第十二讲多重线性回归
- 格式:ppt
- 大小:618.00 KB
- 文档页数:28
多重回归与相关(Multiple regression and correlation)一、基本概念:由于大自然是复杂的,其中的现象大部分不是一对一的关系,不能用线性回归与相关来解决问题。
如:人的体重与身高有关,也与胸围有关;血压值的大小除了与年龄有关外,还受到性别、劳动强度、饮食习惯、吸烟状况、家族史等因素的影响。
多重回归与多重相关是研究一个因变量和多个自变量之间线性关系的统计学分析方法。
1. 多个自变量与一个因变量的数量关系多重回归2. 多个自变量与多个因变量的数量关系多元回归3. 多个变量与一个变量的相关关系多重相关4. 多个变量与多个变量的相关关系典则相关5. 扣除其它变量影响后一变量与另一变量的相关关系 偏相关 本章仅讨论多重线性回归、多重线性相关和偏相关。
二、多重线性回归模型与参数估计:(一) 多重线性回归模型:设观察了n 个对象,每个对象观察了因变量Y 和p 个自变量, 模型表达式:p p p x x x Y X X X ββββμ++++= 22110,...,2,1|样本回归方程: p p X b X b X b a Y++++= 2211ˆβ0(a)为截距,β1,β2,…,βp (b 1,b 2,…,b p )为偏(部分)回归系数,βi (b i )表示除X i 外的其他自变量固定时,X i 改变一个单位后Y 的平均变化。
标准回归系数:偏回归系数因各自变量值的单位不同不能直接比较其大小,对变量值作标准化变换,得到的回归系数为标准回归系数,可直接比较其大小,反映各自变量对因变量的贡献大小。
(二) 参数估计的方法: 最小二乘原则∑=∑=++++-=-=n i p p i n i i )]X b ...X b X b b (Y [)Y Y (Q 122211012 最小。
对方程中的每个待估参数求导并设导数为零,得到一组线性方程组。
由于是线性方程组,可以直接求解。
具体的计算复杂,手工计算几乎不可能,一般需要计算机软件完成。
多重线性回归的主要原理多重线性回归是一种统计分析方法,用于研究多个自变量与一个因变量之间的关系。
该方法基于最小二乘法,在给定一组自变量的情况下,通过建立一个线性模型来估计因变量的值。
在多重线性回归中,变量可以分为两类:因变量和自变量。
因变量是我们希望预测或者解释的变量,而自变量是用来解释因变量的变量。
多重线性回归可以用以下方程表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量的值,X1、X2、...、Xn是自变量的值,β0、β1、β2、...、βn是对应的回归系数,ε是误差项。
回归系数表示自变量对因变量的影响程度,误差项表示模型无法解释的部分。
多重线性回归的主要原理是基于最小二乘法来求解回归系数。
最小二乘法的目标是最小化残差平方和,即找到一组回归系数,使得模型预测值与实际观测值之间的差异最小化。
具体而言,多重线性回归的求解过程可以分为以下几步:1. 数据准备:收集自变量和因变量的数据,并进行数据清洗和预处理,包括处理缺失值、异常值和离群值等。
2. 模型建立:根据问题背景和数据特点,确定多重线性回归模型的自变量和因变量,并设置回归方程。
3. 参数估计:使用最小二乘法对回归系数进行估计。
最小二乘法通过最小化实际观测值和模型预测值之间的残差平方和来确定回归系数。
具体计算方法是通过求解方程组来获取回归系数的值。
4. 模型拟合:将估计得到的回归系数代入回归方程,得到多重线性回归模型。
模型能够通过给定自变量值来预测因变量的值。
5. 模型评估:对多重线性回归模型进行评估,包括评价模型的拟合程度和回归系数的显著性等。
常用的指标有R方值、调整R方值和显著性检验等。
6. 模型应用:使用经过验证和评估的多重线性回归模型进行预测、推断和解释。
可以通过改变自变量的值来预测因变量的变化,并对因变量的影响进行解释。
多重线性回归有几个重要的假设前提需要满足。
首先,自变量和因变量之间应该存在线性关系。