(完整版)(数值积分与微分的MATLAB命令)
- 格式:ppt
- 大小:66.51 KB
- 文档页数:14
matlab中积分的命令Matlab中有多种命令可以用于数值积分,本文将介绍其中几个常用的积分命令,包括quad、quadl、quadgk和integral。
这些命令可以用于一维和多维积分,可以求解定积分和非定积分。
一、quad命令quad命令用于求解一维定积分,其语法为:Q = quad(fun,xmin,xmax)其中fun为要积分的函数句柄,xmin和xmax为积分的下限和上限。
quad命令使用自适应的数值积分方法,可以在较高的精度下求解积分。
二、quadl命令quadl命令也用于求解一维定积分,其语法为:Q = quadl(fun,xmin,xmax)quadl命令使用高斯-勒让德求积法,可以在较高的精度下求解积分。
与quad命令相比,quadl命令在处理某些特定类型的函数时更为准确和稳定。
三、quadgk命令quadgk命令用于求解一维非定积分,其语法为:Q = quadgk(fun,xmin,xmax)quadgk命令使用高斯-科特斯求积法,可以在较高的精度下求解非定积分。
与quad命令和quadl命令相比,quadgk命令对积分区间的长度不敏感,适用于各种类型的函数。
四、integral命令integral命令用于求解一维定积分和非定积分,其语法为:Q = integral(fun,xmin,xmax)integral命令根据输入的积分区间长度自动选择合适的数值积分方法,可以在较高的精度下求解积分。
与quad命令、quadl命令和quadgk命令相比,integral命令更加智能化,可以根据积分函数的特点自动调整积分算法。
除了以上介绍的命令外,Matlab还提供了其他一些用于数值积分的命令,如dblquad、triplequad和quad2d等。
这些命令可以用于求解二维和多维积分,适用于更复杂的问题。
在使用这些积分命令时,需要注意以下几点:1. 积分区间的选择:根据积分函数的特点选择合适的积分区间,以确保求解的准确性和稳定性。
教案
的MATLAB命令。
例6.26 创建符号矩阵.
>> e=[1 3 5;2 4 6;7 9 11]; %建立数值矩阵
>〉m=sym(e)%创建符号矩阵
m =
[1, 3,5]
[ 2,4, 6]
[ 7, 9,11]
在命令窗口的显示中,数值矩阵只显示元素的数值,而符号矩阵的每行元素放在一对方括号内;在工作空间窗口显示的变量图标两者也不同,数值矩阵的图标为,符号矩阵(也称为符号对象)的图标为,二者很容易区分。
2、符号表达式的基本运算函数
符号表达式的运算与普通数值运算的方式不同,它的运算结果是符号表达式或符号矩阵。
在MATLAB运算中,浮点运算速度最快,而符号计算占用时间和内存都比较多,但它的计算结果最精确.在默认情况下,当用函数sym生成符号变量后,MATLAB将对这些变量进行符号计算。
在MATLAB符号计算工具箱中提供来了很多函数用于符号计算。
下面将介绍一些常用的符号运算函数,如表6-6所示。
表6-6 常用的符号函数
函数格式说明
symadd(S1,S2)符号表达式S1加上符号表达式S2
symsub(S1,S2)符号表达式S1减去符号表达式S2
symmul(S1,S2)符号表达式S1乘上符号表达式S2
symdiv(S1,S2)符号表达式S1除符号表达式S2
sympow(S,p)符号表达式S1的p次幂,p可以是表达式
例6.27 计算表达式x3—1与表达式x-1的和、差、积、商和乘方。
>> syms x。
利用MATLAB求解微分方程数值解的相关命令利用MATLAB求解微分方程数值解的相关命令1 指令函数及调用格式1.1 指令函数:dsolve注:此指令函数用于求解微分方程(组)的符号(解析)解。
1.2 单变量常微分方程的调用格式:f=dsolve(‘eq’, ‘cond’, ‘v’)注:此调用格式用于求符号微分方程的通解或特解,其中eq代表微分方程,cond代表微分方程的初始条件(若缺少,则求微分方程的通解),v为指定自变量(如未指定,系统默认t为自变量)。
1.3 常微分方程组的调用格式:f=dsolve(‘eq1’, ‘eq2’,…, ‘eqn’, ‘cond1’, ‘cond2’,…, ‘condn’, ‘v1’, ‘v2’, …, ‘vn’)注:此调用格式用于求解符号常微分方程组。
其中eq1,...,eqn 代表n个微分方程构成的微分方程组;cond1,...,condn代表微分方程组的初始条件(若缺少,则求微分方程组的通解),v1 , (v)为指定自变量(如未指定,系统默认t为自变量)。
1.4 记述规定:MATLAB中,用D(注意:一定是大写)记述微分方程中函数的导数。
当y是因变量时,用‘Dny’表示‘y的n阶导数’。
如,Dy表示y的一阶导数y ',Dny表示y的n阶导数。
Dy(0)=5表示y ' (0)=5。
D3y+D2y+Dy-x+5=0表示微分方程y'''+y''+y'-x+5=0。
2 实例演示例1、求微分方程2'22xy xy xe-+=的通解命令输入:>> y=dsolve('Dy+2*x*y=2*x*exp(-x^2)','x')得结果为:y =(x^2+C1)*exp(-x^2)若输入命令:>>y=dsolve('Dy+2*x*y=2*x*exp(-x^2)')则系统默认t为自变量,而把真正的自变量x当作常数处理,把y 当作t的函数,得到错误的结果:y =exp(-2*x*t-x*(x-2*t))+exp(-2*x*t)*C1例2、求微分方程22420250d x dxxdt dt-+=的通解命令输入:>> x=dsolve('4*D2x-20*Dx+25*x=0')得结果为:x =C1*exp(5/2*t)+C2*exp(5/2*t)*t%系统默认t 为自变量例3、求微分方程'''54100y y y +-+=在条件'006,4x x y y ====下的特解。
Matlab中的数值积分和微分方法在数学和工程领域,数值积分和微分是解决问题的常见方法之一。
而在计算机科学中, Matlab作为一种强大的数值计算软件,提供了许多数值积分和微分的函数,使得这两个问题的解决变得更加简单和高效。
本文将探讨 Matlab 中常用的数值积分和微分方法,包括不定积分、定积分、数值微分和高阶数值微分。
我们将逐一讨论这些方法的原理和使用方法,并展示一些实际的应用案例,以帮助读者更好地理解和应用这些技术。
一、不定积分不定积分是指求一个函数的原函数。
在 Matlab 中,我们可以使用 `int` 函数来实现不定积分的计算。
例如,如果我们想求解函数 f(x) = x^2 的不定积分,可以使用下面的代码:```syms x;F = int(x^2);```这里的 `syms x` 表示将 x 定义为一个符号变量,`int(x^2)` 表示求解函数 x^2 的不定积分。
得到的结果 F 将是一个以 x 为变量的符号表达式。
除了求解简单函数的不定积分外,Matlab 还支持求解复杂函数的不定积分,例如三角函数、指数函数等。
我们只需要将函数表达式作为 `int` 函数的参数即可。
二、定积分定积分是指求函数在一个闭区间上的积分值。
在 Matlab 中,我们可以使用`integral` 函数来计算定积分。
例如,如果我们想计算函数 y = x^2 在区间 [0, 1] 上的积分值,可以使用下面的代码:```y = @(x) x^2;result = integral(y, 0, 1);```这里的 `@(x)` 表示定义一个匿名函数,`integral(y, 0, 1)` 表示求解函数 y = x^2 在区间 [0, 1] 上的积分。
得到的结果 result 将是一个数值。
与不定积分类似,Matlab 还支持对复杂函数求解定积分,只需要将函数表达式作为 `integral` 函数的第一个参数,并指定积分的区间。
MATLAB是一种流行的数学软件,用于解决各种数学问题,包括微分方程的数值积分。
微分方程是许多科学和工程问题的数学描述方式,通过数值积分可以得到微分方程的数值解。
本文将介绍在MATLAB中如何进行微分方程的数值积分,以及一些相关的技巧和注意事项。
一、MATLAB中微分方程的数值积分的基本方法1. 常微分方程的数值积分在MATLAB中,常微分方程的数值积分可以使用ode45函数来实现。
ode45是一种常用的数值积分函数,它使用4阶和5阶Runge-Kutta 方法来求解常微分方程。
用户只需要将微分方程表示为函数的形式,并且提供初值条件,ode45就可以自动进行数值积分,并得到微分方程的数值解。
2. 偏微分方程的数值积分对于偏微分方程的数值积分,在MATLAB中可以使用pdepe函数来实现。
pdepe可以求解具有定解条件的一维和二维偏微分方程,用户只需要提供偏微分方程的形式和边界条件,pdepe就可以进行数值积分,并得到偏微分方程的数值解。
二、在MATLAB中进行微分方程数值积分的注意事项1. 数值积分的精度和稳定性在进行微分方程的数值积分时,需要注意数值积分的精度和稳定性。
如果数值积分的精度不够,可能会导致数值解的误差过大;如果数值积分的稳定性差,可能会导致数值解发散。
在选择数值积分方法时,需要根据具体的微分方程来选择合适的数值积分方法,以保证数值解的精度和稳定性。
2. 初值条件的选择初值条件对微分方程的数值解有很大的影响,因此在进行微分方程的数值积分时,需要选择合适的初值条件。
通常可以通过对微分方程进行分析,或者通过试验求解来确定合适的初值条件。
3. 数值积分的时间步长在进行微分方程的数值积分时,需要选择合适的时间步长,以保证数值积分的稳定性和效率。
选择时间步长时,可以通过试验求解来确定合适的时间步长,以得到最优的数值解。
三、MATLAB中微分方程数值积分的实例以下通过一个简单的例子来演示在MATLAB中如何进行微分方程的数值积分。
数值积分与微分实验目的:1)用matlab软件掌握梯形公式、辛普森公式和蒙特卡罗方法计算数值积分;2)通过实例学习用数值积分和数值微分解决实际问题。
实验内容:第一题:用梯形、辛普森和蒙特卡罗方法计算积分。
改变步长(对梯形),改变精度要求(对辛普森),改变随机点数目(对蒙特卡罗),进行比较、分析。
1e22x-,-2≤x≤2y=π2解:用三种方法计算积分的源程序如下:10-,108-;对对梯形公式取h=4/50,4/100,4/10000;对辛普森分别取精度为103-,7从得到的结果可以看到对梯形公式,步长越小,计算的积分结果越准确;对于辛普森公式,在一般的103-精度下结果已经很准确(小数点后前六位均为准确数字),提高精度后结果更加精确,可见辛普森具有很高的优越性,但它的局限性在于必须要有函数解析式;对于蒙特卡罗方法,虽然结果具有随机性,但随着n 增大,得到的结果越来越接近准确值。
解:用中点公式计算导数k.则∆P=k∆V。
因为∆V=1,所以∆P数值上等于k。
取h=0.1,利用三次样条计算P在V-h,V+h处的数值,从而利用中点公式计算导数。
结果为 ∆p =2.3341(2/in lbf ) 同理可以算出V=50时,∆p=2.7891(2/in lbf ) 求导的问题也可以用书后补充知识中样条求导的方法解决,计算后可以得到相同结果。
利用三次样条插值计算V 在40~70之间时相应的一系列P 值,然后用梯形公式计算积分即得气体作功。
第三题:冰淇淋的下部为锥体,上部为半球。
设它由锥面z=22y x +和球面1)1(222=-++z y x 围成,用蒙特卡罗方法计算它的体积。
解:两个曲面方程联立可以解得几何体的边界方程为单位圆:22y x +=1。
应用蒙特卡罗均值估计法计算体积的思路如下:利用计算机每次产生两个0~1的随机数x,y ,若落在单位圆内,则计算球面与锥面上在(x,y )处的z 值之差,产生n 次随机数,并将得到的z 值累加,累即所求冰淇淋的体积为3.1336。
matlab中求积分的命令求积分是数学中的一个重要概念,也是数学分析中的基础内容。
在MATLAB中,我们可以使用一些特定的命令来实现对函数的积分计算,从而得到函数的解析式或数值结果。
本文将介绍一些常用的MATLAB求积分命令,并探讨其在实际问题中的应用。
一、MATLAB中的求积分命令在MATLAB中,求积分的命令主要有两种:符号积分和数值积分。
下面分别介绍这两种求积分的命令及其使用方法。
1. 符号积分命令符号积分是指对给定的函数进行解析求积分,得到一个含有未知常数的解析式。
在MATLAB中,可以使用符号积分命令'int'来进行符号积分的计算。
其基本语法为:int(f, x) 或 int(f, x, a, b)其中,f表示被积函数,x表示积分变量,a和b表示积分区间的上下限。
例如,要对函数f(x) = x^2进行符号积分,可以使用以下命令:syms xf = x^2;F = int(f, x)这样,MATLAB将输出函数F(x) = (1/3)x^3,即f(x)的积分结果。
2. 数值积分命令数值积分是指对给定的函数进行数值近似求积分,得到一个数值结果。
在MATLAB中,可以使用数值积分命令'integral'来进行数值积分的计算。
其基本语法为:Q = integral(fun, a, b)其中,fun表示被积函数的函数句柄,a和b表示积分区间的上下限。
例如,要对函数f(x) = exp(-x^2)进行数值积分,可以使用以下命令:f = @(x) exp(-x^2);Q = integral(f, -inf, inf)这样,MATLAB将输出数值结果Q,即f(x)的积分值。
二、MATLAB求积分命令的应用MATLAB中的求积分命令在工程和科学计算中有着广泛的应用。
下面将介绍两个实际问题的求解过程,以展示这些命令的应用。
1. 求解概率密度函数的积分概率密度函数是统计学中的一个重要概念,用于描述随机变量的概率分布。
MATLAB中的微积分运算(数值符号)显然这个函数是单词differential(微分)的简写,⽤于计算微分。
实际上准确来说计算的是差商。
如果输⼊⼀个长度为n的⼀维向量,则该函数将会返回长度为n-1的向量,向量的值是原向量相邻元素的差,于是可以计算⼀阶导数的有限差分近似。
(1)符号微分1.常⽤的微分函数函数:diff(f) 求表达式f对默认⾃变量的⼀次微分值diff(f,x) 求表达式f对⾃变量x的⼀次积分值diff(f,n) 求表达式f对默认⾃变量的n次微分值diff(f,t,n)求表达式f对⾃变量t的n次微分值>> x=1:10x =1 2 3 4 5 6 7 8 9 10>> diff(x)ans =1 1 1 1 1 1 1 1 1例1:求矩阵中各元素的导数求矩阵[1/(1+a) (b+x)/cos(x)1/(x*y) exp(x^2)]对x的微分,可以输⼊以下命令A = sym('[1/(1+a),(b+x)/cos(x);1,exp(x^2)]');B = diff(A,'x')可得到如下结果:例2:求偏导数求的偏导数。
syms x y;f = x*exp(y)/y^2;fdx = diff(f,x)fdy = diff(f,y)可得到如下结果:例3:求复合函数的导数求的导数sym('x');y = 'x*f(x^2)'y1 = diff(y,'x')得到结果如下:例4:求参数⽅程的导数对参数⽅程求导syms a b tf1 = a*cos(t);f2 = b*sin(t);A = diff(f2)/diff(f1) %此处代⼊了参数⽅程的求导公式B = diff(f1)*diff(f2,2)-diff(f1,2)*diff(f2)/diff(f1)^3 %求⼆阶导数可得到如下结果:例5:求隐函数的导数求的⼀阶导数syms x yp = 'x*y(x)-exp(x+y(x))'%隐函数可进⾏整体表⽰%注意y(x)这种写法,它代表了y是关于x的函数p1 = diff(p,x)可得到如下结果:2.符号积分1符号函数的不定积分函数:int功能:求取函数的不定积分语法:int(f)int(f,x)说明:第⼀个是求函数f对默认⾃变量的积分值;第⼆个是求⾃变量f对对⾃变量t的不定积分值。
MATLAB教程第8章MATLAB数值积分与微分1.数值积分数值积分是计算函数的定积分值的近似方法。
在MATLAB中,有几个函数可以帮助我们进行数值积分。
(1) quad函数quad函数是MATLAB中用于计算一维定积分的常用函数。
它的语法如下:I = quad(fun, a, b)其中,fun是被积函数的句柄,a和b分别是积分区间的下界和上界,I是近似的积分值。
例如,我们可以计算函数y=x^2在区间[0,1]内的积分值:a=0;b=1;I = quad(fun, a, b);disp(I);(2) integral函数integral函数是在MATLAB R2024a版本引入的新函数,它提供了比quad函数更稳定和准确的积分计算。
integral函数的语法如下:I = integral(fun, a, b)其中fun、a和b的含义与quad函数相同。
例如,我们可以使用integral函数计算函数y = x^2在区间[0, 1]内的积分值:a=0;b=1;I = integral(fun, a, b);disp(I);2.数值微分数值微分是计算函数导数的近似方法。
在MATLAB中,可以使用diff 函数计算函数的导数。
(1) diff函数diff函数用于计算函数的导数。
它的语法如下:derivative = diff(fun, x)其中,fun是需要计算导数的函数,x是自变量。
例如,我们可以计算函数y=x^2的导数:syms x;fun = x^2;derivative = diff(fun, x);disp(derivative);(2) gradient函数gradient函数可以计算多变量函数的梯度。
它的语法如下:[g1, g2, ..., gn] = gradient(fun, x1, x2, ..., xn)其中fun是需要计算梯度的函数,x1, x2, ..., xn是自变量。
例如,我们可以计算函数f=x^2+y^2的梯度:syms x y;fun = x^2 + y^2;[gx, gy] = gradient(fun, x, y);disp(gx);disp(gy);以上是MATLAB中进行数值积分和微分的基本方法和函数。
Matlab数值积分与数值微分M a t l a b数值积分与数值微分Matlab数值积分1.⼀重数值积分的实现⽅法变步长⾟普森法、⾼斯-克朗罗德法、梯形积分法1.1变步长⾟普森法Matlab提供了quad函数和quadl函数⽤于实现变步长⾟普森法求数值积分.调⽤格式为:[I,n]=Quad(@fname,a,b,tol,trace)[I,n]=Quadl(@fname,a,b,tol,trace)Fname是函数⽂件名,a,b分别为积分下限、积分上限;tol为精度控制,默认为1.0×10-6,trace控制是否展开积分过程,若为0则不展开,⾮0则展开,默认不展开.返回值I为积分数值;n为调⽤函数的次数.--------------------------------------------------------------------- 例如:求∫e0.5x sin(x+π)dx3π的值.先建⽴函数⽂件fesin.mfunction f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));再调⽤quad函数[I,n]=quad(@fesin,0,3*pi,1e-10)I=0.9008n=365--------------------------------------------------------------------- 例如:分别⽤quad函数和quadl函数求积分∫e0.5x sin(x+π6)dx3π的近似值,⽐较函数调⽤的次数.先建⽴函数⽂件function f=fesin(x)f=exp(-0.5*x).*sin(x+(pi/6));formatlong[I,n]=quadl(@fesin,0,3*pi,1e-10)I=n=198[I,n]=quad(@fesin,0,3*pi,1e-10)I=n=365--------------------------------------------------------------------- 可以发现quadl函数调⽤原函数的次数⽐quad少,并且⽐quad函数求得的数值解更精确.1.2⾼斯-克朗罗德法Matlab提供了⾃适应⾼斯-克朗罗德法的quadgk函数来求震荡函数的定积分,函数的调⽤格式为:[I,err]=quadgk(@fname,a,b)Err返回近似误差范围,其他参数的意义与quad函数相同,积分上下限可以是-Inf或Inf,也可以是复数,若为复数则在复平⾯上求积分.--------------------------------------------------------------------- 例如:求积分∫xsinx1+cos2xdx π的数值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2);再调⽤quadgk函数I=quadgk(@fsx,0,pi)I=2.4674--------------------------------------------------------------------- 例如:求积分∫xsinxdx +∞∞的值.先编写被积函数的m⽂件fsx.mfunction f=fsx(x)f=x.*sin(x)./(1+cos(x).^2); 再调⽤quadgk函数I=quadgk(@fsx,-Inf,Inf)I=-9.0671e+017---------------------------------------------------------------------1.3梯形积分法对于⼀些不知道函数关系的函数问题,只有实验测得的⼀组组样本点和样本值,由表格定义的函数关系求定积分问题⽤梯形积分法,其函数是trapz函数,调⽤格式为:I=Traps(X,Y)X,Y为等长的两组向量,对应着函数关系Y=f(X) X=(x1,x2,…,x n)(x1分区间是[x1,x n]--------------------------------------------------------------------- 例如:已知某次物理实验测得如下表所⽰的两组样本点.现已知变量x和变量y满⾜⼀定的函数关系,但此关系未知,设y=f(x),求积分13.39∫f(x)dx1.38的数值.X=[1.38,1.56,2.21,3.97,5.51,7.79,9.19,11.12,13.39];Y=[3.35,3.96,5.12,8.98,11.46,17.63,24.41,29.83,32.21]; I=trapz(X,Y) I=217.1033---------------------------------------------------------------------例如:⽤梯形积分法求积分:∫e ?x dx 2.51的数值.x=1:0.01:2.5; y=exp(-x); I=trapz(x,y) I= 0.2858---------------------------------------------------------------------2. 多重数值积分的实现重积分的积分函数⼀般是⼆元函数f(x,y)或三元函数f(x,y,z);形如:∫∫f (x,y )dxdy ba dc∫∫∫f(x,y,z)dxdydz b a d cf eMatlab 中有dblquad 函数和triplequad 函数来对上述两个积分实现.调⽤格式为: I=dblquad(@fun,a,b,c,d,tol)I=triplequad(@fun,a,b,c,d,e,f,tol)Fun 为被积函数,[a,b]为x 的积分区间;[c,d]为y 的积分区间;[e,f]为z 的积分区间.Dblquad 函数和triplequad 函数不允许返回调⽤的次数,如果需要知道函数调⽤的次数,则在定义被积函数的m ⽂件中增加⼀个计数变量,统计出被积函数被调⽤的次数.---------------------------------------------------------------------例如:计算⼆重积分I =∫∫√dxdy π2π2π2π2的值.先编写函数⽂件fxy.mfunction f=fxy(x,y) global k; k=k+1;f=sqrt(x.^2+y.^2);再调⽤函数dblquadglobalk; k=0;I=dblquad(@fxy,-pi/2,pi/2,-pi/2,pi/2,1.0e-10) I= 11.8629 k k= 37656---------------------------------------------------------------------例如:求三重积分∫∫∫4xze ?z2y?x 2dxdydz ππ1的值.编写函数⽂件fxyz1.mfunction f=fxyz1(x,y,z)global j;j=j+1;f=4*x.*z.*exp(-z.*z.*y-x.*x);调⽤triplequad函数editglobalj;j=0;I=triplequad(@fxyz1,0,pi,0,pi,0,1,1.0e-10)I=1.7328jj=1340978---------------------------------------------------------------------Matlab数值微分1.数值微分与差商导数的三种极限定义f′(x)=limn→0f(x+h)?f(x)hf′(x)=limn→0f(x)?f(x?h)f′(x)=limn→0f(x+h2)?f(x?h2)h上述公式中假设h>0,引进记号:f(x)=f(x+h)f(x)f(x)= f(x)f(xh)δf(x)= f(x+h)?f(x?h)称上述?f(x)、?f(x)、δf(x)为函数在x点处以h(h>0)为步长的向前差分、向后差分、中⼼差分,当步长h⾜够⼩时,有:f′(x)≈?f(x) hf′(x)≈f(x) f′(x)≈δf(x)f(x) h 、?f(x)h、δf(x)h也分别被称为函数在x点处以h(h>0)为步长的向前差商、向后差商、中⼼差商.当h⾜够⼩时,函数f(x)在x点处的导数接近于在该点的任意⼀种差商,微分接近于在该点的任意⼀种差分.2.函数导数的求法2.1⽤多项式或样条函数g(x)对函数f(x)进⾏逼近(插值或拟合),然后⽤逼近函数g(x)在点x处的导数作为f(x)在该点处的导数.2.2⽤f(x)在点x处的差商作为其导数.3.数值微分的实现⽅法Matlab中,只有计算向前差分的函数diff,其调⽤格式为:·DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i),i=1,2,…,n-1·DX=diff(X,n):计算向量X的n阶向前差分,例如diff(X,2)=diff(diff(X))·DX=diff(A,n,dim):计算矩阵A的n阶向前差分,dim=1(默认值)按列计算差分,dim=2按⾏计算差分.--------------------------------------------------------------------- 例如:⽣成6阶范德蒙德矩阵,然后分别按⾏、按列计算⼆阶向前差分A=vander(1:6)A=111111321684212438127931102425664164131256251252551777612962163661D2A1=diff(A,2,1)D2A1=180501220057011018200132019424200255030230200D2A2=diff(A,2,2)D2A2=000084211083612457614436920004008016540090015025--------------------------------------------------------------------- 例如:设f(x)=√x3+2x2?x+12+√(x+5)6+5x+2求函数f(x)的数值导数,并在同⼀坐标系中作出f’(x)的图像.已知函数f(x)的导函数如下:f′(x)=3x2+4x?12√x3+2x2?x+12+16√()56+5编辑函数⽂件fun7.m和fun8.m functionf=fun7(x)f=sqrt(x.^3+2*x.^2-x+12)+(x+5).^(1/6)+5*x+2;functionf=fun8(x)f=(3*x.^2+4*x-1)/2./sqrt(x.^3+2*x.^2-x+12)+1/6./(x+5).^(5/6)+5 ;x=-3:0.01:3;p=polyfit(x,fun7(x),5);⽤5次多项式拟合曲线dp=polyder(p);对拟合多项式进⾏求导dpx=polyval(dp,x);对dp在假设点的求函数值dx=diff(fun7([x,3.01]))/0.01;直接对dx求数值导数gx=fun8(x);求函数f的函数在假设点的导数plot(x,dpx,x,dx,'.',x,gx,'-')可以发现,最后得到的三条曲线基本重合.--------------------------------------------------------------------- 练习:A.⽤⾼斯-克朗罗德法求积分∫dx1+x2 +∞∞的值并讨论计算⽅法的精确度.(该积分值为π)function f=fun9(x)f=1./(1+x.^2);formatlong[I,err]=quadgk(@fun9,-Inf,Inf)I=err=B.设函数f(x)=sin x⽤不同的办法求该函数的数值导数,并在同⼀坐标系中作出f′(x)的图像.已知f′(x)=x cos x+cos x cos2x?sin x+2sin x sin2x()2function f=fun10(x)f=sin(x)./(x+cos(2*x));function f=fun11(x)f=(x.*cos(x)+cos(x).*cos(2*x)-sin(x)-2*sin(x).*sin(2*x))/(x+cos(2 *x)).^2; x=-3:0.01:3;p=polyfit(x,fun10(x),5);dp=polyder(p);dpx=polyval(dp,x);dx=diff(fun10([x,3.01]))/0.01;gx=fun11(x);plot(x,dpx,'r:',x,dx,'.g',x,gx,'-k')。
总结matlab 计算积分的常用命令 一、 问题描述:
总结matlab 计算积分的常用命令,用用实例来展示命令的用法。
二、 实验步骤(过程):
matlab 计算积分的常用命令
(1)利用s=int(fun,a,b),其中fun 为函数, v 为积分变量, a,b 为积分上下限。
当a,b 缺的时候,默认为求fun 的原函数。
例1:用符号积分命令int 计算积分⎰
xdx x sin 2
MATLAB 编程代码及结果:
若用微分命令diff 验证积分的正确性,代码及结果为:
例2:计算数值积分
⎰⎰≤+++122)1(y x dxdy y x ;
可将此二重积分转化为累次积分
⎰⎰⎰⎰----≤+++=++111112222)1()1(x x y x dydx y x dxdy y x
MATLAB 编程代码及结果:
(2)利用trapz(x,y)梯形积分法,其中x表示积分区间的离散化向量,y是与x同维数的向量,表示被积函数,z返回积分值。
x;
例:计算数值积分⎰-224dx
MATLAB编程代码及结果:
若用int来实现,则相应的MA TLAB编程与结果为:
可见其相差的结果并不会相差太多,但是当用trapz时,若积分区间的步长不够小,其会影响结果:。