第六章分岔管
- 格式:ppt
- 大小:3.95 MB
- 文档页数:36
第一章绪论1、坝后式和河床式水电站枢纽的特点是什么?2、无压引水式和有压引水式水电站枢纽的特点是什么?其组成建筑物有哪些?第二章进水口及引水道建筑物1、水电站进水口应满足那些要求?按水流条件分为那几种类型?2、有压进水口的主要设备?有压进水口的事故闸门和检修闸门的运用要求?3、选择有压进水口高程时需要考虑哪些影响因素?4、隧洞式、坝式进水口有那些特点?5、通气孔及充水阀的作用?6、沉沙池的作用、工作原理及修建位置?7、何谓定期冲洗式沉沙池和连续冲洗式沉沙池?沉沙池一般由那几部分组成?8、水电站引水道的功用是什么?9、非自动调节渠道和自动调节渠道工作原理。
10、引水道怎样分类?11、压力前池的功用和布置原则是什么?第三章压力管道总论及明钢管1、压力水管的功用是什么?压力水管的类型有几种?各适用什么条件?2、压力水管的供水方式有哪几种?各有什么优缺点和适用条件?3、压力水管的材料性能有哪些要求?4、压力钢管的设施有哪些?如何布置?5、明钢管的布置原则有哪些?6、压力水管的引近方式、敷设方式有哪几种?各自的优缺点和适用条件是什么?7、作用在露天压力钢管上有哪些力?试分析正常运行、检修、温升、温降情况下力的组合及方向。
8、简述明钢管应力分析的方法与步骤。
已知流量和流速压力钢管的内径如何计算?管壁的厚度如何估算?9、明钢管外压失稳的原因及失稳现象是什么?简述外压失稳校核的步骤。
10、镇墩、支墩的作用是什么?各有几种类型?其优缺点是什么?11、明钢管的伸缩节、进人孔及排水孔的作用和位置?第四章地下埋管1、地下埋管的布置原则?施工工序?2、地下埋管的型式?各有何特点?3、地下压埋道的初始缝隙是怎样形成的?它对钢衬强度计算有何影响?4、地下埋管失稳的原因是什么?防止措施有哪些?第五章混凝土坝体压力管道1、混凝土坝体压力管道按其布置方式分为哪三类?2、坝内埋管的结构设计要求?3、坝内埋管设软垫层的目的及位置?第六章分岔管1、分岔管的特点、功用和要求?2、压力管道的分岔管有哪几种布置型式?按结构型式分常用的岔管有哪几种?它们的构造特点和适用条件是什么?3、三梁岔管的构成?各承担哪些力?4、明钢岔管按其所用加强方式或受力特点分为哪几类?第七章有压引水系统非恒定流的物理现象及基本方程1、什么是水锤?水锤现象是如何发生的?研究水锤的目的?2、阀门启闭时间、转速变化、水锤压力三者之间的关系?3、什么叫调节保证计算?其任务是什么?4、什么情况下产生正水锤?什么情况下产生负水锤?5、什么是水电站不稳定工况?其表现形式有哪些?6、简述简单管不计摩阻损失时,阀门突然关闭(Ts= 0)后的水锤传播过程。
《流体力学》教学大纲课程编号:081073A课程类型:□通识教育必修课□通识教育选修课□专业必修课□专业选修课□√学科基础课总学时:48讲课学时:40实验(上机)学时:8学分:3适用对象:环境工程先修课程:高等数学、大学物理、理论力学一、教学目标(黑体,小四号字)流体力学是环境工程专业的一门主要技术基础课,其任务是使学生掌握流体运动的一般规律和有关的概念,基本理论、分析方法、计算方法和一定的实验技能;培养学生分析问题和解决问题的能力。
为学习专业课,从事专业工作和进行科学研究打基础。
目标1:掌握流体力学的基本概念、基本理论、基本方法,并具有一定的流体力学实验技能(具有测量水位、压强、流量的操作技能和编写报告能力)。
目标2:掌握掌握流体力学的分析方法、计算方法,能在解决复杂工程问题时熟练运用,注重学生分析问题和解决问题能力的培养,注重学生探索精神和创新意识的培养。
目标3:为该课程在《水污染控制工程》、《大气污染控制I(防尘)》、《大气污染控制II(防毒)》、《排水管道系统》等课程中的应用奠定良好的基础。
二、教学内容及其与毕业要求的对应关系本课程的重点内容包括平面上静水总压力的计算、曲面上静水总压力的计算、连续性方程、伯努利方程、动量方程的联合应用与计算,这些内容将细讲、精讲。
对这部分内容,除了理论讲授课外,专门拿出一定时间作为习题课,带领学生精讲精练。
粗讲的内容包括:液体的相对静止、潜体和浮体的平衡及稳定、流体微团运动分析、理想流体无旋流动、相似理论等。
为实现上述教学目标,教学过程将采用多媒体教学手段,课堂讲授为主、实验课、自习、练习为辅的教学方式。
习题课讲解流体力学的解题思路、方法、步骤、注意的问题;分析习题中的错误、问题,在授课老师的引导下进行课堂讨论,并解决有关疑难问题。
实践教学环节主要是流体力学实验技能的训练,要求学生具有测量水位、压强、流量的操作技能和编写报告能力。
为巩固和加深学生对所学的基本概念、理论的理解,培养学生用流体力学的理论分析和解决问题的能力、培养计算技能,课后将布置作业30道左右题目,由学生独立完成,并针对性的进行作业题目讲解。
第六章施工支洞的设计及施工小湾水电站引水发电系统地下洞室群具有洞室众多,布置紧凑,立体交错,工程量浩大,工期紧等特点。
因此,布置合理、通畅的施工通道对地下厂房三大系统的施工尤其重要。
为保证本合同地下洞室群优质、高效、按期完工,根据招标文件和施工进度要求,经仔细研究招标文件资料和技术经济分析,进行施工支洞的设计及施工。
6.1 施工支洞设计原则根据招标文件要求及类似工程施工经验确定以下施工支洞的设计原则:1、施工支洞的设置及断面尺寸满足交通运输及本合同后续施工项目的运输要求,同时满足本合同施工所需的大件和重件运输要求;2、在满足永久洞室稳定的前提下,结合永久洞室的布置,尽量利用永久洞室作交通洞,以减少临建工程量;3、施工支洞布置满足引水系统、厂房系统和尾水系统施工的相对独立性,为各主要洞室施工平行作业创造条件,确保三大系统施工按照招标文件所确定的施工程序组织施工;4、施工支洞布置满足“平面多工序、立体多层次”的施工组织要求,合理规避施工干扰,以保证工程施工均衡、有序进行;5、同一高程上永久洞室较多的部位,施工支洞以连通所有洞室为宜,以满足同一高程上的洞室间隔施工的要求。
6.2 施工支洞的设计6.2.1 支洞洞线及断面设计1、1#施工支洞:主要满足压力管道上平段施工及设备使用的需要,缓解压力管道施工与进水塔的施工干扰。
以压力管道桩号:引0+50.00m作为施工支洞的轴线, 分别将压力管道1#与2#、3#与4#、5#与6#上平段两两连通,总长度为50.9m;开挖断面尺寸为4.5m×5.0m(宽×高) 方圆形,具体布置见图6-2。
2、2#施工支洞:主要作为压力管道下平段、弯段、竖井的施工通道,兼作主厂房第Ⅵ、Ⅶ层开挖、支护主通道,以主厂房运输洞桩号:厂运0+132.00m处为起点,通过转弯半径为169m(圆心角为450),按10.5%降坡连通压力管道下平段(桩号:厂横0-44.0m),施工支洞长437.89m;开挖断面尺寸为7.0m×6.5m(宽×高) 方圆形,具体布置见图6-3。
西北工大875流体力学讲义 第六章 孔口、管嘴和有压管道流动前面我们学习了流体运动的基本规律和理论,从本章开始,将重点介绍实际工程中常见的各种典型流动现象,并运用前面的基础理论知识分析这些流动的计算原理和方法。
孔口、管嘴和有压管道流动是实际工程中常见的流动典型问题,例如给水排水工程中的取水、泄水闸孔,通风工程中管道漏风,某些液体流量设备等就是孔口出流问题;水流经过路基下的有压短涵管、水坝中泄水管、农业灌溉用喷头、冲击式水轮机、消防水枪等都有管嘴出流的计算问题;有压管道流动非常广泛,如环境保护、给水排水、农业灌溉、建筑环境与设备、市政建设等工程。
本章将运用前几章中的流体力学基础知识,主要是总流的连续性方程、能量方程及能量损失规律,来研究孔口、管嘴与有压管道的过流能力(流量)、流速与水头损失的计算及其工程应用;在分析有压管道流动时,将主要讨论不可压的流动问题。
孔口、管嘴和有压管道流动现象可近似看作是从短管(孔口、管嘴)到长管(有压管道)的流动,将它们归纳在一类讨论,可以更好地理解和掌握这一类流动现象的基本原理和相互之间的区别。
第一节 孔口及管嘴恒定出流流体经过孔口及管嘴出流是实际工程中广泛应用的问题。
本节将要介绍孔口和管嘴出流的计算原理。
一、孔口出流的计算在盛有流体的容器上开孔后,流体会通过孔口流出容器,称这类流动为孔口出流。
流体经孔口流入大气的出流,称为自由出流,如图6-1所示;若孔口流出的水股被另一部分流体所淹没,称为淹没出流,如图6-2所示。
若孔口内为锐缘状,容器壁的厚度较小,或出流流体与孔口边壁成线状接触(2/≤d l ),而不影响孔口出流,称这种孔口为薄壁孔口。
本节将主要讨论薄壁孔口出流。
根据孔口尺寸的大小,可以将孔口分成小孔口与大孔口。
圆形薄壁孔口的实验研究表明,如图6-1所示,当0.1/d H ≤,称为小孔口;当10./>H d ,称为大孔口。
1.薄壁小孔口恒定出流 (1)自由出流以图6-1为例,当流体流经薄壁孔口时,由于流体的惯性作用,流动通过孔口后会继续收缩,直至最小收缩断面c c -。
《流体力学》课程考核大纲【考核目的】本课程的考核目的主要是对学生的学习状态进行检验,以及对教师的教学提供反馈信息,判断教学目的达到程度。
【考核范围】本考试重点测试流体力学的基本概念和基本原理,考试范围包括流体静力学,流体运动学,流体动力学基础,流动阻力和水头损失,孔口、管嘴出流和有压管流,明渠流动,堰流等内容。
考核学生运用基本理论、基本知识,进行独立分析的能力、计算能力、解决工程实际问题的能力。
【考核方法】《流体力学》课程考核包括形成性考核和终结性考核两部分。
1.形成性考核成绩占总成绩的40%,包括学生出勤情况(20%)、课堂学习态度及回答问题情况(10%)、课后作业完成情况(10%)。
2.期末考核成绩占总成绩的60%,以理论知识考核为主,采用闭卷笔试形式,考查学生基本理论和基本知识的掌握情况。
【期末考试形式】期末考核采用闭卷笔试的形式。
【期末考试对试题的要求】题型比例:客观性试题占60%左右,包括填空题、选择题等。
主观性试题占40%左右,包括作图题、计算题等、难度等级:分为较易、中等、较难三个等级,大致比例是30:50:20。
【考核的具体内容】第一章 绪论知识点:1.流体力学的研究方法2.流体的连续介质模型、质点。
3.作用在流体上的力:表面力和质量力4.流体的主要物理性质:惯性、粘性、压缩性5.牛顿内摩擦定律考核目标:1.了解:连续介质模型。
2.理解:流体的主要物理性质。
3.掌握:作用在流体上的力4.运用:能够运用牛顿内摩擦定律解决流体的粘度问题。
第二章 流体静力学知识点:1.静止流体中应力的特性2.流体平衡微分方程、等压面3.重力场中液体静压强的分布。
绝对压强、相对压强真空度。
测压管水头 4.液体的相对平衡5.液体作用在平面上的总压力。
6.液体作用在曲面上的总压力。
考核目标:1.了解:流体平衡微分方程。
2.理解:静止流体中应力的特性、流体平衡微分方程、等压面的概念。
3.掌握:平面上压强分布图和曲面上压力体的绘制。
第六章交通信号控制理论基础经过调查统计发现,将城市道路相互连接起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。
一般而言,交叉口的通行能力要低于路段的通行能力,因此如何利用交通信号控制保障交叉口的交通安全和充分发挥交叉口的通行效率引起了人们的高度关注。
交通信号控制是指利用交通信号灯,对道路上运行的车辆和行人进行指挥。
交通信号控制也可以描述为:以交通信号控制模型为基础,通过合理控制路口信号灯的灯色变化,以达到减少交通拥挤与堵塞、保证城市道路通畅和避免发生交通事故等目的。
其中,交通信号控制模型是描述交通性能指标(延误时间、停车次数等)随交通信号控制参数(信号周期、绿信比和信号相位差),交通环境(车道饱和流量等),交通流状况(交通流量、车队离散性等)等因素变化的数学关系式,它是交通信号控制理论的研究对象,也是交通工程学科赖以生存和发展的基础。
本章主要针对建立交通信号控制模型所涉及到的基本概念、基本理论与基本方法,对交通信号控制的理论基础进行较为全面深入的阐述。
6.1交通信号控制的基本概念城市道路平面交叉口是道路的集结点、交通流的疏散点,是实施交通信号控制的主要场所。
根据交叉口的分岔数平面交叉口可以分为三岔交叉口、四岔交叉口与多岔交叉口;根据交叉口的形状平面交叉口可以分为T型交叉口、Y型交叉口、十字型交叉口、X型交叉口、错位交叉口、以及环形交叉口等。
6.1.1交通信号与交通信号灯交通信号是指在道路上向车辆和行人发出通行或停止的具有法律效力的灯色信息,主要分为指挥灯信号、车道灯信号和人行横道灯信号。
交通信号灯则是指由红色、黄色、绿色的灯色按顺序排列组合而成的显示交通信号的装置。
世界各国对交通信号灯各种灯色的含义都有明确规定,其规定基本相同。
我国对交通信号灯的具体规定简述如下:对于指挥灯信号:1、绿灯亮时,准许车辆、行人通行,但转弯的车辆不准妨碍直行的车辆和被放行的行人通行;2、黄灯亮时,不准车辆、行人通行,但已越过停止线的车辆和已进入人行横道的行人,可以继续通行;3、红灯亮时,不准车辆、行人通行;4、绿色箭头灯亮时,准许车辆按箭头所示方向通行;5、黄灯闪烁时,车辆、行人须在确保安全的原则下通行。
第七节分岔管一、分岔管压力管道的分岔方式有Y形[图8-22(a)]和y形[图8-22(b)]。
二者对水流的分配均匀,缺点是机组数较多时分岔段较长;后者的分岔管是一种由薄壳和刚度较大的加强梁组成的复杂的空间组合结构,受力状态比较复杂,在计算力学和计算机这种计算工具应用于工程之前,对这种结构只能简化成平面问题进行近似计算。
岔管的加强梁有时需要锻造,卷板和焊接后需作调整残余应力处理,因而制造工艺比较复杂。
图13-22 管道分岔方式岔管的另一特点是水头损失较大,在整个引水系统的水头损失重在重要地位。
例如我国某水电站,引水隧洞长1200m,根据模型试验,仅一处岔管的局部水头损失即超过引水隧洞和进水口水头损失的总和。
因此,如何降低水头损失是岔管设计的一个重要问题。
较好的岔管体型应具有较小的水头损失、较好的应力状态和较易于制造。
从水力学的角度看,岔管的体型设计应注意以下几点:(1)使水流通过岔管各断面的平均流速相等,或使水流处于缓慢的加速状态。
(2)采用较小的分岔角a,如图13-23所示。
但从结构上考虑,分岔角不宜太小,太小会增加分岔段的长度,需要较大尺寸的加强梁,并会给制造带来困难。
水电站岔管的分岔角一般在30°-75°范围内,最常采用的范围是45°-60°。
(3)分弃管采用锥管过渡,避免用柱管直接连接。
半锥和一般用5°-10°。
(4)采用较小的岔档角夕。
岔档有分流的作用,较小的岔档角有利于分流。
(5)支管上游侧采用较小的顺流转角γ。
图13-23 岔管体型示意图以上各点有时难于同时满足,例如,增加支管锥角有助于减小γ,但又不可避免地会加大β,但前者对水流的影响较大。
岔管的水力要求和结构要求也存在矛盾,例如,较小的分岔角对水流有利,但对结构不利,因为分岔角越小,管壁互相切割的破口越大,加强梁的尺寸也就越大,而且过小的夹角会使岔档部位的焊接困难,又例如,支管用锥管过渡对水流有明显的好处,但不可避免地会使主支间的破口加大;等等。