s主应力法剖析
- 格式:ppt
- 大小:1.11 MB
- 文档页数:29
主应力法求轧制
主应力法是一种力学分析方法,可用于计算轧制过程中的应力分布。
该方法利用主应力原理,将三维应力状态转换为等效的一维应力状态,进而确定最大和最小应力值,从而确定材料是否达到塑性变形的极限。
以下是利用主应力法求解轧制过程中应力分布的步骤:
1. 确定轧制区域内的应力状态:轧制过程中,钢坯受到的应力主要包括轧制压应力和轧制弯应力。
同时,钢坯的几何形状也会对应力状态产生影响。
因此,首先需要确定轧制区域内的应力状态,并将其表示为矩阵形式。
2. 对应力矩阵进行主应力分解:利用主应力原理,将三维应力状态转换为等效的一维应力状态,并确定最大应力值和最小应力值。
这一步骤可以使用数值方法或解析方法来完成。
3. 判断材料是否达到塑性变形的极限:根据材料的本构关系,确定材料的屈服极限和断裂极限,进而判断此时应力状态是否会使材料达到塑性变形的极限。
如果达到极限,则需要考虑采取合适的措施来避免材料破坏,如增加轧制力或调整轧制速度等。
4. 将应力分布图形化展示:最后,将计算得到的应力分布用图形化的方式展示出来,以便更好地理解和分析该区域的强度和稳定性。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载确定主应力大小和方向问题分析地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容确定主应力大小和方向问题分析基础部秦定龙一问题的提出在工程结构设计中,为了全面评价梁的强度安全,确保工程结构万无一失,经常要遇到计算结构中的主应力的大小和确定主应力的方向问题,以便于分析结构破坏的原因,或者合理布置结构形式,或者正确布置结构内的受力钢筋等。
图一(a)所示的钢筋混凝土简支梁,为什么会在轴线以下部分出现斜裂缝而破坏?图一(b)所示的铸铁试件在受到压缩或扭转时,为什么会沿与轴线成的斜面上发生破坏?这些都与结构内的主应力大小和方向有关。
在图二(a)中,钢筋混凝土简支梁的两组主应力轨迹线是根据主应力的方向绘制出来的,而图二(b)中梁内的弯起钢筋和纵向受力钢筋则是根据图二(a)中梁的主应力轨迹线布置的。
图一(a)q(a)图二(b)上述情况说明,在对结构进行强度分析或计算时,都要涉及到结构内主应力大小的计算和确定主应力方向的问题。
一般情况下,主应力的大小可按特定的公式算出来,而在确定应力的方向时,人们往往不容易正确确定出来。
本文就怎样快速准确确定主应力大小和方向作阐述和介绍。
二主应力大小及方向的确定方法图三表示从某一构件中取出的单元体,设它处于平面应力状态下。
假定在一对竖向平面上的正应力为,切应力为;在一对水平面上的正应力为y,切应力为y,它们的大小和方向已经求出。
现要求出这个单元体的最大正应力、最小正应力即主应力的大小和方向。
对应力、和角度的正负号规定如下:正应力(或主应力)以拉应力为正,压应力为负;切应力对单元体内的任一点以顺时针转为正,以反时针转时为负;角度以从x轴的正向出发量到截面的外法成n是反时针转为正,是顺时针转为负。
材料力学主应力知识点总结材料力学是研究物质在外力作用下变形和破坏的学科,主应力是材料受力引起的应变状态中所表现出来的应力。
主应力是材料力学中的重要知识点,本文将对主应力的概念、计算方法以及其应用进行总结。
一、主应力的概念主应力指的是在某个特定方向上的最大和最小应力。
根据材料在不同应力状态下的表现,主应力可分为拉应力和压应力。
拉应力是指某一方向上的应力值为正值,而压应力则是指某一方向上的应力值为负值。
二、主应力的计算方法主应力的计算可以通过应力转换公式来实现。
对于平面应力状态下的主应力计算,我们可以使用著名的Mohr圆方法。
该方法通过绘制Mohr圆图来确定主应力的数值。
绘制Mohr圆图的步骤如下:1. 根据给定的平面应力状态下的两个主应力值,构建一个坐标系。
2. 在坐标系中找到两个主应力值所对应的坐标点,分别标记为A和B。
3. 以点A和B为圆心,AB的长度为半径作圆弧,确定一个圆。
根据圆的性质,圆弧与横轴和纵轴相交的两点分别为两个主应力值的坐标点。
4. 连接圆心和两个主应力值的坐标点,得到两条线段,分别表示两个主应力的方向。
5. 从圆心开始,沿着圆弧方向的逆时针方向旋转90度,该方向所对应的弧度为斜面上的剪应力最大值。
三、主应力的应用主应力是材料力学中常用的计算参数,具有广泛的应用价值。
下面介绍几个主应力的应用场景:1. 设计材料和结构:在工程设计过程中,了解主应力及其分布情况对材料的选择和结构的设计至关重要。
通过对主应力的计算和分析,可以确定材料的最大承载能力,从而确保结构的安全性和耐久性。
2. 破坏分析:主应力可以用于破坏分析,即通过判断主应力是否超过材料的极限强度来预测材料的破坏。
如果主应力超过了材料的极限强度,则材料可能发生破坏或变形。
3. 应力集中分析:在实际工程中,往往存在应力集中的情况,即某一点或某一区域的应力值明显高于周围区域。
主应力可以用于分析应力集中的位置和程度,进而指导设计和加强工艺。