀些不知道函数关系的函数问题,只有实验测得的⼀组组样本点和样本值,由表格定义的函数关系求定积分问题⽤梯形积分法,其函数是trapz函数,调⽤格式为:I=Traps(X,Y)X,Y为等长的两组向量,对应着函数关系Y=f(X) X=(x1,x2,…,x n)(x1分区间是[x1,x n]--------------------------------------------------------------------- 例如:已知某次物理实验测得如下表所⽰的两组样本点.现已知变量x和变量y满⾜⼀定的函数关系,但此关系未知,设y=f(x),求积分13.39∫f(x)dx1.38的数值.X=[1.38,1.56,2.21,3.97,5.51,7.79,9.19,11.12,13.39];Y=[3.35,3.96,5.12,8.98,11.46,17.63,24.41,29.83,32.21]; I=trapz(X,Y) I=217.1033---------------------------------------------------------------------例如:⽤梯形积分法求积分:∫e ?x dx 2.51的数值.x=1:0.01:2.5; y=exp(-x); I=trapz(x,y) I= 0.2858---------------------------------------------------------------------2. 多重数值积分的实现重积分的积分函数⼀般是⼆元函数f(x,y)或三元函数f(x,y,z);形如:∫∫f (x,y )dxdy ba dc∫∫∫f(x,y,z)dxdydz b a d cf eMatlab 中有dblquad 函数和triplequad 函数来对上述两个积分实现.调⽤格式为: I=dblquad(@fun,a,b,c,d,tol)I=triplequad(@fun,a,b,c,d,e,f,tol)Fun 为被积函数,[a,b]为x 的积分区间;[c,d]为y 的积分区间;[e,f]为z 的积分区间.Dblquad 函数和triplequad 函数不允许返回调⽤的次数,如果需要知道函数调⽤的次数,则在定义被积函数的m ⽂件中增加⼀个计数变量,统计出被积函数被调⽤的次数.---------------------------------------------------------------------例如:计算⼆重积分I =∫∫√dxdy π2π2π2π2的值.先编写函数⽂件fxy.mfunction f=fxy(x,y) global k; k=k+1;f=sqrt(x.^2+y.^2);再调⽤函数dblquadglobalk; k=0;I=dblquad(@fxy,-pi/2,pi/2,-pi/2,pi/2,1.0e-10) I= 11.8629 k k= 37656---------------------------------------------------------------------例如:求三重积分∫∫∫4xze ?z2y?x 2dxdydz ππ1的值.编写函数⽂件fxyz1.mfunction f=fxyz1(x,y,z)global j;j=j+1;f=4*x.*z.*exp(-z.*z.*y-x.*x);调⽤triplequad函数editglobalj;j=0;I=triplequad(@fxyz1,0,pi,0,pi,0,1,1.0e-10)I=1.7328jj=1340978---------------------------------------------------------------------Matlab数值微分1.数值微分与差商导数的三种极限定义f′(x)=limn→0f(x+h)?f(x)hf′(x)=limn→0f(x)?f(x?h)f′(x)=limn→0f(x+h2)?f(x?h2)h上述公式中假设h>0,引进记号:f(x)=f(x+h)f(x)f(x)= f(x)f(xh)δf(x)= f(x+h)?f(x?h)称上述?f(x)、?f(x)、δf(x)为函数在x点处以h(h>0)为步长的向前差分、向后差分、中⼼差分,当步长h⾜够⼩时,有:f′(x)≈?f(x) hf′(x)≈f(x) f′(x)≈δf(x)f(x) h 、?f(x)h、δf(x)h也分别被称为函数在x点处以h(h>0)为步长的向前差商、向后差商、中⼼差商.当h⾜够⼩时,函数f(x)在x点处的导数接近于在该点的任意⼀种差商,微分接近于在该点的任意⼀种差分.2.函数导数的求法2.1⽤多项式或样条函数g(x)对函数f(x)进⾏逼近(插值或拟合),然后⽤逼近函数g(x)在点x处的导数作为f(x)在该点处的导数.2.2⽤f(x)在点x处的差商作为其导数.3.数值微分的实现⽅法Matlab中,只有计算向前差分的函数diff,其调⽤格式为:·DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1·DX=diff(X,n):计算向量X的n阶向前差分,例如diff(X,2)=diff(diff(X))·DX=diff(A,n,dim):计算矩阵A的n阶向前差分,dim=1(默认值)按列计算差分,dim=2按⾏计算差分.--------------------------------------------------------------------- 例如:⽣成6阶范德蒙德矩阵,然后分别按⾏、按列计算⼆阶向前差分A=vander(1:6)A=111111321684212438127931102425664164131256251252551777612962163661D2A1=diff(A,2,1)D2A1=180501220057011018200132019424200255030230200D2A2=diff(A,2,2)D2A2=000084211083612457614436920004008016540090015025--------------------------------------------------------------------- 例如:设f(x)=√x3+2x2?x+12+√(x+5)6+5x+2求函数f(x)的数值导数,并在同⼀坐标系中作出f’(x)的图像.已知函数f(x)的导函数如下:f′(x)=3x2+4x?12√x3+2x2?x+12+16√()56+5编辑函数⽂件fun7.m和fun8.m functionf=fun7(x)f=sqrt(x.^3+2*x.^2-x+12)+(x+5).^(1/6)+5*x+2;functionf=fun8(x)f=(3*x.^2+4*x-1)/2./sqrt(x.^3+2*x.^2-x+12)+1/6./(x+5).^(5/6)+5 ;x=-3:0.01:3;p=polyfit(x,fun7(x),5);⽤5次多项式拟合曲线dp=polyder(p);对拟合多项式进⾏求导dpx=polyval(dp,x);对dp在假设点的求函数值dx=diff(fun7([x,3.01]))/0.01;直接对dx求数值导数gx=fun8(x);求函数f的函数在假设点的导数plot(x,dpx,x,dx,'.',x,gx,'-')可以发现,最后得到的三条曲线基本重合.--------------------------------------------------------------------- 练习:A.⽤⾼斯-克朗罗德法求积分∫dx1+x2 +∞∞的值并讨论计算⽅法的精确度.(该积分值为π)function f=fun9(x)f=1./(1+x.^2);formatlong[I,err]=quadgk(@fun9,-Inf,Inf)I=err=B.设函数f(x)=sin x⽤不同的办法求该函数的数值导数,并在同⼀坐标系中作出f′(x)的图像.已知f′(x)=x cos x+cos x cos2x?sin x+2sin x sin2x()2function f=fun10(x)f=sin(x)./(x+cos(2*x));function f=fun11(x)f=(x.*cos(x)+cos(x).*cos(2*x)-sin(x)-2*sin(x).*sin(2*x))/(x+cos(2 *x)).^2; x=-3:0.01:3;p=polyfit(x,fun10(x),5);dp=polyder(p);dpx=polyval(dp,x);dx=diff(fun10([x,3.01]))/0.01;gx=fun11(x);plot(x,dpx,'r:',x,dx,'.g',x,gx,'-k')。