国外汽车用先进高强度钢板及其标准综述_徐宏伟
- 格式:pdf
- 大小:186.88 KB
- 文档页数:6
浅谈汽车用先进高强钢成形性能研究论文浅谈汽车用先进高强钢成形性能研究论文先进高强钢兼具高强度和较好的成形性能,特别是应变硬化指数高,有利于碰撞吸收能的提高,已被广泛用于车身的结构件和安全件。
优化采用先进高强钢板,可减轻车身重量、提高车身被动安全性及提高车型性价比。
先进高强钢中的DP钢和TRIP钢都具有高强度和良好塑性的优点,是汽车轻量化的理想用材。
DP钢主要应用于车底十字构件、防撞杆、纵梁等加强结构件等,而TRIP钢则主要应用于车门防护杆、保险杠和底盘结构件等。
本文通过显微组织分析、拉伸试验、成形极限试验、杯突试验及扩孔试验,对不同强度级别DP钢和TRIP钢的成形性能进行研究,希望对冲压成形及应用提供参考。
1试验材料(1)化学成分试验材料中DP钢采用C-Si-Mn成分体系,TRIP钢采用Si基低合金成分体系。
为获得较细的组织以利于更好地提高塑性和韧性,试验材料中均添加微合金元素Nb。
(2)显微组织以相同强度级别试验材料显微组织为例。
DP590显微组织中灰白色组织为铁素体,灰黑色组织为马氏体,而在TRIP590显微组织中,灰色组织为铁素体,黑色组织为贝氏体,白色组织为残余奥氏体,残余奥氏体分布在多边形铁素体晶粒之间,有少量存在铁素体内部,岛状贝氏体分布在铁素体和残余奥氏体交界处或相邻的铁素体晶粒交界处。
DP钢中铁素体赋予双相钢较低的屈强比、较高的延伸率,具有优良的塑性;而马氏体则赋予其高的强度,同时铁素体在变形过程中会遇到硬相马氏体的阻碍产生大量位错而快速的产生加工硬化,有利于流变应力的均匀分布,使DP钢具有良好的成形性能。
TRIP钢中主要由贝氏体提高材料强度,提供塑性的不仅有铁素体,还有因残余奥氏体向马氏体相变而引入的塑性提高,因此,DP钢与TRIP钢的塑性能力是不同的。
Nb在DP钢中主要通过NbC粒子的析出阻碍再结晶晶粒的长大,使铁素体晶粒较细,马氏体分布弥散,在提高基体强度的同时有利于进一步提高加工硬化速率和延伸率。
汽车用高强度钢板的现状及今后的展望l前言为了降低C02排出量和提高碰撞安全性,汽车车体必须同时具备轻量化、强度化,因此扩大使用了高强度钢板。
高强度钢板在实现高强度化、轻量化的要求(即成本性能)方面无疑是一种优良的材料,可以认为,在今后更为严格的规章制度下,其使用将会日益增大,尤其随着对碰撞安全性的高度关心,其作用会愈来愈大。
但是高强度钢板一般随着强度的提高,加工性能会恶化,所以使用情况不一定很好。
另外,当强度高时,还必须具备像软钢板那样的扩孔性和弯曲性等特性。
为了尽可能改善难使用的状况,充分发挥其性能,曾进行了各种各样的开发。
本文拟对高强度钢板的开现状及今后的展望进行叙述。
2高强度钢板的使用现状和种类随着燃料费的提高,进入上世纪80年代后,高强度钢板使用率(如图1所示),就不断上升,但是对轻量化的要求并不那么强烈,曾在90年代后有一段时间处于停滞状态。
但是,随对碰撞安全的社会认识提高,在1995年和1996年相继引进了J - NCAP(国土交通省和汽车事故对策机构的汽车评定)及EURO - NCAP(欧洲新汽车评定方案),开始公开一般汽车安全情报,高强度钢板酌使用再次开始增加。
特别在1998年当欧洲不均匀碰撞试验法制化时,欧洲委员会规定了在2008年的C02发生量不得超过140g/km的目标,为了满足其规定,故加速使用了高强度钢板。
80年代的高强度化强度水平主要是340~ 440MPa级,而最近以590MPa为主。
图2表示某钢铁厂以1995年的生产量为100时的各强度水平的高强度钢板的出厂量,可以看出590MPa 级的增长量显著。
2003年的生产量实际已达到1995年的35倍。
由图可知,最近高强度钢板化的主流是590MPa。
随高强度钢板化比率增加,超过590MPa的比率也增加了,其内容也发生了变化。
所以,今后的高强度钢板化比率必然是590MPa以上的钢板。
高强度钢板是根据拉伸强度区分的,在其开发过程中根据每个使用部位要求的特性,经历了强度缓慢提高的过程,这不仅仅是强度,而且根据特性出现了诸多种类。
国内外汽车用钢发展情况分析第一节国外汽车用钢开发情况一、高强钢板根据钢中的合金含量可以将超高强度钢分为低合金超高强度钢、中合金超高强度钢和高合金超高强度钢。
据合结钢的物理冶金学特点可以将超高强度钢分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。
低合金超高强度钢大多是AISI 4130、4140、4330或4340的改进型钢;HY180和AF1410是典型的二次硬化型中合金超高强度钢;高合金超高强度钢的典型代表是马氏体时效钢。
AISI4340是最早出现的低合金超高强度钢。
它于1950年开始研究,并于1955年应用于飞机起落架。
通过淬火和低温回火处理,AISI4130、4140、4330或4340钢的屈服强度可以超过1500MPa,然而缺口冲击韧性降低。
在钢中添加1%~2%的硅可以抑制回火时ε-碳化物生长及Fe3C形成,提高回火温度(260-315℃)来消除热应力和相变应力以提高韧性,同时又可避免马氏体回火脆性。
坩埚熔炼Hy-Tuf和300M便是利用上述原理开发的高硅低合金超高强度钢。
1952年美国国际镍公司开发的300M钢是在4340钢中添加硅和钒元素。
300M钢在300℃回火可获得最佳的强度和韧性配合。
通过调整碳含量和添加钒,开发了AMS6434和LadishD6AC钢。
通过对AISI4330的改进,我国开发了高性能685和686装甲钢。
在工艺性能相当的条件下,高性能685装甲钢的抗枪弹和抗炮弹性能优于目前我国大量应用的前苏联2п和43пCM装甲钢。
在AISI4340的基础上,我国还研制了高硬度695装甲钢,其抗穿甲弹防护系数达到1.3以上。
值得注意的是,尽管以4340和300M钢为代表的低合金超高强度钢具有高强度,但它们的断裂韧性和抗应力腐蚀能力较差。
除了广泛应用的AF1410等二次硬化超高强度钢之外,为了获得更高的强度和韧性配合,美国SRG在二次硬化钢的物理冶金学研究基础上,开发了高洁净度的AerMet钢。
车⾝⽤超⾼强度钢板特性及应⽤实例⼀、⾼强度钢板系列和钢板特性1、⾼强度冷轧钢板1.1开发理念⾼强度冷轧钢板有⾼YR型(析出强化钢)、低YR型(DP钢)、⾼延性型(TRIP钢)、⾼λ型(D P钢、马⽒体钢)等不同特性的钢类。
DP钢和马⽒体钢是⽤⽔淬⽅式的连续退⽕设备(WQ-CAL)制造的,其特点有:1)通过⾼精度组织控制制造TS780-1470MPa级⾼成型性钢板,满⾜⾼强度和⾼成型性的要求;2)采⽤低C当量设计,使钢板具有良好的点焊性和抗延迟断裂性;3)冷却的均匀性和前馈控制技术保证材质的稳定性。
WQ-CAL可以通过控制退⽕温度条件,对钢的组织形态(DP钢或马⽒体钢)进⾏控制。
并且通过对⽔淬温度和回⽕温度的控制,可以在很⼤范围内对DP钢中硬质第2相的体积分量和硬度进⾏控制,从⽽分别制造出多强度级别的、适⽤于不同⽤途的产品。
⾼强度钢板的另⼀个显著特点是,利⽤WQ-CAL可以将C及添加元素的含量降低到极限程度,从⽽保证钢板的强度和成型性并可保证超⾼强度钢板焊接区的良好质量。
低C当量设计还可以提⾼单相马⽒体超⾼强度钢板的抗延迟断裂性。
WQ-CAL对解决⾼强度钢板冲压回弹造成的部件尺⼨精度不良问题⼗分有效。
通过对快速均匀冷却的控制,可以抑制钢板板卷内的强度波动,获得在长度和宽度⽅向上强度、材质稳定均匀的产品。
此外,利⽤⾼精度控制成分的炼钢技术和对热轧到连续退⽕全⼯艺中强度波动因素进⾏控制,抑制了各钢卷之间的强度波动。
1.2⾼强度冷轧钢板系列产品⾼强度冷轧钢板系列产品见表1。
常规型TS590MPa级钢板纳⼊JFS标准的有3个类型的产品,适⽤于不同的成型性要求,现已得到⼴泛应⽤。
780MPa级的⾼λ型钢板⽤于要求⾼拉伸凸缘性的座椅架,低Y R型钢板⽤于冲压胀出成型的车⾝框架。
TRIP 型钢板⽤于⾼拉伸成型部件。
随着成型技术的进步,980MPa 级钢板今后将成为车⾝构架⽤⾼强度钢板的主要产品。
980MPa 级钢板很早就在汽车上得到应⽤,并不断扩⼤应⽤到保险杠R/F(加强件)、车门抗冲击梁、座椅架、车⾝框架等部件。
汽车用超高强度钢板的研究发展现状钢板是汽车所用钢材中最主要的材料,一辆载货车所用的薄钢板的量约占其钢材总量的1/2,一辆轿车所用的钢板约600Kg-800Kg,占其总量的2/3。
汽车作为现代化的交通工具,正朝着高速、安全、舒适、低成本、低排放与节能的方向发展。
这样,对汽车使用钢板的要求除传统的结构性能外,还必须满足超深冲性,高强度和高抗凹性,良好的耐蚀性和焊接性等要求。
为适应这一发展的需要各种优质钢板相继被开发出来,高强度钢板就是其中之一。
特别是美国和日本,近几年来用此钢板非常积极。
一般普通低碳钢板的拉伸强度为280-320Mpa高强度钢板的拉伸强度在210Mpa以上。
高强度钢板的特点是不但具有较高的拉伸强度,还有较高的屈服点,可以达到减轻汽车车重的目的。
采用高强钢是汽车行业在材料应用上的发展趋势。
在国内高强钢的产品序列中,抗拉强度大于等于550Mpa的钢板为超高强钢板。
运用此类产品加工的结构件,可最大限度降低车身重量,达到汽车轻量化、提升安全可靠性和节能环保的目的。
近几年,国际汽车厂商在新开发的车型上,应用超高强钢板的比例已经达到20%左右。
由于目前这种类型的钢板大多依赖进口,且价格高、供货周期长,国内汽车厂商很少采用。
1、先进高强钢研究开发的热点近年来在汽车用先进高强钢(advanced high strength steel,简称AHSS)的工艺基础研究和应用技术研究方面的开发十分活跃,超高强钢板的强度已达到或超过1500MPa。
目前先进高强钢板已发展到第二代,正在向着高成形性和超高强度的第三代高强钢发展。
在针对和解决汽车用高强钢随着强度的增加,塑性和成形性能显著下降,开裂、起皱、回弹、模具磨损和焊接等问题明显增加,以及如何进一步提高抗冲撞能量吸收值等关键问题时,从高性能先进高强钢的冶金与材料工艺原理出发,研究的热点在以下几个方面:1)新的合金化设计(在洁净钢的基础上,进行Nb、V、Ti、B等的微合金化优化设计等);2)新的材料组织结构设计(细晶与超细晶,复相组织结构及其强韧化等);3)结合先进热轧与控冷技术、冷轧、连续退火与快速冷却技术的精确相变与纳米尺寸析出粒子的冶金工艺控制;4)高性能高强钢的表面控制技术(如高强钢板的高表面质量控制、涂镀层界面结合与控制等)及焊接控制(高质量快速点焊、激光焊等)基础等;5)将新的合金设计、钢板制造工艺与新的加工成形技术(如热成形、温成形、液压成形、计算机模拟CAE及智能化技术等)相结合的新材料设计—制造—成形一体化理论与技术基础。
汽车用高强度钢板发展趋势-图文.第一篇:汽车用高强度钢板发展趋势-图文.高强度钢板发展趋势一百多年来, 钢铁一直是汽车工业的基础, 虽然汽车制造中塑料和铝镁合金的用量不断增加, 但钢铁材料仍是汽车用材的主体。
选择低厚度的高强度钢板取代传统的低强度钢板是汽车轻量化的一个有效的方法。
与铝、镁合金和复合材料相比较, 高强度钢板的原材料和制造成本较低, 使其在汽车新材料的应用中更加具有竞争力。
1.高强度钢的定义、分类与特点 1.1 定义与分类对于高强度钢和超高强度钢, 目前并没有一个统一的定义。
有人认为抗拉强度超过 340MPa 的称为高强度钢。
瑞典将钢板强度级别分为普通强度钢(MS、高强度钢(HS和超高强度钢(EHS。
一般有两个分类的依据:屈服强度和抗拉强度。
我们总结了目前对于高强度钢板分类的几种方法和依据,如表 5-7所示。
表 5-7高强度钢板的分类方法ULSAB — A VC 联合会认为对钢种分类的规范化非常重要,按习惯定义屈服强度(YS和抗拉强度(TS,将钢种标记为XX aaa/bbb。
其中, XX 为钢种类型, aaa 为最低屈服强度(MPa, bbb 为最低抗拉强度(MPa。
钢种的标志符号统一如下: 传统钢种:低碳钢、无间隙原子钢、各向同性钢、烘烤硬化钢、碳-锰钢、低合金高强度钢。
先进高强度钢钢种:双相钢、复相钢、相变诱发塑性钢、马氏体钢。
例如,钢种DP500/800是指双相钢,其最低屈服强度为500MPa ,最低抗拉强度为800MPa。
按照ULSAB 所采用的术语,将屈服强度为210~550MPa 的钢定义为高强度钢(HSS,屈服强度为 550MPa 的钢定义为超高强度锕(UHSS, 而先进高强度钢(AHSS的屈服强度覆盖于 HSS 和 UHSS 之间的强度范围。
下图给出了钢板的分类情况及其屈服强度和延伸率的对应关系。
1.22、高烘烤硬化性能;3、能量吸收率较高;4、高的疲劳强度和长的疲劳寿命;5、高的防撞和抗凹性能。
【技术帖】一文带你了解先进高强钢先进高强钢概述Introduction to Advanced High Strength Steels一、引言欧洲车身会议(ECB大会)对汽车用钢板的分类是按照冶金学的组织类型来分类的,将钢种分为传统软钢、高强度钢、先进高强度钢和超高强度钢等。
先进高强度钢(Advanced High Strength Steels,AHSS),是具有复相组织的材料,通过严格控制加热和冷却工艺达到所要的化学成分和复相微结构,并采用各种强化机制来实现不同强度、延展性、韧性和疲劳性能。
二、性能在过去,钢铁的抗拉强度超过550 MPa,可以归为先进高强度钢,而抗拉强度超过780 MPa归为超高强度钢,然而,当下多相先进高强度钢的最低抗拉强度是440 Mpa,因此将强度作为界定先进高强钢的标准不再适用。
抗拉强度为1000 MPa的先进高强度钢通常也称之为1GPa钢。
第三代先进高强度钢有望在低成本前提下实现相当或更优的性能。
钢种的强度-延性图IF—无间隙原子钢;Mild—低碳铝镇静钢;IF-HS—高强度IF钢;BH钢—烘烤硬化刚;CMn—碳锰钢;HSLA—高强度低合金钢;DP—双相钢;CP—复相钢;TRIP—相变诱导塑性钢;MS—马氏体钢;TWIP—孪晶诱导塑性钢先进高强度钢材料性能概览(包含HSLA钢)三、分类世界钢协根据研发历史及其特点,将AHSS钢分为三代:(1)第一代AHSS钢以铁素体为基的AHSS钢的强塑积为15 GPa%以下,主要包括双相( DP)钢、多相( CP)钢和相变诱导塑性( TRIP)钢,铁素体贝氏体钢(FB/SF),马氏体钢(MS/PHS)、硼钢(HF);(2)第二代AHSS钢以奥氏体为基的AHSS钢的强塑积为50 GPa%以上,主要包括奥氏体孪晶诱导塑性( TWIP) 钢(主要钢种)、诱导塑性轻钢(L-IP) 和剪切带强化(SIP)钢;(3)第三代AHSS钢以马氏体、回火马氏体、亚微米晶/纳米晶组织或沉淀强化的高强度BCC组织,强塑积20-40GPa%,主要包括TBF钢(TRIP Aided Bainitic Ferrite steels),中锰钢(medium Mn-Trip),Q&P钢(Quenching-Partitioning Steel)。
汽车用先进高强钢的发展及其在车身设计中的应用
刘超;王磊;刘杨
【期刊名称】《特钢技术》
【年(卷),期】2012(018)002
【摘要】当今社会的能源和环境问题日益突出,因此在保证安全的前提下实现车身减重以降低油耗和排放是现代汽车工业的发展趋势.综合比较可供选择的汽车用材,汽车轻量化的首选材料是高强度钢.对于汽车安全而言,最基础、最重要的是结构设计,最新的车身安全设计理念认为安全车身应该包括:前后碰撞变形区和高强度乘员舱.本文通过比较传统高强钢和先进高强钢的特点,重点介绍了先进高强钢的发展现状及其在车身设计中的应用.
【总页数】5页(P1-4,9)
【作者】刘超;王磊;刘杨
【作者单位】东北大学材料各向异性与织构教育部重点实验室,沈阳110819;东北大学材料各向异性与织构教育部重点实验室,沈阳110819;东北大学材料各向异性与织构教育部重点实验室,沈阳110819
【正文语种】中文
【中图分类】TG142
【相关文献】
1.汽车用先进高强钢的应用现状和发展方向 [J], 李扬;刘汉武;杜云慧;张鹏
2.汽车用先进高强钢和超高强钢的表面选择性氧化、热浸镀锌和镀层性能 [J],
B.C.De Cooman;刘友存;李子涛;;;
3.汽车用传统高强钢和先进高强钢 [J], 孙浩然;苗铁岭
4.先进高强度汽车用钢的多维度协同设计与调控 [J], 于浩;宋成浩
5.汽车用先进高强度钢的开发及应用进展 [J], 江海涛;唐荻;米振莉
因版权原因,仅展示原文概要,查看原文内容请购买。
先进高强度钢助力中国汽车行业提升安全性
佚名
【期刊名称】《汽车制造业》
【年(卷),期】2010(000)012
【摘要】2010年世博会期间,瑞典钢铁制造商SSAB展示了其先进高强度钢(AHSS)在汽车行业的广泛应用。
“Docol是当今市场上强度最大的冷轧AHSS,它是一种可为汽车制造商带来最大利益的钢材。
”SSAB汽车行业销售总监Lilian Sjalls表示。
【总页数】1页(P18)
【正文语种】中文
【中图分类】F426.471
【相关文献】
1.先进高强度钢性价比和安全性高的汽车轻量化基础材料 [J], 朱敏慧
2.以国外先进解决方案助力中国汽车行业发展——访捷成汽车零部件(北京)有限公司总监及总经理詹森先生 [J], 李志;
3.先进高强度汽车用钢的多维度协同设计与调控 [J], 于浩;宋成浩
4.美钢联新型先进高强度钢正式投产 [J],
5.美钢联最新型先进高强度钢正式投产 [J], 植恒毅
因版权原因,仅展示原文概要,查看原文内容请购买。