2021年河北省中考数学二轮复习规律探索与猜想专题特训:题型3 周期变化规律
- 格式:docx
- 大小:77.17 KB
- 文档页数:5
2021年中考数学二轮复习《探索数字的变化规律》自主学习达标测评(附答案)1.观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式的规律,你认为22020的末位数字应该是()A.2B.4C.6D.82.观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;根据此规律,第10个等式的右边应该是a2,则a的值是()A.45B.54C.55D.653.在一列数:a1,a2,a3,…,a n中,a1=7,a2=1,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2021个数是()A.1B.3C.7D.94.按一定规律排列的单项式:a,﹣3a2,5a3,﹣7a4,9a5,﹣11a6,…,第n个单项式是()A.(﹣1)n+1•(2n﹣1)•a n B.(﹣1)n(2n﹣1)•a nC.(﹣1)n+1•(2n+1)•a n D.(﹣1)n•(2n+1)•a n5.在如图的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为()A.3B.6C.1010D.20236.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点:若停在偶数点上,则下次沿逆时针方向跳一个点,若青蛙从1这点开始跳,则经过2020次后它停在哪个数对应的点上()A.1B.2C.3D.57.将全体自然数按下面的方式进行排列,按照这样的排列规律,2020应位于()A.位B.位C.位D.位8.观察下列等式:12+22=×2×(2+1)×(2×2+1),12+22+32=×3×(3+1)×(2×3+1),12+22+32+42=×4×(4+1)×(2×4+1),…,按此规律计算102+112+122+…+172+182的值是()A.1204B.1724C.1824D.21099.下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为()A.135B.153C.170D.18910.设一列数a1,a2,a3,…,a2015,…中任意三个相邻的数之和都是20,已知a2=2x,a18=9+x,a65=6﹣x,那么a2020的值是()A.2B.3C.4D.511.为了求1+2+22+23+…+2100的值,令S=1+2+22+23+…+2100,……①则2S=2+22+23+24…+2101,……②②﹣①得S=2101﹣1,即1+2+22+23+…+2100=2101﹣1.仿照以上推理计算1+3+32+33+34+35+…+3100的值是.12.观察下列式子:a1==﹣;a2==﹣;a3==﹣;a4==﹣;…,按此规律,计算a1+a2+a3+…+a2020=.13.根据图中数字的规律,则代数式x﹣(y﹣x)的值是.14.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2020个式子为.15.填在如图各正方形中的四个数之间都有相同的规律,则a+b﹣c的值是.16.阅读材料:求1+2+22+23+…+22019+22020的值.解:设S=1+2+22+23+…+22019+22020①,将等式①的两边同乘以2,得2S=2+22+23+24+…+22020+22021②,用②﹣①得,2S﹣S=22021﹣1,即S=22021﹣1.即1+2+22+23+…+22019+22020=22021﹣1.请仿照此法计算:(1)请直接填写1+2+22+23的值为;(2)求1+5+52+53+…+510的值;(3)请直接写出1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣的值.17.观察下面三行数﹣3,9,﹣27,81,…;①1,﹣3,9,﹣27,…;②﹣2,10,﹣26,82,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)设x,y,z分别为第①②③行的第2020个数,求x+6y+z的值.18.观察下列等式解答问题:(1)52﹣51=4×51;(2)53﹣52=4×52;(3)54﹣53=4×53.…(1)按此规律,第④个等式为;第n个等式为;(用含n的代数式表示,n为正整数)(2)按此规律,计算:①4×51+4×52+4×53+4×54+4×55;②51+52+53+…+5n.19.阅读下列材料并解决有关问题:13+23=1+8=9,而(1+2)2=9,所以13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,所以13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,所以13+23+33+43=(1+2+3+4)2;(1)13+23+33+43+53=.(2)按照材料提示,求13+23+33+…+n3(n为整数);(3)求113+123+133+143+153的值.20.探究:22﹣21=2×21﹣1×21=2();23﹣22==2();24﹣23==2();……(1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n个等式;(3)计算:2+22+…+22018+22019﹣22020.21.观察下列等式:=1﹣,=﹣,=﹣.将以上三个等式两边分别相加,得++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①+++…+=;②+++…+=.(3)探究并计算+++…+.22.好学的晓璐同学,在学习多项式乘以多项式时发现:(x+4)(2x+5)(3x﹣6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢?根据尝试和总结她发现:一次项就是:x×5×(﹣6)+2x×4×(﹣6)+3x×4×5=﹣3x.请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x+2)(3x+1)(5x﹣3)所得多项式的最高次项为,一次项为;(2)若计算(x+1)(﹣3x+m)(2x﹣1)(m为常数)所得的多项式不含一次项,求m的值;(3)若(x+1)2021=a0x2021+a1x2020+a2x2019+…+a2020x+a2021,则a2020=.参考答案1.解:2n的个位数字是2,4,8,6四个一循环,所以2020÷4=505,则22020的末位数字是6.故选:C.2.解:观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;…∴第十个等式为:13+23+…+93+103=(1+2+3+4+…+9+10)2=552;故选:C.3.解:由题意可得,a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,…,∵2021÷6=336…5,∴这一列数中的第2021个数是9,故选:D.4.解:∵一列单项式:a,﹣3a2,5a3,﹣7a4,9a5,﹣11a6,…,∴第n个单项式为(﹣1)n+1•(2n﹣1)•a n,故选:A.5.解:由题意可得,第一次输出的结果为24,第二次输出的结果为12,第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,…,由上可得,从第三次开始,输出结果依次以6,3循环出现,∵(2020﹣2)÷2=2018÷2=1009,∴第2020次输出的结果为3,故选:A.6.解:第1次跳后落在3上;第2次跳后落在5上;第3次跳后落在2上;第4次跳后落在1上;…4次跳后一个循环,依次在1,3,5,2这4个数上循环,∵2020÷4=505,∴应落在1上.故选:A.7.解:由图可知,每4个数为一个循环组依次循环,∵2020是第2021个数,∴2021÷4=505余1,∴2020应位于第506循环组的第1个数,在A位.故选:A.8.解:102+112+122+…+172+182=(12+22+32+…+172+182)﹣(12+22+32+…+82+92)=﹣=2109﹣285=1824.故选:C.9.解:根据规律可得,2b=18,∴b=9,∴a=b﹣1=8,∴x=2b2+a=162+8=170,故选:C.10.解:由题可知,a1+a2+a3=a2+a3+a4,∴a1=a4,∵a2+a3+a4=a3+a4+a5,∴a2=a5,∵a4+a5+a6=a3+a4+a5,∴a3=a6,……∴a1,a2,a3每三个循环一次,∵18÷3=6,∴a18=a3,∵65÷3=21…2,∴a65=a2,∴2x=6﹣x,∴x=2,∴a2=4,a3=11,∵a1,a2,a3的和是20,∴a1=5,∵2020÷3=673…1,∴a2020=a1=5,故选:D.11.解:令S=1+3+32+33+34+35+…+3100…①则3S=3+32+33+34+35+…+3101…②②﹣①得2S=3101﹣1,所以S=,即1+3+32+33+34+35+…+3100=.故答案为:.12.解:,,,,…,可得:,a1+a2+a3+…+a2020==,故答案为:.13.解:观察数字的变化可知:21+1=5;42+1=17;62+1=37;所以82+1=x,所以x=65,因为2×5+2=12;4×17+4=72;6×37+6=228;所以8x+8=y,所以y=8×65+8=528,所以x﹣(y﹣x)=65﹣(528﹣65)=﹣398.故答案为:﹣398.14.解:观察发现,第n个等式可表示为(3n﹣2)×3n+1=(3n﹣1)2,当n=2020时,(32020﹣2)×32020+1=(32020﹣1)2,故答案为:(32020﹣2)×32020+1=(32020﹣1)2.15.解:由图可知,左上角的数字依次为0,2,4,6,8,10,右上角的数字都是左上角的数字加3,左下角的数字都是左上角的数字加4,右下角的数字都是前一幅图中右上角数字与本幅图中左下角数字的乘积加1,则a=10+3=13,b=10+4=14,c=(8+3)×14+1=155,∴a+b﹣c=13+14﹣155=﹣128,故答案为:﹣128.16.解:(1)1+2+22+23=1+2+4+8=15,故答案为:15;(2)设S=1+5+52+53+ (510)则5S=5+52+53+ (511)∴5S﹣S=511﹣1,∴4S=511﹣1,∴S=,即1+5+52+53+…+510=;(3)设S=1﹣10+102﹣103+104﹣105+…﹣102019+102020,则10S=10﹣102+103﹣104+105﹣…﹣102020+102021,∴S+10S=1+102021,∴11S=1+102021,∴S=,∴1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣=﹣=.17.解:(1)∵﹣3,9,﹣27,81,﹣243,729…;∴第①行数是:(﹣3)1,(﹣3)2,(﹣3)3,(﹣3)4,…(﹣3)n;(2)第②行数是第①行数相应的数乘﹣即﹣×(﹣3)n,第③行数的比第①行的数大1即(﹣3)n+1.(3)∵x=32020,y=﹣×32020=﹣32019,z=32020+1,∴x+6y+z=32020﹣6×32019+32020+1=1.18.解:(1)①52﹣51=4×51,②53﹣52=4×52,③54﹣53=4×53,第④个等式为:55﹣54=4×54;第n个等式为5n+1﹣5n=4×5n,故答案为:55﹣54=4×54;5n+1﹣5n=4×5n;(2)①4×51+4×52+4×53+4×54+4×55=(52﹣51)+(53﹣52)+(54﹣53)+(55﹣54)+(56﹣55)=52﹣51+53﹣52+54﹣53+55﹣54+56﹣55=56﹣51=15620;②51+52+53+ (5)===.19.解:(1)由题目中的式子可得,13+23+33+43+53=(1+2+3+4+5)2,故答案为:(1+2+3+4+5)2;(2)由题目中的式子可得,13+23+33+…+n3=(1+2+3+…+n)2;(3)113+123+133+143+153=(13+23+33+...+153)﹣(13+23+33+ (103)=(1+2+3+…+15)2﹣(1+2+3+…+10)2=1202﹣552=14400﹣3025=11375.20.探究:22﹣21=2×21﹣1×21=21;23﹣22=4=22;24﹣23=8=23;故答案为:1;4,2;8,3;解:(1)26﹣25=2×25﹣1×25=25 ,(2)2n+1﹣2n=2×2n﹣1×2n=2n,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=﹣2.21.解:(1)=﹣;故答案为:;(2)①原式=1﹣+﹣+﹣+…+﹣=1﹣=;②原式=1﹣++﹣+…+﹣=1﹣=;故答案为:①;②;(3)+++…+=1+++++++…+=1+(+)+(+)+(+)+…+(+)+=1++++…++=1++﹣+﹣+…+﹣+=2﹣+=.22.解:(1)由题意得:(x+2)(3x+1)(5x﹣3)所得多项式的最高次项为x×3x×5x=15x3,一次项为:1×1×(﹣3)x+2×3×(﹣3)x+2×1×5x=﹣11x;(2)依题意有:1×m×(﹣1)+1×(﹣3)×(﹣1)+1×m×2=0,解得m=﹣3;(3)通过题干以及前两问知:a2020=2021×1=2021.故答案为:15x3,﹣11x;2021。
2021年九年级数学中考二轮复习探索规律专题突破训练:数字的变化规律(附答案)1.计算1+2﹣3﹣4+5+6﹣7﹣8+…+2017+2018﹣2019﹣2020的值为()A.0B.﹣1C.2020D.﹣20202.按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……第2020个单项式是()A.2020a B.﹣2020a C.a2020D.﹣a20203.已知函数f(x)=,若M=f(1)+f(2)+f(3)+…+f(2013)+f(2014),N=f ()+f()+f()+…+f()+f(),则M+N=()A.2014B.C.2013D.4.一列数1,5,11,19…按此规律排列,第7个数是()A.37B.41C.55D.715.在数列,,,,,,,,,,…中,请你观察数列的排列规律,推算该数列中的第5055个数为()A.B.C.D.6.将一列有理数﹣1,2,﹣3,4,﹣5,6,…,按如图所示进行排列,则﹣2021应排在()A.A位置B.B位置C.D位置D.E位置7.已知f(1)=2(取1×2的末位数字),f(2)=6(取2×3的末位数字),f(3)=2(取3×4的末位数字),…,则f(1)+f(2)+f(3)+…+f(2021)的值为()A.6B.4028C.4042D.40488.已知整数a1,a2,a3,a4,…,满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,…,依此类推,则a2035的值为()A.﹣2035B.2035C.﹣1018D.﹣10179.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以11颗的取出,那么正好取完,则盒子里共有颗糖.10.按一定规律排列的一列数依次为,﹣,,﹣,,﹣,…,按此规律排列下去,这列数中第8个数是,第n个数是(n为正整数).11.一组按规律排列的式子:,,,,,其中第8个式子是,第n个式子是(用含的n式子表示,n为正整数).12.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2019的值为.13.设第n行第m个数为a n,m.满足a n,n=a n,1=,a n,m=a n+1,m+a n+1,m+1,求a12,11=.14.正整数按如图所示的规律排列,则第29行第30列的数字为.15.已知a1=0,a n+1=﹣|a n+n|(n≥1,且n为整数),则a2020的值是.16.正整数按如图的规律排列.请写出第20行,第21列的数字.17.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.18.如果a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2022=.19.观察下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于10);71×79=5609;24×26=624;35×35=1225;53×57=3021;…(1)计算83×87=,552=.(2)根据观察与计算能得出什么结论,请将它用文字或字母表示出来;(3)证明得出的结论.20.阅读材料:求1+2+22+23+…+22019+22020的值.解:设S=1+2+22+23+…+22019+22020①,将等式①的两边同乘以2,得2S=2+22+23+24+…+22020+22021②,用②﹣①得,2S﹣S=22021﹣1,即S=22021﹣1.即1+2+22+23+…+22019+22020=22021﹣1.请仿照此法计算:(1)请直接填写1+2+22+23的值为;(2)求1+5+52+53+…+510的值;(3)请直接写出1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣的值.21.我们把按一定规律排列的一列数称为数列.若对于一个数列中任意相邻有序的三个数a,b,c总满足c=ab+2a﹣b,则称这个数列为“梦数列”.(1)若0,1,﹣1,2,y是“梦数列”,则y=;(2)如果数列…,x,3,6x﹣1,…是“梦数列”,求x的值;(3)如果数列…,2m,n,5…是“梦数列”,求代数式8m﹣2n+4mn﹣9的值.22.有一系列等式:第1个:52﹣12=8×3;第2个:92﹣52=8×7;第3个:132﹣92=8×11;第4个:172﹣132=8×15;……(1)请写出第5个等式:.(2)请写出第n个等式,并加以验证.(3)依据上述规律,计算:8×3+8×7+8×11+……+8×399.23.观察下列等式:=1,=,=.将以上三个等式的两边分别相加,得:+=1=1=.(1)直接写出计算结果:=.(2)计算:.(3)猜想并直接写出:=.(n 为正整数)24.阅读下列材料,然后回答问题:观察下列等式:=1,=,将以上三个等式相加得:=1=1=.(1)猜想并写出:=;(2)直接写出下列各式的结果:①=;②=;(3)探究并计算:.25.观察下列各式:12+32+42=2×(12+32+3);22+42+62=2×(22+42+8);32+52+82=2×(32+52+15);…(1)用a,b,c表示等式左边的由小到大的三个底数,发现c与a,b的数量关系是;(2)等式右边括号内的三个数可用a,b表示为:;(3)用a,b表示你发现的等式,并加以证明.26.定义一种新运算“⊙”,观察下列等式:①1⊙3=1×3﹣(﹣1)﹣(﹣3)=7,②(﹣1)⊙(﹣2)=(﹣1)×(﹣2)﹣1﹣2=﹣1,③0⊙(﹣2)=0×(﹣2)﹣0﹣2=﹣2,④4⊙(﹣3)=4×(﹣3)﹣(﹣4)﹣3=﹣11,…(1)计算(﹣5)⊙3的值;(2)有理数的加法和乘法运算满足交换律,“⊙”运算是否满足交换律?请说明理由.27.有一列数,按一定规律排成1,,,,,,….(1)这列数中的第7个数是,第n个数是.(2)若其中某三个相邻数的和是,则这三个数中最大的数是多少?28.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.29.我们将不大于2020的正整数随机分为两组,第一组按照升序排列得到a1<a2<…<a1010,第二组按照降序排列得到b1>b2>…>b1010.求|a1﹣b1|+|a2﹣b2|+…+|a1010﹣b1010|的所有可能值.30.观察下列等式:12=;12+22=;12+22+32=;12+22+32+42=;…(1)根据上述规律,求12+22+32+42+52的值;(2)你能用一个含有n(n为正整数)的算式表示这个规律吗?请直接写出这个算式(不计算).(3)根据你发现的规律,计算下面算式的值:62+72+82+92+…+592+602.参考答案1.解:∵1+2﹣3﹣4=﹣4,5+6﹣7﹣8=﹣4,即每四项结果为﹣4,∵2020÷4=505,∴1+2﹣3﹣4+5+6﹣7﹣8+…+2013+2014﹣2015﹣2016=﹣4×505=﹣2020.故选:D.2.解:∵一列单项式为:a,﹣a2,a3,﹣a4,a5,﹣a6,…,∴第n个单项式为(﹣1)n+1•a n,当n=2020时,这个单项式是(﹣1)2020+1•a2020=﹣a2020,故选:D.3.解:根据题意可知:f(2)==,f()=÷(1+)=,∴f(2)+f()=+=1,…可得:f(2014)+f()=1,又∵f(1)=,∴M+N=2013+=.故选:D.4.解:1=1×2﹣1,5=2×3﹣1,11=3×4﹣1,19=4×5﹣1,…第n个数为n(n+1)﹣1,则第7个数是:55.故选:C.5.解:观察数列发现规律:第n组的分数有n个,它们的分子是从1开始的连续自然数,分母是从n开始的连续降序自然数,因为前100组有:1+2+3+…+100=5050个分数,所以5055个数在第101组的第5个,分母为101﹣4=97,分子是5,所以第5055个数为:.故选:B.6.解:由图可知,每个凸起对应5个数字,这些数字的奇数都是负数,偶数都是正数,∵(2021﹣1)÷5=2020÷5=404,∴﹣2021应排在E位置,故选:D.7.解:∵f(1)=2(取1×2的末位数字),f(2)=6(取2×3的末位数字),f(3)=2(取3×4的末位数字),f(4)=0(取4×5的末位数字),f(5)=0(取5×6的末位数字),f(6)=2(取6×7的末位数字),f(7)=6(取7×8的末位数字),f(8)=2(取8×9的末位数字),f(9)=0(取9×10的末位数字),f(10)=0(取10×11的末位数字),f(11)=2(取11×12的末位数字),…,可知末位数字以2,6,2,0,0依次出现,∵2021÷5=404…1,∴f(1)+f(2)+f(3)+…+f(2021)=(2+6+2+0+0)×404+2=10×404+2=4040+2=4042,故选:C.8.解:由题意可得,a1=0,a2=﹣|a1+1|=﹣1,a3=﹣|a2+2|=﹣1,a4=﹣|a3+3|=﹣2,a5=﹣|a4+4|=﹣2,…,∵(2035﹣1)÷2=2034÷2=1017,∴a2035=﹣1017,故选:D.9.解:已知如果每次11颗地取出正好取完,则盒子内糖数必为11的倍数.又知盒子里装有不多于200颗糖,则盒子内糖数可能为11、22、33、44、55、66、77、88、99、110、121、132、143、154、165、176、187、198.又已知如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,则盒子内糖数为12的倍数+1.又知盒子里装有不多于200颗糖则盒子内糖数可能为13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193.取上面两组数的交集可得121,故盒子里共有121颗糖.故答案为:121.10.解:根据分析可知:一列数依次为:,﹣,,﹣,,﹣,…,按此规律排列下去,则这列数中的第8个数是﹣,所以第n个数是:(﹣1)n+1(n是正整数).故答案为:﹣;(﹣1)n+1.11.解:∵=(﹣1)2•,﹣=(﹣1)3•,=(﹣1)4•,…∴第8个式子是,第n个式子为:(﹣1)n+1•.故答案是:;(﹣1)n+1•.12.解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…,所以,n是奇数时,a n=﹣(n﹣1),n是偶数时,a n=﹣,∴a2019=﹣(2019﹣1)=﹣1009.故答案为:﹣1009.13.解:因为a n,n=a n,1=,所以a11,11=a11,1=,a12,12=a12,1=,因为a n,m=a n+1,m+a n+1,m+1,所以a12,11=a11,11﹣a12,12=﹣=.故答案为:.14.解:根据图表分析如下:第一行:首个数字1,横向箭头共有1个数字,第二行:首个数字4,横向箭头共有2个数字,第三行:首个数字9,横向箭头共有3个数字,第四行:首个数字16,横向箭头共有4个数字,可以发现每行首个数字是行数的平方,每行横向箭头数字个数等于行数,因此,第29行第30列的数字应该为第30行第1列上面的数字的平方减去30,302﹣30=870.故答案为:870.15.解:∵a1=0,a n+1=﹣|a n+n|(n≥1,且n为整数),∴a2=﹣|0+1|=﹣1,a3=﹣|﹣1+2|=﹣1,a4=﹣|﹣1+3|=﹣2,a5=﹣|﹣2+4|=﹣2,a6=﹣|﹣2+5|=﹣3,a7=﹣|﹣3+6|=﹣3,…,∴a2020=﹣=﹣1010,故答案为:﹣1010.16.解:第一行第二列对应的数字为:2=1×2,第二行第三列对应的数字为:6=2×3,第三行第四列对应的数字为:12=3×4,第四行第五列对应的数字为:20=4×5,…第20行,第21列对应的数字为:20×21=420;故答案为:420;17.解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.18.解:∵a1=4a2===﹣,a3===,a4===4,…数列以4,﹣,三个数依次不断循环,∵2022÷3=674,∴a2022=a3=,故答案为:.19.解:(1)∵83×87=7221,552=3025,(2)可得规律为:十位上数字乘以十位上数字加一作为结果的千和百位数字,两个个位相乘作为结果的个位和十位.(3)设十位数字为x,个位数字为y,一个数为10x+y,则另一个数为10x+10﹣y=10(x+1)﹣y,(10x+y)[10(x+1)﹣y]=100x(x+1)+y(10﹣y),前一项就是十位上数字乘以十位上数字加一,后一项就是两个个位数字相乘.故答案为:(1)7221;3025.20.解:(1)1+2+22+23=1+2+4+8=15,故答案为:15;(2)设S=1+5+52+53+ (510)则5S=5+52+53+ (511)∴5S﹣S=511﹣1,∴4S=511﹣1,∴S=,即1+5+52+53+…+510=;(3)设S=1﹣10+102﹣103+104﹣105+…﹣102019+102020,则10S=10﹣102+103﹣104+105﹣…﹣102020+102021,∴S+10S=1+102021,∴11S=1+102021,∴S=,∴1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣=﹣=.21.解:(1)∵0,1,﹣1,2,y是“梦数列”,∴y=﹣1×2+2×(﹣1)﹣2=﹣2+(﹣2)+(﹣2)=﹣6,故答案为:﹣6;(2)∵数列…,x,3,6x﹣1,…是“梦数列”,∴6x﹣1=3x+2x﹣3,解得x=﹣2,即x的值为﹣2;(3)∵数列…,2m,n,5…是“梦数列”,∴5=2mn+4m﹣n,∴8m﹣2n+4mn﹣9=2(2mn+4m﹣n)﹣9=2×5﹣9=1.22.解:(1)由题意可知:相间两个奇数的乘方差,等于这个两数的平均数的8倍,∴第5个等式为:212﹣172=8×19,故答案为:212﹣172=8×19;(2)第n个等式为:(4n+1)2﹣(4n﹣3)2=8(4n﹣1).验证:(4n+1)2﹣(4n﹣3)2=16n2+8n+1﹣(16n2﹣24n+9)=32n﹣8=8(4n﹣1),∴(4n+1)2﹣(4n﹣3)2=8(4n﹣1);(3)8×3+8×7+8×11+……+8×399=52﹣12+92﹣52+132﹣92+……+4012﹣3972=4012﹣12=402×400=160800.23.解:(1)=1﹣+…+=1﹣=,故答案为:;(2)=1﹣+…+=1﹣==;(3)=×(1﹣+…+)=×(1﹣)=×=×=,故答案为:.24.解:(1)由题意可得,=,故答案为:;(2)①=1﹣+…+=1﹣=,故答案为:;②==1﹣+…+=1﹣==,故答案为:;(3)=×(+…+)=×()=×=.25.解:(1)∵12+32+42=2×(12+32+3);22+42+62=2×(22+42+8);32+52+82=2×(32+52+15);…,∴用a,b,c表示等式左边的由小到大的三个底数,则c=a+b,故答案为:c=a+b;(2)∵12+32+42=2×(12+32+3);22+42+62=2×(22+42+8);32+52+82=2×(32+52+15);…,∴用a,b,c表示等式左边的由小到大的三个底数,则等式右边括号内的三个数可表示为a2+b2+ab,故答案为:a2+b2+ab;(3)a2+b2+(a+b)2=2(a2+b2+ab),证明:∵a2+b2+(a+b)2=a2+b2+a2+2ab+b2=2(a2+b2+ab),∴a2+b2+(a+b)2=2(a2+b2+ab).26.解:(1)观察已知等式可知:(﹣5)⊙3=﹣5×3﹣5﹣(﹣3)=﹣17;(2)“⊙”运算满足交换律,理由如下:因为a⊙b=ab﹣(﹣a)﹣(﹣b)=ab+a+b;b⊙a=ba﹣(﹣b)﹣(﹣a)=ab+b+a=ab+a+b=a⊙b.所以a⊙b=b⊙a.27.解:(1)∵一列数为1,,,,,,….∴这列数的第n个数为,当n=7时,这个数是=﹣,故答案为:﹣,;(2)设这三个数是4x,﹣2x,x,则4x+(﹣2x)+x=,解得x=﹣,则﹣2x=,4x=﹣,故这三个数中最大的数是.28.解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:﹣﹣=﹣;(2)第n个等式为:﹣﹣=﹣,证明:左边==﹣,右边=﹣,∴左边=右边,∴原式成立.29.解:(1)若a k≤1010,且b k≤1010,则a1<a2<…<a k≤1010,1010≥b k>b k+1>…>b1010,则a1,a2,…a k,b k,……,{b1010,共1011个数,不大于1010不可能;(2)若a k>1010,且b k>1010,则a1010>a1009>…>a k+1>a k>1010及b1>b2>…>b k>1010,则${b}_{1},……,{b}_{k},{a}_{k}……{a}_{1010}共1011个数都大于100,也不可能;∴|a1﹣b1|,……,|a1010﹣b1010|中一个数大于1010,一个数不大于1010,∴|a1﹣b1|+|a2﹣b2|+…+|a1010﹣b1010|=1010×1010=1020100.30.解:(1)12+22+32+42+52==55,即12+22+32+42+52的值是55;(2)∵12=;12+22=;12+22+32=;12+22+32+42=;…∴第n个算式是12+22+32+…+n2=;(3)62+72+82+92+…+592+602=12+22+32+…+602﹣(12+22+32+42+52)=﹣=73810﹣55=73755。
图形规律探索题【例1】如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2017A 2018,则点A 2017的坐标为【答案】(0,2).【解析】解:由题意知:A 1(0,1),A 2(1,1),OA 2=A 2A 3,OA 3=2,∴A 3(2,0),同理,A 4(2,-2),A 5(0,-4),A 6(-4,-4),A 7(-8,0),A 8(-8,8),A 9(0,16)……每隔8个点恰好处于同一坐标系或象限内,2017÷8=252……1,即点A 2017在y 轴正半轴上,横坐标为0,各点纵坐标的绝对值为:20,20,21,21,22,22,23,23,……2017÷2=1008……1,可得点A 2017的纵坐标为:21008, 故答案为(0,21008).【变式1-1】如图,在一个单位为 1 的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,是斜边在 x 轴上、斜边长分别为 2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,-1),A 3(0,0),则依图中所示规律,A 2019的横坐标为( )A .-1008B .2C .1D .1011【答案】A.【解析】解:观察图形可知,奇数点在x轴上,偶数点在象限内,所以A2019在x轴上,A1,A5,A9,A13……,A4n-3在x正半轴,4n-3=2019,n=505.5,所以A2019不在x正半轴上;A3(0,0),A7(-2,0),A11(-4,0),A15(-8,0)……,3=4×0+3,7=4×1+3,11=4×2+3,15=4×3+3,……,2019=4×504+3,∴-2×504=-1008,即A2019的坐标为(-1008,0),故答案为:A.【变式1-2】如图,在平面直角坐标系中,将正方形O ABC绕点O逆时针旋转45°后得到正方形OA1B1C1,称为一次旋转,依此方式,……,绕点O连续旋转 2 019 次得到正方形O A2 019B2 019C2 019,如果点A的坐标为(1,0),那么点B2 019 的坐标为.【答案】,0).【解析】由旋转及正方形性质可得:B(1,1),B1(0, ),B2(-1, 1),B3(-,0),B4(-1, -1),B5(0, -),B6(1, -1),B7(, 0),B8(1, 1),……∴360÷45=8,2019÷8=252……3,∴点B2019落在x轴负半轴上,即B2019(,0),故答案为:,0).【例2】如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(53,0),B(0,4),则点B2016的横坐标为()A.5 B.12 C.10070 D.10080 【答案】D.【解析】解:由图象可知点B2016在第一象限,∵OA=53,OB=4,∠AOB=90°,在Rt△BOA中,由勾股定理得:AB=133,可得:B2(10,4),B4(20,4),B6(30,4),…∴点B2016横坐标为10080.故答案为:D.【变式2-1】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n 的值为()A.33 B.301 C.386 D.571 【答案】C.【解析】解:由图形知:第n个三角形数为1+2+3+…+n=()12n n+,第n个正方形数为n2,当n=19时,()12n n+=190<200,当n=20时,()12n n+=210>200,所以最大的三角形数:m=190;当n=14时,n2=196<200,当n=15时,n2=225>200,所以最大的正方形数:n=196,则m+n=386,所以答案为:C.1.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.【答案】1n -.【解析】解:∵四边形ABCD 是菱形,∠DAB =60°,∴AB =BC =1,∠ACB =∠CAB =30°,∴AC ,同理可得:AC 1=2,AC 213,……第n 个菱形的边长为:1n -,故答案为:1n -.2.如图,在平面直角坐标系中,∠AOB =30°,点A 的坐标为(2,0),过点A 作AA 1⊥OB ,垂足为点A 1,过A 1作A 1A 2⊥x 轴,垂足为点A 2;再过点A 2作A 2A 3⊥OB ,垂足为点A 3;再过点A 3作A 3A 4⊥x 轴,垂足为点A 4…;这样一直作下去,则A 2017的横坐标为( )A .32 )2015B .32 )2016C .32 )2017D .32)2018 【答案】B .【解析】解:∵∠AOB =30°,点A 坐标为(2,0),∴OA =2,∴OA 1OA OA 2OA 1=2×2⎝⎭,OA 3OA 2=2×3⎝⎭…,∴OA n =)n OA =2)n .∴OA 2018)2018=32)2016故答案为:B.3.如图,函数()()()4022824x x xyx x--≤<⎧=⎨-+≤<⎩的图象记为C1,它与x轴交于点O和点A1,将C1绕点A1选择180°得C2,交x轴于点A2……,如此进行下去,若点P(103,m)在图象上,则m的值是()A. -2B. 2C. -3D. 4【答案】A.【解析】解:由图可知:横坐标每间隔8个单位,函数值相同,即函数图象重复周期为8,103÷8=12……5,当x=5时,y=-2,即m=-2,故答案为:A.4.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形DABC 的边时反弹,反弹时反射角等于入射角,当小球第 1 次碰到正方形的边时的点为P1(-2,0),第 2 次碰到正方形的边时的点为P2,……,第n 次碰到正方形的边时的点为Pn,则点P2 019的坐标是()A.(0,1) B.(-4,1) C.(-2,0) D.(0,3)【答案】D.【解析】解:根据图象可得:P1(-2,0),P2(-4,1),P3(0,3),P4(-2,4),P5(-4,0),P6(0,1),P7(-2,0)……2019÷6=336……3,即P2019(0,3),故答案为:D.5.如图,在坐标系中放置一菱形 OABC ,已知∠ABC =60°,点 B 在 y 轴上,OA =1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60°,连续翻转2019次,点 B 的落点依次为 B 1,B 2,B 3,…,则 B 2 019 的坐标为( )A . (1010,0)B .(1310.5, 2)C . (1345, 2)D . (1346,0)【答案】D .【解析】解:连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故答案为:D .6.如图,在直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为( )A.(8076,0)B.(8064,0)C.(8076,125)D.(8064,125)【答案】A.【解析】解:∵点A(﹣3,0)、B(0,4),由勾股定理得:AB=5,由图可知,三个三角形为一个循环,经历一次循环前进的水平距离为:12,2019÷3=673,直角顶点在x轴上,673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为:A.7.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009).【解析】解:由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).8.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.()C.()D.(﹣1,1)【答案】D.【解析】解:∵四边形OABC是正方形,OA=1,∴B(1,1),连接OB,在Rt△OAB中,由勾股定理得:OB,由旋转性质得:OB=OB1=OB2=OB3,∴B1(,B2(﹣1,1),B3,0),…,360÷45=8,每8次一循环,2018÷8=252……2,∴点B2018的坐标为(﹣1,1).故答案为:D.9.将直角三角形纸板OAB按如图所示方式放置在平面直角坐标系中,OB在x轴上,OB=4,OA=.将三角形纸板绕原点O逆时针旋转,每秒旋转60°,则第2019秒时,点A的对应点A′的坐标为()A.(﹣3,﹣3)B.(3,﹣3)C.(﹣3,3)D.(0,2 3)【答案】A.【解析】解:360÷60=6,即每6秒一循环,2019÷6=336……3,即2019秒时, 点A与其对应点A′关于原点O对称,∵OA=4,∠AOB=30°,可得:A(3, 3),∴第2019秒时,点A的对应点A′的坐标为(-3, -3),故答案为:A.10.正方形ABCD的位置在坐标中如图所示,点A、D的坐标反别为(1,0)、(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2017个正方形的面积为【答案】4032352⎛⎫⎪⎝⎭.【解析】解:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA, ∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°, ∴∠ADO=∠BAA1,∵∠DOA=∠ABA1,∴△DOA∽△ABA1,∴11 2OA BAOD AB==,由勾股定理得:AB=AD=5,∴BA1,∴第2个正方形A1B1C1C的边长A1C=A1B+BC,面积=2⎝⎭,同理,第3个正方形的面积为:232⎛⎝⎭,第4个正方形的面积为:23322⎛⨯⎝⎭,……∴第2017个正方形的面积为:4032352⎛⎫⎪⎝⎭.即答案为:4032352⎛⎫⎪⎝⎭.11.如图所示,一动点从半径为 2 的⊙O 上的A0 点出发,沿着射线A0O 方向运动到⊙O 上的点A1 处,再向左沿着与射线A1O 夹角为60°的方向运动到⊙O 上的点A2 处;接着又从A2 点出发,沿着射线A2O 方向运动到⊙O 上的点A3 处,再向左沿着与射线A3O 夹角为60°的方向运动到⊙O 上的点A4 处;……按此规律运动到点A2 017 处,则点A2 017 与点A0 间的距离是【答案】4.【解析】解:由图分析可知,A6点与A0点重合,2017÷6=336……1,即点A2 017 与A1重合,∵⊙O的半径为 2 ,∴点A2 017 与点A0 间的距离是4.12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.【答案】n 2+2n .【解析】解:由图知,第1个图形点数为3+0×3,第2个图形点数为4+1×4;第3个图形点数为5+2×5;第4个图形点数为6+3×6……第n 个图形点数为:(n +2)+(n -1)(n +2)=n 2+2n ,即答案为:n 2+2n .13..如图所示的坐标系中放置一菱形OABC ,已知∠ABC =60°,点B 在y 轴上,OA =1,先将菱形OABC 沿x 轴的正方形无滑动翻转,每次翻转60°,连续翻转2017次,点B 的落点分别是B 1,B 2,B 3,……,则B 2017的坐标为【答案】(.【解析】解:由题意知:OB 即B∴B 1,=32,即B 1(32),由图可知,每翻折6次,图形向右平移4个单位,2017=336×6+1,求得:B 2017(336×4+ 32,即B 2017(),故答案为:(.14.如图,在平面直角坐标系中,点A 1,A 2,A 3,……和点B 1,B 2,B 3,……分别在直线15y x b =+和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3……都是等腰直角三角形,若点A 1(1,1),则点A 2019的纵坐标是【答案】201832⎛⎫ ⎪⎝⎭.【解析】解:如图,分别过A 1,A 2,A 3作x 轴的垂线,∵点A (1,1)在直线15y x b =+上, ∴b =45, 由△OA 1B 1是等腰直角三角形,得:OB 1=2,设A 2(x ,y ),则B 1C 2=x -2,y = x -2,∴x -2=1455x +,解得:x =72,y =32,即A 2的纵坐标为:32; 同理可得:A 3的纵坐标为:29342⎛⎫= ⎪⎝⎭, 即A n 的纵坐标是A n -1纵坐标的32倍, 即A 2019的纵坐标为:201832⎛⎫ ⎪⎝⎭.15.在平面直角坐标系中,正方形 ABCD 的位置如图所示,点 A 的坐标为(1,0),点 D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形 A 1CC 1B 1;延长 C 1B 1 交 x 轴于点 A 2,作正方形 A 2C 1C 2B 2;…,按照这样的规律作正方形,则点B2 019的纵坐标为.【答案】201932⎛⎫⎪⎝⎭.【解析】解:过B作BH⊥x轴于H,由一线三直角模型,可知△ADO≌△BAH,即BH=OA=1,即B点纵坐标为1,同理得:B1点纵坐标为32,B2点纵坐标为232⎛⎫⎪⎝⎭,B3点纵坐标为332⎛⎫⎪⎝⎭,……B2019点纵坐标为201932⎛⎫⎪⎝⎭,即答案为:2019 32⎛⎫⎪⎝⎭.。
2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。
整套试卷“起点低,坡度缓,尾巴翘”。
试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。
2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。
这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。
如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。
3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。
如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。
4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。
如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。
第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。
题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。
2021年九年级数学中考二轮复习《探索图形的变化规律》专题突破训练1.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F2.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.5053.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.404.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()A.2010B.2011C.2012D.20135.根据右图中已填出的“√”和“×”的排列规律,把②、③、④还原为“√”或“×”且符合右图的排列规律,下面“〇”中还原正确的是()A.B.C.D.6.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6B.5C.3D.27.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2019次跳后它停在的点所对应的数为()A.1B.2C.3D.58.观察图中正方形四个顶点所标的数字规律,可知数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角9.如图中的每次个图是由若干盆花组成的四边形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是S,按此规律推断,S与n的函数关系式是()A.S=n2B.S=4n C.S=4n﹣4D.S=4n+410.探索以下规律:根据规律,从2018到2020,箭头的方向图是()A.B.C.D.11.将棱长相等的正方体按如图所示的形状摆放,从上往下依次为第一层、第二层、第三层….则第2020层正方体的个数为()A.2009010B.2005000C.2041210D.200412.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.13.如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为.14.如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是个.15.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.16.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是.17.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么由一张A4的纸可以裁张A8的纸.18.每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.19.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.20.如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第10个图形中小圆点的个数为.21.设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n F n E n,其面积S n=.22.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.23.(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.24.观察下表:序号123…图形xxyxxxxxyyxxyyxxxxxxxyyyxxyyy…xxyyyxxxx我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,求x,y的值.25.用若干根火柴可以摆出六个正方形,如下图就是一种摆法,请你再画出与下图不同的两种摆法示意图.并回答:要摆出六个正方形至多需要根火柴,至少需要根火柴.(摆出的六个正方形中,每个正方形的边仅限于一根火柴.)26.观察下面图形,按规律在两个箭头所指的“田”字格内分别画上适当图形(只对一个2分)27.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:①→4×0+1=4×1﹣3②→4×1+1=4×2﹣3③→4×2+1=4×3﹣3④→⑤→…(2)通过猜想,写出与第n个图形相对应的等式.28.(1)计算:;(2)解方程组:;(3)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:根据规律填空:①第4个图案中有白色地面砖块;②第n个图案中有白色地面砖块。
初三数学中考第二轮复习—方案设计问题冀教版【本讲教育信息】一. 教学内容:专题四:方案设计问题二. 知识要点:这类问题常常给出问题情景与解决问题的要求,让学生设计解决问题的方案,或给出多种不同方案,让学生判断它们的优劣.解这类问题的关键是寻找相等关系,利用函数的图像和性质解决问题;或列出相关不等式(组),通过寻求不等关系找到问题的答案;或利用图形变换、解直角三角形解决图形的设计方案、测量方案等.三. 考点分析:近年来,在各地的中考试题中,出现了方案设计题.方案设计题可以综合考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等.方案设计题还呈现出创新、新颖、异彩纷呈的新趋势.【典型例题】题型一利用方程(组)进行方案设计例1.一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?分析:要确定哪种方案获利最多,首先应求出每种方案各获得的利润,再比较即可.解:生产方案设计如下:(1)将9t鲜奶全部制成酸奶,则可获利1200×9=10800元.(2)4天内全部生产奶粉,则有5t鲜奶得不到加工而浪费,且利润仅为2000×4=8000元.(3)4天中,用x天生产酸奶,用4-x天生产奶粉,并保证9t鲜奶如期加工完毕.由题意,得3x+(4-x)×1=9.解得x.∴4-x(天).故在4天中,,,则利润为(×3××1×2000)元=12000元.答:按第三种方案组织生产能使该厂获利最大,最大利润是12000元.评析:运用数学知识解决现代经济生产中的实际问题是中考的热点考查对象之一,同学们应多关心商品经济,生活中的规律、规则,把数学与生活有机结合起来.题型二利用不等式进行方案设计例2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲,乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?分析:(1)可设购买甲种机器x 台,然后用x 表示出购买甲、乙两种机器的实际费用,根据“本次购买机器所耗资金不能超过34万元”列不等式求解.(2)分别算出(1)中各方案每天的生产量,根据“日生产能力不低于380个”与“节约资金”两个条件选择购买方案.解:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台, 则:7x +5(6-x )≤34,解得x ≤2, 又x ≥0,∴0≤x ≤2,∴整数x =0、1、2, ∴可得三种购买方案: 方案一:购买乙种机器6台;方案二:购买甲种机器1台,乙种机器5台; 方案三:购买甲种机器2台,乙种机器4台. (2)列表如下:由于方案一的日生产量小于380个,因此不选择方案一;•方案三比方案二多耗资2万元,故选择方案二.评析:①部分实际问题的解通常为整数;②方案的各种情况可以用表格的形式表达;③对关键词“不低于”、“至少”、“不少于”的理解是解本例的关键.题型三 利用函数进行方案设计例3.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图(2)的坐标系中画出该函数图象;指出金额在什么X 围内,以同样的资金可以批发到较多数量的该种水果.图(1)m (kg )图(2)(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(3)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.图(3)分析:(1)中注意图像中的圆圈表示不包括该点;(2)中金额w (元)与批发量m (kg )之间的函数关系式分两部分,实际是两个函数图像.当240<w ≤300时,批发量m 有两个值,可比较这两者的大小;当w 取其他值时,m 只有一个值.(3)利用二次函数的最值求获得最大利润的进货和销售方案.解:(1)图(1)中①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)解:由题意得:w =⎩⎪⎨⎪⎧5m (20≤m ≤60)4m (m >60) ,函数图象如图(4)所示.由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x 元,由图可得日最高销量m =320-40x , 当m >60时,x <6.5,由题意,销售利润为: y =(x -4)(320-40x )=40[-(x -6)2+4], 当x =6时,y 最大=160,此时m =80,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元. 解法二:设日最高销售量为xkg (x >60),则由图(3)日零售价p 满足:x =320-40p ,于是p =320-x40, 销售利润y =x (320-x 40-4)=-140(x -80)2+160,当x =80时,y 最大=160,此时p =6,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.m (kg )图(4)评析:本题考查同学们的读图能力,解题关键是数形结合,弄清题目的数量关系.题型四 利用解直角三角形进行方案设计例4. 如图所示,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB . 要求:(1)画出测量示意图.(2)写出测量步骤.(测量数据用字母表示) (3)根据(2)中的数据计算AB .分析:本题是一道开放性问题,设计方案时要注意测角仪有高度,同时还要注意测量所需数据可用a 、b 、c 、d 以及角度α、β来表示.最后还要注意直角三角形的模型.解:(1)测量图(示意图)如图所示.ABCD EFH αβhhm(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角∠AHE =α. 第二步:沿CB 前进到点D ,用皮尺量出C 、D 之间的距离CD =m . 第三步:在点D 安装测角仪,测得此时树尖A 的仰角∠AFE =β. 第四步:用皮尺量出测角仪的高h .(3)AB =αββαtan tan tan tan m -⋅+h .评析:利用解直角三角形进行方案设计时一定要使用题目中所给的测量工具,而不能利用题目以外的测量工具.同时还要关注测量时是否有障碍物,是用具体的数值表示还是用字母表示等.本题的易错点在于同学们容易忽视测角仪的高度.设计测量方案时,结合我们平时在解直角三角形中已经建立的模型来考虑是一条捷径.题型五 利用统计和概率进行方案设计例5. 某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数. 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.如图所示是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.分析:对于题目中的四种方案我们可以分别计算出结果,只要注意平均数、中位数、众数的概念及三种统计量的意义即可.解:(1)方案1最后得分: 110(3.2+7.0+7.8+3×8.0+3×8.4+9.8)=7.7. 方案2最后得分:18(7.0+7.8+3×8.0+3×8.4)=8.方案3最后得分:8. 方案4最后得分:8或8.4.(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为统计最后得分的方案.因为方案4中的众数有两个,众数没有实际意义,所以方案4不适合作为统计最后得分的方案.评析:本题考查了统计中三个统计量的计算和意义的使用.题型六 实际应用图形方案设计例6. 在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆的半径;若不可行,请说明理由.A BCD ABDC方案一方案二分析:判断方案是否可行,可用反证法,假设方案可行,确定正方形的大小,与所给正方形进行比较得出结论.解:(1)理由如下:假设方案一可行.∵扇形的弧长=2π×16×14=8π,圆锥底面周长=2πr ,则圆的半径为4cm .由于所给正方形纸片的对角线长为162cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为16+4+42=20+42cm ,20+42>162.∴假设不成立,故方案一不可行. (2)方案二可行.求解过程如下:设圆锥底面圆的半径为rcm ,圆锥的母线长为R cm ,则(1+2)r +R =162——①.2πr =2πR4——②.由①②,可得R =6425+2=3202-12823,r =1625+2=802-3223.故所求圆锥的母线长为3202-12823cm ,底面圆的半径为802-3223cm .评析:图形方案设计问题,关键要弄清楚设计要求,图形变化前后变化的量和不变的量.【方法总结】这类试题不仅要求学生要有扎实的数学双基知识,而且要能够把实际问题中所涉及的数学问题转化,抽象成具体的数学问题.从方法上分两类进行概括:(1)方案已知,要求选优;(2)先求方案,再选最优.【预习导学案】(专题五:开放探索性问题)一. 预习导学1. 如图所示,AC 、BD 相交于点O ,∠A =∠D ,请你再添加一个条件__________,使得∠ABC ≌△DCB .ABCDO2. 请同学们写出两个具有轴对称性的汉字__________.3. 已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①abc >0;②2a +b <0;③4a -2b +c <0;④a +c >0.其中正确的个数是( ) A .4个B .3个C .2个D .1个二. 反思1. 开放探索性问题有什么特征?2. 开放探索性问题的解题策略是什么?【模拟试题】(答题时间:50分钟)一. 选择题*1. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种B. 3种C. 2种D. 1种**2. 奥运期间,体育场馆要对观众进行安全检查。
对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考找规律专题复习讲解的全部内容。
教学目标教学重、难点浅谈初中数学中的找规律题最近两年,全国多数地市的中招考试都有找规律的题目,人们开始逐渐重视这一更有助于创新型人才的培养。
但究竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。
这类题目主要考查学生的综合分析问题和解决问题的能力。
下面就解决这类问题作一个初步的探究。
一、代数中的规律“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把项数和项放在一起加以比较,就比较容易发现其中的奥秘.例1观察下列各式数:0,3,8,15,24,……。
试按此规律写出第100个数是___。
分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关的量放在一起加以比较:项数:1 2 3 4 5 ……项:0,3,8,15,24,……。
容易发现,已知数的每一项,都等于它的项数的平方减1。
因此,第n 项是2n—1,第100项是21-1。
00如果题目比较复杂,或者包含的变量比较多。
解题的时候,不但考虑已知数的项数,还要考虑其他因素.例2 (1)观察下列运算并填空1×2×3×4+1=24+1=25=252×3×4×5+1=120+1=121=112请你将猜想得到的式子用含正整数n的式子表示出来__________.代数中的规律小结:1、找到题目中的不变量2、找到题目中的改变量,并认真观察改变量的变化规律3、观察与猜想结合找到变量与不变量之间的关系二、平面图形中的规律图形变化也是经常出现的,它的变化规律以代数规律为基础。
专题01 平面直角坐标系规律探究问题【知识点梳理】1、关于x 轴、y 轴或原点对称的点的坐标的特征点P (a ,b )与关于x 轴对称点的坐标为 (a ,-b ) 点P (a ,b )与关于y 轴对称点的坐标为 (-a ,b ) 点P (a ,b )与关于原点对称点的坐标为 (-a ,-b ) 口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号 2、点的平移点P (a ,b )沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(a ±m,b ); 点P (a ,b )沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(a,b ±n ). 口诀:横坐标右加左减,纵坐标上加下减.3、两点间的距离:在x 轴或平行于x 轴的直线上的两点P 1 (x 1,y ),P 2 (x 2,y )间的距离为|x 1−x 2| 在y 轴或平行于y 轴的直线上的两点P 1 (x ,y 1),P 2 (x ,y 2)间的距离为|y 1−y 2| 任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2的中点坐标为(x 1+x 22,y 1+y 22)任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2=√(x 1−x 2)2+(y 1−y 2)2【典例分析】【例1y)经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P(x,y)的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…、nP 、…,若点p 1的坐标为(2,0),则点P 2022的坐标为_____。
【答案】(1,4).解析:解:P 1 坐标为(2,0),则P 2坐标为(1,4),P 3坐标为(-3,3),P 4坐标为(-2,-1),P 5坐标为(2,0),∴P n 的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环, ∵2022=4×505+2, ∴P 2022 坐标与P 2点重合, 故答案为(1,4).【练1】在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y -1,-x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,2),则A 2023的坐标为________【答案】(-3,0)解析:解:∵A1(3,2),A2(1,-2),A3(-3,0),A4(-1,4),A5(3,2),…,∴点A n的坐标4个一循环.∵2023=505×4+3,∴点A2023的坐标与点A2的坐标相同.∴A2023的坐标为(-3,0),故答案为:(-3,0).【练2】某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2022的坐标为()A.(22021﹣1,22021+1)B.(22022﹣1,22022+1)C.(22022﹣2,22022+2)D.(22021﹣2021,22021+2021)【答案】B【解析】解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2022的坐标为:(22022﹣1,22022+1),故选:B.【练3】对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2022(1,﹣1)=.【答案】(21011,21011)【解析】解:由题意可得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为奇数时,P n(1,﹣1)=(0,),当n为偶数时,P n(1,﹣1)=(2n2,2n2),∴P2022(1,﹣1)应该等于(21011,21011).故答案是:(21011,21011).【例2】如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2022的坐标是()A.(2022,0)B.(2022,2)C.(2021,﹣2)D.(2022,﹣2)【答案】A【解析】解:观察图形可知,点A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…的横坐标依次是1、2、3、4、…、n,纵坐标依次是2、0、﹣2、0、2、0、﹣2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:A.【练1】如图,动点P1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2022,0)D.(2022,1)【答案】C【解析】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位,∴2022=4×505+2.当第505循环结束时,点P位置在(2020,0),在此基础之上运动两次到(2022,0).故选C.【练2】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)【答案】D【解析】解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【练3】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2022的坐标是_____________.【答案】(1011,1).【解析】观察图象可知,点A的纵坐标每4个点循环一次,∵2022=505×4+2,∴点A2022的纵坐标与点A2的纵坐标相同,∵A2(1,1),A6(3,1),A10(5,1)……,∴点A2022的坐标是(1011,1).【例3】如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2022次跳动至点A2022的坐标是( )A.(-505, 1011)B.(505, 1010)C.(-506, 1010)D.(506, 1011)【答案】D【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(505+1,505×2+1),即(506,1011).故选:D.【练1】如图所示,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点P99的坐标是_____【答案】(-25,50)【解析】解:由题中规律可得出如下结论:设点Px的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;判断P199的坐标,就是看99=4(n-1)和99=4n-3和99=4n-2和99=4n-1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P第99次跳动至点P99的坐标是(-25,50)故答案为:(-25,50).【练2】如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A1(−1,1),第二次点A1跳动至点A2(2,1),第三次点A跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依2此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023B.2022C.2021D.2020【答案】A【解析】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至A2022点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023.故选:A.【练3】在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021)B.(674,2021)C.(﹣673,2021)D.(﹣674,2021)【答案】B【解析】解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.【例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2022个点的坐标为________【答案】(45,6)【解析】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025-3=2022,∴第2022个点在第2025个点的上方3个单位长度处,∴第2022个点的坐标为(45,3).故答案为:(45,3).【练1】如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【答案】B【解析】解:根据题意可知:O A1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【练2】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2022秒时,点所在位置的坐标是( )A .(2,44)B .(41,44)C .(44,41)D .(44,2)【答案】【解析】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上, ∵2022=452﹣3=2025﹣3,∴第2025秒时,动点在(45,0),故第2022秒时,动点在(45,0)向左一个单位,再向上2个单位, 即(44,2)的位置. 故选:D .【练3】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第99个点的坐标为( )A.(14,−1)B.(14,0)C.(14,1)D.(14,2)【答案】C【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为(n,n−12),(n,n−12−1),…,(n,1−n 2);偶数列的坐标为(n,n2),(n,n2−1),…,(n,1−n2), ∵1+2+3+4+……+13=91∴第99个点位于第14列自上而下第7行.−6),即(14,1).代入上式得(14,142故选C.【例5】如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2022的坐标为.【答案】(12135,0)【解析】解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理得AB=5,根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A2n﹣1(12n,3),A2n(12n+3,0),∵2022=2n,∴n=1011,∴点A2022的坐标为(12135,0),故答案为:(12135,0).【练1】如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2022次碰到长方形的边时点P的坐标为.【答案】(0,3【解答过程】解:如图所示:经过6次反弹后动点回到出发点(0,3),∵2022÷6=337∴当点P第2022次碰到矩形的边时与P点起点位置重合,∴点P的坐标为(0,3).故答案为:(0,3).【练2】如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2022,则点P2022的坐标是()A.(2022,2)B.(2022,√3)C.(4043,2)D.(4043, √3)【答案】D【解析】解:由题意可知P1是1P的横坐标是3,P3的横坐标是5,P4的横坐标是7…依此类推下去,P n的横坐标是2n-1,∴P2022的横坐标是2×2022-1=4043纵坐标都是√3,故选:D.连续作旋转变换,依【练3】如图,在直角坐标系中,已知点A(−3,0),B(0,4),对OAB次得到Δ1,Δ2,Δ3,Δ4,…,则∆2022的直角顶点的坐标为______.【答案】(8088,0)【解析】解:∵点A(-3,0)、B(0,4),∴AB=√32+42=5由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2022÷3=674,∴∆2022的直角顶点是第674个循环组的最后一个三角形的直角顶点;∵674×12=8088,∴∆2022的直角顶点的坐标为(8088,0).故答案为(8088,0).【例6】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2021B2022C2022的顶点B2022的坐标是_____.【答案】(0,-22011)【解析】解:∵正方形OA1B1C1的边长为1,∴OB1=√2∴OB2=2∴B2(0,2),同理可知B3(-2,2),B4(-4,0),B5(-4,-4),B6(0,-8),B7(8,-8),B9(16,16),B10(0,32).由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,每次正方形的边长变为原来的√2倍,∵2022÷8=252⋯⋯6,∴B8n+6(0,-24n+3),∴B2022(0,-22011).故答案为:(0,-22011).【练1】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2022的坐标是_____.【答案】(0,-22011)【解析】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵2022=252×8+6∴点A 8n+6的坐标为(0,24n+3)(n 为自然数).∴点A 2022的坐标为(0,24×252+3),即(0,-22011),故答案为:(0,-22011).【练2】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点2A ,作正方形A 2B 2C 2C 1……按这样的规律进行下去,第2022个正方形的面积为_____.【答案】5×(32)4042.【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2)∴正方形ABCD 的边长为√5,设其面积为S 1=5,依此类推,接下来的面积依次为S 2,S 3,S 4⋯⋯第2022个正方形的面积为S 2022,又∵三角形相似,∴ OA OD =A 1B AB =A 2B 1A 1B 1=⋯=12. ∴ S 2=5×94,S 3=5×(94)2…… ∴S 2022=5×(94)2022−1=5×(94)2021=5×(32)4042.【练3】如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y 轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.【答案】2;【解析】解:作A1D⊥y轴于点D,则B1D=B1B2÷2=(3﹣1)÷2=1,∴A1的纵坐标=B1D+B1O=1+12,同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6﹣3)÷2 4.5,∴A n的纵坐标为,故答案为2,.。
题型3 周期变化规律1.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,27-1=127,28-1=255,…,归纳各计算结果中的个位数字规律,猜测22 020-1的个位数字是A .1B .3C .7D .52.(2021·河北预测)有一列数a 1,a 2,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2 021,a 1+a 2+…+a 2 021的值分别为A .2 021,2 0212B .2,2 0222C .12 ,1 012D .-1,2 01923.(2021·河北预测)如果2 021个整数a 1,a 2,…,a 2 021满足下列条件:a 1=0,a 2=-|a 1+2|,a 3=-|a 2+2|,…,a 2 021=-|a 2 020+2|,则a 1+a 2+ a 3+…+a 2 021=__________ .4.a 1,a 2,a 3,a 4,a 5,a 6,…是一列数,已知第1个数a 1=4,第5个数a 5=5,且任意三个相邻的数之和为15,则第2 020个数a 2 020的值是________.5.有2 021个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第1个数是0,第2个数是1,那么前6个数的和是______,这2 021个数的和是________.6.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共__________个.7.(2020·遵化市一模)将一列有理数-1,2,-3,4,-5,6,…,按下图所示有序排列.峰1 峰2 峰n根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么(1)“峰6”中D 的位置是有理数__________;(2)-2 019应排在A ,B ,C ,D ,E 中的___________位置.8.如图,正△ABC 的边长为2,顶点B ,C 在半径为 2 的圆上,顶点A 在圆内,将正△ABC 绕点B 逆时针旋转,当点A 第一次落在圆上时,则点C 运动的路线长为____(结果保留π);若点A 落在圆上记做第1次旋转,将△ABC 绕点A 逆时针旋转,当点C 第一次落在圆上记做第2次旋转,再绕点C 将△ABC 逆时针旋转,当点B第一次落在圆上,记做第3次旋转,…,如此旋转下去,当△ABC完成第2 021次旋转时,BC边共回到原来位置__________次.9.(2020·石家庄市模拟)如图,曲线AB是抛物线y=-4x2+8x+1的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线y=kx (k≠0)的一部分.曲线AB与BC组成图形W.由点C开始不断重复图形W形成一组“波浪线”.若点P(2 020,m),Q(x,n)在该“波浪线”上,则m的值为___________,n的最大值为__________.10.(2020·邯郸复兴区二模)如图,一段抛物线:y=x(x-2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…,如此进行下去,直至得C10.(1)请写出抛物线C4的解析式:___;(2)若P(19,a)在第10段抛物线C10上,则a=_________.11.如图,自左向右,水平摆放一组小球,按照以下规律排列,如:红球,黄球,绿球,红球,黄球,绿球,…,嘉琪依次在小球上标上数字1,2,3,4,5,6,….尝试左数第三个黄球上标的数字是__________;应用若某个小球上标的数字是101,则这个小球的颜色是__________,它左边共有_________个与它颜色相同的小球;发现试用含n的代数式表示左边第n个黄球所标的数字是____.12.(2020·石家庄新华区一模)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.-8x y z54…(1)可求得x=________,y=________,z=________;(2)第2 019个格子中的数为________;(3)前2 020个格子中所填整数之和为________;(4)前n个格子中所填整数之和是否可能为2 020?若能,求出n的值,若不能,请说明理由.答案题型3 周期变化规律1.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,27-1=127,28-1=255,…,归纳各计算结果中的个位数字规律,猜测22 020-1的个位数字是DA .1B .3C .7D .52.(2021·河北预测)有一列数a 1,a 2,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2 021,a 1+a 2+…+a 2 021的值分别为CA .2 021,2 0212B .2,2 0222C .12 ,1 012D .-1,2 01923.(2021·河北预测)如果2 021个整数a 1,a 2,…,a 2 021满足下列条件:a 1=0,a 2=-|a 1+2|,a 3=-|a 2+2|,…,a 2 021=-|a 2 020+2|,则a 1+a 2+ a 3+…+a 2 021=____________-2__020__ .4.a 1,a 2,a 3,a 4,a 5,a 6,…是一列数,已知第1个数a 1=4,第5个数a 5=5,且任意三个相邻的数之和为15,则第2 020个数a 2 020的值是______4______.5.有2 021个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第1个数是0,第2个数是1,那么前6个数的和是______0______,这2 021个数的和是____1________.6.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共__________3__个.7.(2020·遵化市一模)将一列有理数-1,2,-3,4,-5,6,…,按下图所示有序排列.峰1 峰2 峰n根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么(1)“峰6”中D 的位置是有理数__________30__;(2)-2 019应排在A ,B ,C ,D ,E 中的__________C __位置.8.如图,正△ABC 的边长为2,顶点B ,C 在半径为 2 的圆上,顶点A 在圆内,将正△ABC 绕点B 逆时针旋转,当点A 第一次落在圆上时,则点C 运动的路线长为__π3 __(结果保留π);若点A 落在圆上记做第1次旋转,将△ABC 绕点A 逆时针旋转,当点C 第一次落在圆上记做第2次旋转,再绕点C 将△ABC 逆时针旋转,当点B 第一次落在圆上,记做第3次旋转,…,如此旋转下去,当△ABC 完成第2 021次旋转时,BC 边共回到原来位置______168______次.9.(2020·石家庄市模拟)如图,曲线AB 是抛物线y =-4x 2+8x +1的一部分(其中A 是抛物线与y 轴的交点,B 是顶点),曲线BC 是双曲线y =k x(k ≠0)的一部分.曲线AB 与BC 组成图形W.由点C 开始不断重复图形W 形成一组“波浪线”.若点P(2 020,m),Q(x ,n)在该“波浪线”上,则m 的值为__1__________,n 的最大值为______5______.10.(2020·邯郸复兴区二模)如图,一段抛物线:y =x (x -2)(0≤x ≤2),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…,如此进行下去,直至得C 10.(1)请写出抛物线C 4的解析式:__y =-(x -6)(x -8)__;(2)若P (19,a )在第10段抛物线C 10上,则a =______1______.11.如图,自左向右,水平摆放一组小球,按照以下规律排列,如:红球,黄球,绿球,红球,黄球,绿球,…,嘉琪依次在小球上标上数字1,2,3,4,5,6,….尝试 左数第三个黄球上标的数字是______8______;应用 若某个小球上标的数字是101,则这个小球的颜色是____黄色________,它左边共有________33____个与它颜色相同的小球;发现 试用含n 的代数式表示左边第n 个黄球所标的数字是____3n -1__.12.(2020·石家庄新华区一模)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可求得x=________,y=________,z=________;(2)第2 019个格子中的数为________;(3)前2 020个格子中所填整数之和为________;(4)前n个格子中所填整数之和是否可能为2 020?若能,求出n的值,若不能,请说明理由.解:(1)5;4;-8;(2)4;[∵2 019÷3=673,格子中的数以-8,5,4循环出现,∴第2 019个格子中的数为4.](3)665;[∵2 020÷3=673……1,∴673×(-8+5+4)-8=665.∴前2 020个格子中所填整数之和为665.](4)能.①若最后一个数是4,-8+5+4=1,2 020÷1=2 020,n=2 020×3=6 060;②若最后一个数是-8,2 020-(-8)=2 028,n=2 028×3+1=6 085;③若最后一个数是5,2 020-(-8+5)=2 023,n=2 023×3+2=6 071.∴n=6 060,6 071或6 085.。