最新初三数学中考复习专题1-数与式
- 格式:doc
- 大小:545.50 KB
- 文档页数:12
2023年中考数学专题练——1数与式一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2 3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1 4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−120225.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12 6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6 7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−120228.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3 9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y 11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多个.(由含n的代数式表示)13.(2022•泉山区校级三模)√4=.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为.15.(2022•丰县二模)计算:(x2)3•x﹣2=.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点离原点的距离较近(填“A”或“B”).17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示.18.(2022•邳州市一模)因式分解:b2﹣4b+4=.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米=米.20.(2021•徐州模拟)分解因式:m2+6m=.21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4; (2)化简:(1−1x+2)÷x 2−1x+2. 25.(2022•贾汪区二模)计算: (1)20220+(12)−1−|−3|+√−83; (2)(x −1x )÷x 2−2x+1x . 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 29.(2022•徐州一模)计算: (1)√12+4﹣1﹣(12)﹣1+|−√3|;(2)(1x+3−1)×x 2+6x+9x 2−4.30.(2022•鼓楼区校级二模)计算: (1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a.2023年江苏省徐州市中考数学专题练——1数与式参考答案与试题解析一.选择题(共11小题)1.(2022•泉山区校级三模)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a6D.a2÷a3=a 【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣a3)2=a6,故C符合题意;D、a2÷a3=a﹣1,故D不符合题意;故选:C.2.(2022•鼓楼区校级二模)下列计算正确的是()A.a+a=a2B.(2a)2÷a=4a C.(﹣ab)2=ab2D.a2⋅a2=2a2【解答】解:a+a=2a,故A错误,不符合题意;(2a)2÷a=4a,故B正确,符合题意;(﹣ab)2=a2b2,故C错误,不符合题意;a2⋅a2=a4,故D错误,不符合题意;故选:B.3.(2022•徐州一模)下列运算中,正确的是()A.a2•a3=a5B.(a2)3=a8C.a2+a3=a5D.a3÷a2=1【解答】解:A、a2•a3=a5,故A符合题意;B、(a2)3=a6,故B不符合题意;C、a2与a3不属于同类项,不能合并,故C不符合题意;D、a3÷a2=a,故D不符合题意;故选:A.4.(2022•鼓楼区校级一模)2022的倒数是()A.2022B.﹣2022C.12022D.−12022【解答】解:2022的倒数是12022.故选:C.5.(2022•丰县二模)下列无理数中与3最接近的是()A.√5B.√6C.√10D.√12【解答】解:∵5<6<9<10<12<16,∴√5<√6<3<√10<√12<4,与3最接近的是√10,故选:C.6.(2021•徐州模拟)下列运算中,正确的是()A.3a+2a=5a2B.a2•a3=a6C.a2+a2=a4D.(﹣a3)2=a6【解答】解:A、3a+2a=5a,原计算错误,故此选项不符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、a2+a2=2a2,原计算错误,故此选项不符合题意;D、(﹣a3)2=a6,原计算正确,故此选项符合题意.故选:D.7.(2022•贾汪区二模)有理数﹣2022的相反数等于()A.2022B.﹣2022C.12022D.−12022【解答】解:有理数﹣2022的相反数等于2022,故选:A.8.(2022•邳州市一模)下列运算中,正确的是()A.x6÷x2=x3B.(x2)3=x5C.x2+x3=x5D.2x2•x=2x3【解答】解:x6÷x2=x4≠x3,故选项A计算错误;(x2)3=x6≠x5,故选项B计算错误;x2与x3不是同类项,不能加减,故选项C计算错误;2x2•x=2x3,故选项D计算正确.故选:D.9.(2022•徐州一模)数轴上在√3和√10之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵1<3<4,9<10<16,∴1<√3<2,3<√10<4,∴在√3和√10之间的整数有2,3共2个,故选:C.10.(2022•邳州市一模)周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x杯饮料,y份沙拉,则他们点的B餐份数为()A.10﹣x B.10﹣y C.x﹣y D.10﹣x﹣y【解答】解:∵x杯饮料则在B和C餐中点了x份汉堡,∴点A餐为10﹣x,∴y份沙拉,则点C餐有y份,∴点B餐的份数为:10﹣(10﹣x)﹣y=x﹣y,故选:C.11.(2022•睢宁县模拟)下列计算正确的是()A.2a2﹣a2=2B.(a﹣b)2=a2﹣b2C.(﹣a3b)2=a6b2D.(2a+3)(a﹣2)=2a2﹣6【解答】解:∵2a2﹣a2=a2≠2,∴选项A不符合题意;∵(a﹣b)2=a2﹣2abb+2≠a2﹣b2,∴选项B不符合题意;∵(﹣a3b)2=a6b2,∴选项C符合题意;∵(2a+3)(a﹣2)=2a2﹣a﹣6≠2a2﹣6,∴选项D不符合题意;故选:C.二.填空题(共10小题)12.(2022•鼓楼区校级三模)如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多(2n+1)个.(由含n的代数式表示)【解答】解:根据题意有,第1个图形,圆的个数为:1;正三角形的个数为:1×3+1;第2个图形,圆的个数为:2;正三角形的个数为:2×3+1;第3个图形,圆的个数为:3;正三角形的个数为:3×3+1;……,第n个图形,圆的个数为:n;正三角形的个数为:n×3+1;n×3+1﹣n=3n﹣n+1=2n+1,∴第n个图形中三角形的个数比圆的个数多(2n+1)个.故答案为:(2n+1).13.(2022•泉山区校级三模)√4=2.【解答】解:∵22=4,∴4的算术平方根是2,即√4=2.故答案为:2.14.(2022•丰县二模)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 2.5×1017.【解答】解:数据250000000000000000用科学记数法表示为2.5×1017.故答案为:2.5×1017.15.(2022•丰县二模)计算:(x2)3•x﹣2=x4.【解答】解:(x2)3•x﹣2=x6•1x2=x4,故答案为:x4.16.(2022•丰县二模)数轴上的点A、B分别表示﹣2、3,则点A离原点的距离较近(填“A”或“B”).【解答】解:∵|﹣2|=2,|3|=3,∴点A离原点的距离较近,故答案为:A.17.(2022•徐州二模)2021“双十一”全网成交额约9650亿元.将数据“9650亿”用科学记数法表示9.65×1011.【解答】解:9650亿=965000000000=9.65×1011.故答案为:9.65×1011.18.(2022•邳州市一模)因式分解:b2﹣4b+4=(b﹣2)2.【解答】解:b2﹣4b+4=(b﹣2)2.故答案为:(b﹣2)2.19.(2022•徐州一模)新型冠状病毒呈球形或椭圆形有包膜,直径大约是80~160纳米,1纳米=10﹣9米.用科学记数法表示160纳米= 1.6×10﹣7米.【解答】解:∵1纳米=10﹣9米,∴160纳米=160×10﹣9米=1.6×10﹣7米.故答案为:1.6×10﹣7.20.(2021•徐州模拟)分解因式:m2+6m=m(m+6).【解答】解:原式=m(m+6).故答案为:m(m+6).21.(2022•贾汪区二模)已知√a+2有意义,则a的取值范围为a≥﹣2.【解答】解:∵√a+2有意义,∴a+2≥0,解得a≥﹣2,即a的取值范围为a≥﹣2.故答案为:a≥﹣2.三.解答题(共9小题)22.(2022•鼓楼区校级三模)计算:(1)20220﹣(−12)﹣1﹣|3−√8|;(2)(1+1x−2)÷x−1x−2.【解答】解:(1)20220﹣(−12)﹣1﹣|3−√8|=1﹣(﹣2)﹣(3﹣2√2)=1+2﹣3+2√2=2√2;(2)(1+1x−2)÷x−1x−2=x−1 x−2⋅x−2 x−1=1.23.(2022•丰县二模)计算:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273;(2)(1−1a)÷a2−2a+1a.【解答】解:(1)(﹣1)2022+|﹣4|+(12)﹣1−√273=1+4+2﹣3=4;(2)(1−1a)÷a2−2a+1a=a−1a⋅a(a−1)2 =1a−1.24.(2022•徐州二模)(1)计算:(12)−2−tan45°−(π−3)0+√4;(2)化简:(1−1x+2)÷x2−1x+2.【解答】解:(1)原式=4﹣1﹣1+2=4;(2)原式=x+2−1x+2•x+2(x+1)(x−1)=x+1 x+2•x+2 (x+1)(x−1)=1x−1.25.(2022•贾汪区二模)计算:(1)20220+(12)−1−|−3|+√−83;(2)(x−1x)÷x2−2x+1x.【解答】解:(1)20220+(12)−1−|−3|+√−83=1+2﹣3+(﹣2)=﹣2; (2)(x −1x)÷x 2−2x+1x=x 2−1x ⋅x (x−1)2=(x+1)(x−1)(x−1)2=x+1x−1. 26.(2022•睢宁县模拟)计算: (1)(−2)3−(−3)−(13)−1+√8; (2)a a 2−4÷(1−2a+2). 【解答】解:(1)原式=﹣8+3﹣3+2√2 =﹣8+2√2.(2)原式=a(a+2)(a−2)÷a+2−2a+2 =a(a+2)(a−2)•a+2a=1a−2. 27.(2022•邳州市一模)计算:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12;(2)a−1a 2÷(1−1a 2). 【解答】解:(1)(﹣1)2022+|﹣5|﹣(13)﹣1+√12 =1+5﹣3+2√3 =3+2√3; (2)a−1a 2÷(1−1a 2) =a−1a2⋅a 2(a−1)(a+1)=1a+1.28.(2022•徐州一模)计算:(1)|−√3|﹣(4﹣π)0+2sin60°+(12)﹣1;(2)(1x+1−1x−1)÷2x 2−1. 【解答】解:(1)原式=√3−1+2×√32+2=√3−1+√3+2=2√3+1;(2)原式=[x−1(x+1)(x−1)−x+1(x+1)(x−1)]•(x+1)(x−1)2 =x−1−x−1(x+1)(x−1)•(x+1)(x−1)2=﹣1. 29.(2022•徐州一模)计算:(1)√12+4﹣1﹣(12)﹣1+|−√3|; (2)(1x+3−1)×x 2+6x+9x 2−4. 【解答】解:(1)√12+4﹣1﹣(12)﹣1+|−√3| =2√3+14−2+√3=3√3−74;(2)(1x+3−1)×x 2+6x+9x 2−4=1−x−3x+3•(x+3)2(x+2)(x−2)=−2−x x+3•(x+3)2(x+2)(x−2) =−x+3x−2.30.(2022•鼓楼区校级二模)计算:(1)|−4|−20220+√273−(13)−1;(2)(a +2a+1a )÷a 2−1a. 【解答】解:(1)|−4|−20220+√273−(13)−1=4﹣1+3﹣3=3;(2)(a +2a+1a )÷a 2−1a=a 2+2a+1a •a (a+1)(a−1) =(a+1)2a •a (a+1)(a−1) =a+1a−1.。
《数与式》考点1 有理数、实数的概念1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有___个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______ 4、 写出一个无理数________,使它与2的积是有理数 考点2 数轴、倒数、相反数、绝对值1、___________的倒数是211-;0.28的相反数是_________. 2、 如图1,数轴上的点M 所表示的数的相反数为_________ M3、 0|2|)1(2=++-n m ,则n m +的值为________4、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( ) ①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A .1个B .2个C .3个D .4个5、 ①数轴上表示-2和-5的两点之间的距离是______②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB |=2,那么____________=x考点3 平方根与算术平方根.1、下列说法中,正确的是( )A .3的平方根是3B .7的算术平方根是7C .15-的平方根是15-±D .2-的算术平方根是2- 2、 9的算术平方根是______3、 38-等于_____ 3图1 ∙-2 -1 a 图2 ∙∙b c4、 03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法1、 据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、 由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、 用小数表示:5107-⨯=_____________考点5 实数大小的比较1、 比较大小:0_____21_____|3|--;π. 2、 比较41,31,21---的大小关系:__________________ 3、 已知2,,1,10x x xx x ,那么在<<中,最大的数是___________ 考点6 实数的运算【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-.2、 如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________3、 计算(1)|21|)32004(21)2(02---+-(2)︒⋅+++-30cos 2)21()21(10考点7 乘法公式与整式的运算1、下列计算正确的是( )A .532x x x =+B .632x x x =⋅C .623)(x x =-D .236x x x =÷2、 下列不是同类项的是( )A .212与-B .n m 22与C .b a b a 2241与-D 222221y x y x 与- 3、 计算:)12)(12()12(2-+-+a a a4、 计算:)()2(42222y x y x-÷-考点8 因式分解 1、 分解因式______2=+mnmn ,______4422=++b ab a 2、 分解因式________12=-x考点9:分式 1、 当x _______时,分式52+-x x 有意义 2、 当x _______时,分式242--x x 的值为零 3、 下列分式是最简分式的是( )A .ab a a +22B .axy 36 C .112+-x x D 112++x x 4、 下列各式是分式的是( )A .a 1 B .3a C .21 D π65、 计算:x x ++-11116、 计算:112---a a a考点10 二次根式1、下列各式是最简二次根式的是( )A .12B .x 3C .32xD .352、 下列根式与8是同类二次根式的是( ) A .2 B .3 C .5 D .63、 二次根式43-x 有意义,则x 的取值范围_________4、 计算:3322323--+5、 计算:)0(4522≥-a a a6、 计算:5120-7、 数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.(第7题)82得【 】 (A ) 2 (B )4x 4-+ (C )-2 (D )4x 4-达标测试:1、实验中学初三年级12个班中共有团员a 人,则a 12表示的实际意义是 ▲ 2、先化简,再求值:2x 2x 11x 1x -⎛⎫⋅+ ⎪+⎝⎭,其中x=12. 3、已知, P=22x y x y x y---,Q=()2x y 2y(x y)+-+,小敏、小聪两人在x 2,y 1==-的条件下分别计算了P 和Q 的值,小敏说P 的值比Q 大,小聪说Q 的值比P 大,请你判断谁的结论正确,并说明理由。
中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。
其中,既不属于正数也不属于负数的数是零。
无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。
有理数包括正有理数、负有理数和零。
负无理数和正无理数的定义很明确。
2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。
3.数轴有三个要素:原点、正方向和单位长度。
实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。
4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。
5.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。
知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。
数轴上的每个点都对应着一个实数,反之亦然。
3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。
它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。
a的倒数是1/a(a≠0)。
6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。
确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。
7.近似数是一个与实际数值很接近的数。
它的精确度由四舍五入到哪一位来决定。
例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。
1专题一:数与式一、考点综述考点内容:实数与代数式是数学知识的基础,也是其它学科的重要工具,因此在近年来各地的中考试卷中始终占有一席之地. 考纲要求: (1)实数1借助数轴理解相反数、倒数、绝对值意义及性质. 2掌握实数的分类、大小比较及混合运算.3会用科学记数法、有效数字、精确度确定一个数的近似值. 4能用有理数估计一个无理数的大致范围. (2)代数式1了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.2理解平方根、算术平方根、立方根的意义及其性质. 根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”.②把课本的典型、重点的题目做变式和延伸. ③注意一些跨学科的常识.④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结. 二、例题精析【答案】选B .【规律总结】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字. 例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,A B O B O A b a b a a b=-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A 、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:的两点之间的距离是 ;数轴上表示-2和-1和-3的两点之间的距离之间的距离是.如果2AB =,那么x =. 【解题思路】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.【答案】(1)3,3,4;(2)1x =或3x =-.【规律总结】要认真阅读材料,理解数轴上两点A 、B 的距离公式AB a b =-,获取新的信息和结论,然后应用所得结论,解答新问题.例3.0细心观察图形,认真分析各式,然后解答问题。
第一轮中考复习——数与式知识梳理:一.实数和代数式的有关概念 1。
实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3。
相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等.4.倒数:1除以一个数的商,叫做这个数的倒数.一般地,实数a 的倒数为a1.0没有倒数.两个互为倒数的数之积为1。
反之,若两个数之积为1,则这两个数必互为倒数。
5。
绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离.6。
实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大. (1)正数大于零,零大于负数.(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b ,②a=b ,③a 〈b ,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8。
整式:单项式与多项式统称为整式。
单项式:只含有数与字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
《数与式》考点1 有理数、实数的概念 【知识要点】1、实数的分类:有理数,无理数.2、实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________.3、______________________叫做无理数.一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π). 【典型考题】1、把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73π- 有理数集{ },无理数集{ }正实数集{ } 2、在实数271,27,64,12,0,23,43--中,共有_______个无理数3、在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、写出一个无理数________,使它与2的积是有理数 【复习指导】解这类问题的关键是对有理数和无理数意义的理解.无理数与有理数的根本区别在于能否用既约分数来表示. 考点2 数轴、倒数、相反数、绝对值 【知识要点】1、若0≠a ,则它的相反数是______,它的倒数是______.0的相反数是________.2、一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________.⎩⎨⎧<≥=)0____()0____(||x x x3、一个数的绝对值就是数轴上表示这个数的点与______的距离. 【典型考题】1、___________的倒数是211-;0.28的相反数是_________.2、如图1,数轴上的点M 所表示的数的相反数为_________M3、0|2|)1(2=++-n m ,则n m +的值为________ 4、已知21||,4||==y x ,且0<xy ,则y x 的值等于________5、实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab > A .1个 B .2个 C .3个 D .4个6、①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________.②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB |=2,那么____________=x 【复习指导】1、若b a ,互为相反数,则0=+b a ;反之也成立.若b a ,互为倒数,则1=ab ;反之也成立.2、关于绝对值的化简 (1) 绝对值的化简,应先判断绝对值符号内的数或式的值是正、负或0,然后再根据定义把绝对值符号去掉. (2) 已知)0(||≥=a a x ,求x 时,要注意a x ±= 考点3 平方根与算术平方根3图1∙-2 -1 a图2∙∙b c【知识要点】1、若)0(2≥=a a x ,则x 叫a 做的_________,记作______;正数a 的__________叫做算术平方根,0的算术平方根是____.当0≥a 时,a 的算术平方根记作__________.2、非负数是指__________,常见的非负数有(1)绝对值0___||a ;(2)实数的平方0___2a ;(3)算术平方根)0(0___≥a a .3、如果c b a ,,是实数,且满足0||2=++c b a ,则有__________,_____,===c b a【典型考题】1、下列说法中,正确的是( )A .3的平方根是3B .7的算术平方根是7C .15-的平方根是15-±D .2-的算术平方根是2- 2、9的算术平方根是______ 3、38-等于_____4、03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法 【知识要点】1、精确位:四舍五入到哪一位.2、有效数字:从左起_______________到最后的所有数字.3、科学计数法:正数:_________________ 负数:_________________ 【典型考题】1、据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、用小数表示:5107-⨯=_____________考点5 实数大小的比较 【知识要点】1、正数>0>负数;2、两个负数绝对值大的反而小;3、在数轴上,右边的数总大于左边的数;4、作差法:.,0,00b a b a b a b a b a b a <<->>-==-则;若则;若,则若【典型考题】1、比较大小:0_____21_____|3|--;π.2、应用计算器比较5113与的大小是____________3、比较41,31,21---的大小关系:__________________4、已知2,,1,10x x xx x ,那么在<<中,最大的数是___________考点6 实数的运算 【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-.2、今年我市二月份某一天的最低温度为C ︒-5,最高气温为C ︒13,那么这一天的最高气温比最低气温高___________ 3、如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________4、计算(1)|21|)32004(21)2(02---+-(2)︒⋅+++-30cos 2)21()21(10考点7 乘法公式与整式的运算 【知识要点】1、判别同类项的标准,一是__________;二是________________.2、幂的运算法则:(以下的n m ,是正整数)_____)1(=⋅n m a a ;____))(2(=n m a ;_____))(3(=n ab ;)0______()4(≠=÷a a a n m ;______))(5(=n ab3、乘法公式:________))()(1(=-+b a b a ;____________))(2(2=+b a ;_____________))(3(2=-b a4、去括号、添括号的法则是_________________ 【典型考题】1、下列计算正确的是( )A .532x x x =+B .632x x x =⋅C .623)(x x =-D .236x x x =÷ 2、下列不是同类项的是( )A .212与-B .n m 22与C .b a b a 2241与-D 222221y x y x 与-3、计算:)12)(12()12(2-+-+a a a4、计算:)()2(42222y x y x -÷-考点8 因式分解 【知识要点】 因式分解的方法:1、提公因式:2、公式法:________2;__________2222=++=-b ab a b a _______222=+-b ab a 【典型考题】1、分解因式______2=+mn mn ,______4422=++b ab a2、分解因式________12=-x考点9:分式 【知识要点】 1、分式的判别:(1)分子分母都是整式,(2)分母含有字母;2、分式的基本性质:)0(≠÷÷=⋅⋅=m ma mb m a m b a b3、分式的值为0的条件:___________________4、分式有意义的条件:_____________________5、最简分式的判定:_____________________6、分式的运算:通分,约分 【典型考题】1、当x _______时,分式52+-x x 有意义2、当x _______时,分式242--x x 的值为零3、下列分式是最简分式的是( )A .ab a a +22B .axy36 C .112+-x x D 112++x x4、下列各式是分式的是( )A .a 1B .3aC .21D π6 5、计算:xx ++-11116、计算:112---a a a考点10 二次根式 【知识要点】1、二次根式:如)0(≥a a2、二次根式的主要性质:(1))0_____()(2≥=a a (2)⎪⎩⎪⎨⎧<=>==)0__()0__()0__(||2a a a a a(3))0,0_______(≥≥=b a ab (4))0,0____(>≥=b a ab3、二次根式的乘除法)0,0________(≥≥=⋅b a b a)0,0_______(>≥=b a ba4、分母有理化:5、最简二次根式:6、同类二次根式:化简到最简二次根式后,根号内的数或式子相同的二次根式7、二次根式有意义,根号内的式子必须大于或等于零 【典型考题】1、下列各式是最简二次根式的是( ) A .12 B .x 3 C .32x D .35 2、下列根式与8是同类二次根式的是( ) A .2 B .3 C .5 D .63、二次根式43-x 有意义,则x 的取值范围_________4、若63=x ,则x =__________5、计算:3322323--+6、计算:)0(4522≥-a a a7、计算:5120-8、数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.数与式考点分析及复习研究(答案)考点1 有理数、实数的概念(第8题)1、有理数集{51.0,25.0,8,32,4,5.73 -} 无理数集{π,138,15 } 正实数集{51.0,25.0,,8,32,138,4,153π} 2、2 3、24、答案不唯一.如(2)考点2 数轴、倒数、相反数、绝对值1、32-,28.0-2、5.2-3、1-4、8-5、C6、3 ,4 ;|1|+x , 13或- 考点3 平方根与算术平方根 1、B 2、3 3、2- 4、6考点4 近似数和科学计数法 1、个6102.4⨯2、4,万分位3、0.00007考点5 实数大小的比较 1、< , < 2、3115> 3、413121-<-<-4、x1考点6 实数的运算 1、C ︒18 2、13、(1)解:原式=4+2121- (2)解:原式=1+2+232⋅ =4 =3+3考点7 乘法公式与整式的运算1、C2、B3、)12)(12()12(2-+-+a a a解:原式=))12(12)(12(--++a a a =)1212)(12(+-++a a a =)12(2+a =24+a 4、)()2(42222y x y x -÷- 解:原式=)(44244y x y x -÷ =24x - 考点8 因式分解 1、2)2(),1(b a n mn ++ 2、)1)(1(-+x x 考点9:分式 1、5-≠x 2、2-=x 3、D4、A5、xx ++-1111 解:原式=)1)(1(1)1)(1(1x x x x x x -+-++-+ =)1)(1(11x x x x +--++ =)1)(1(2x x +- 6、112---a a a 解:原式=)1(12+--a a a =1)1)(1(12--+--a a a a a =1)1(22---a a a =11-a 考点10 二次根式1、B2、A3、34≥x4、25、6、3322323--+解:原式=3332223-+-=322-7、)0(4522≥-a a a解:原式=a a 25-=a 38、9、5120-=552514-=- 10、222)()1()1(b a b a ---++解:a b b a >>-<,1,10,01,01<->-<+∴b a b a原式=)()1()1(b a b a -+-++- =b a b a -+-+--11=2-(第8题)。