VSP(垂直地震剖面测井技术)
- 格式:pdf
- 大小:7.32 MB
- 文档页数:119
垂直地震剖面VSP2010-10-12 11:26VSP(V erticalSeismicProfiling)即垂直地震剖面,是一种地震观测方法。
它与通常地面观测的地震剖面相对应。
垂直地震剖面方法是在地表附近的一些点上激发地震波,在沿井孔不同深度布置的一些多级多分量的检波点上进行观测。
在垂直地震剖面中,因为检波器通过井置于地层内部,所以不仅能接收到自下而上传播的上行纵波和上行转换波,也能接收到自上而下传播的下行纵波及下行转换波,甚至能接收到横波。
这是垂直地震剖面与地面地震剖面相比最重要的一个特点。
这样特殊的观测方式,较地面地震而言,VSP具有以下优势:1)地震波单程衰减,地震信号频率较高;2)检波器深度定位,提高了速度分析精度;3)检波器离目的层更近,保证了振幅信息畸变小;4)三分量检波器采集,能得到PP、PSV波成像数据体;5)可以估算各向异性参数。
VSP的观测方式目前主要有零井源距(零偏)、非零井源距(非零偏)、W ALKAW AY、3D-VSP等,呈现点——线——体的发展趋势。
零井源距VSP的主要作用有:求取精确的地层平均速度、层速度等速度资料;以VSP 资料为标尺,综合测井、钻井、录井和地面地震资料,在过本井地震剖面上,准确标定各地震反射层的地质层位;钻井地层预测;识别多次波。
非零井源距VSP及3D-VSP的主要作用有:落实井旁构造细节;利用纵波、转换波VSP-CDP成像剖面对储层进行综合研究;分析研究井旁裂缝发育情况及地震属性分析;通过分析研究VSP资料,对大炮资料的处理、解释起到辅助作用。
再者开发地震可以辅助作小层对比,尤其是油水界面出现矛盾、歼灭等地质现象出现时。
其三、开发地震可以辅助开发井位置的论证,主要结合构造,储层因素。
避免油藏专业依赖地质模型,规则化定井的问题。
3C-VSP 即三分量垂直地震剖面VSP技术因为其观测方式的不同又分为零偏(zero-VSP)、非零偏(offset-VSP)、多方位(multi-azimuthalVSP)、多偏移距(multi-offsetVSP)、walkaroundVSP、3DVSP等[1]。
VSP测井技术的研究摘要:现如今大部分油气田已进入开发的中晚期,油气勘探开发面临的地质问题越来越复杂,勘探发现难度也越来越大,如何提高开采率是我们不断探讨的课题,VSP技术提供了地下地层结构同地面测量参数之间最直接的对应关系,可以为地面资料处理、解释提供精确的时深转换及速度模型,还可以利用VSP资料研究岩性和储层物性。
通过VSP技术为解决这些问题提供可靠的参考资料,同时为下一步的勘探工作打下坚实的基础。
关键词:油气勘探VSP技术采集处理一、前言在油气勘探新区寻找资源和对老油田进行深入解剖,离不开一项重要技术,那就是VSP技术。
VSP测井技术(vetical seismic profile)就是垂直地震剖面,即把震源放在井中,检波器放地面,或者把震源放地面,接收器放井中进行的地球物理勘探技术。
在垂直地震剖面中,因为检波器置于地层内部,所以不仅能接收到自下而上传播的上行纵波和上行转换波,也能接收到自上而下传播的下行纵波及下行转换波,甚至能接收到横波。
这是垂直地震剖面与地面地震剖面相比最重要的一个特点。
VSP测井技术是近几年发展比较迅速的一门学科,在提取地层地质参数、地层速度、地震子波等地震参数方面很有作用,具有精度高的优点。
目前大部分油气田已进入开发的中晚期,以地面勘探为主来发现油气田的市场越来越小,而井中地震在油藏精细刻画和剩余油开发中有独特优势。
油气勘探开发面临的地质问题越来越复杂,勘探发现难度也越来越大,新增储量品质在不断降低,储量动用率也在降低。
油气藏地质成果的精度已成为制约油气生产的最主要因素。
VSP 测井技术是实现老油田综合治理、深度挖潜和提高油气产量、支持油气勘探与生产获得最佳经济效益的有效途径。
二、VSP技术的概述VSP就是在地面激发地震信号在井中不同深度上用检波器接收并记录下地震信号的技术。
进行VSP观测,要有以下基本条件:(1)井孔;(2)震源;(3)井下检波器;(4)记录仪器系统。
VSP技术的基本方法原理和应用VSP技术的基本方法原理和应用垂直地震剖面法(VSP方法)是一种井中地震观测技术,即激发震源位于地表,在井中不同深度进行观测,研究井附近地质剖面的垂直变化。
这种方法是在地震测井的基础上发展起来的,它使测井与地震结合进行地质解释更加有据可循。
垂直地震剖面是相对于地面地震剖面而言的,其实质是在井中观测地震波场,将井下检波器置于井中不同深度来记录地面震源所产生的地震信号。
在地表设置震源激发地震波,在井内安置检波器接收地震波,即在垂直方向观测一维人工场,然后对所观测得到的资料经过校正、叠加、滤波等处理,得到垂直地震剖面,如图所示。
一.VSP中波的主要类型1.VSP中的主要波动从波的类型来分:(1)直达初至波(2)一次反射波:反射纵波和转换波(当震源有偏移距)(3)多次反射波从波传播到接收点的方向来分:(1)下行波:来自接收点上方的下行波(直达波和下行多次波)(2)上行波:来自接收点下方的上行波(一次反射波和上行多次波)2.VSP中干扰波类型(1)套管波:沿套管传播的波(2)电缆波:电缆振动引起检波器振动。
(3)管道波:充满泥浆的井与围岩形成一个明显的波阻抗界面,由震源产生的面波传播到此界面时,好象一个新的震源,产生了沿井轴方向传播的管波,能量强,速度低(1400-1460),稳定。
二.VSP资料采集在VSP数据采集中所用的设备主要包括井口震源、井下检波器、记录仪器、电缆、参考检波器(近场检波器)。
在采集过程中有以下要求:1.对震源要求:1)震源能激发高宽频信号,提高分辨率;2)能量强,干扰小,多在低速层以下激发,采取多次重复激发方式,以增强能量。
3)要求震源子波一致,一口井观测点上百,每个点又必须重复激发,这样一口井都要激发很多次,所以要求每次激发的子波要一致。
4)相邻道震源的标识误差应小于1ms,以保证有较高的精度。
2.偏移距:小(偏移距大小与界面成象范围有关)3.参考检波器(近场检波器):近场检波器埋于地下监视震源子波,要求它尽可能与井中检波器的性能相同,它可以为子波处理提供依据。
俄罗斯垂直地震剖面(VSP)测井仪АМЦ-ВСП-3-48 (MSAT-3-48)俄罗斯垂直地震剖面(VSP)测井仪,原名叫三维矿井地震波探矿模数数控仪АМЦ-ВСП-3-48。
从1983年开始该设备已生产了几个型号,当时,在其总设计思路不改变的前提下,经过了7次改型。
在俄罗斯及其邻国的主要石油天然气产地地质物理部门中有30多套这种仪器在使用。
基于这种原因,将АМЦ-ВСП型仪器定为工业标准。
两套8模量АМЦ-ВСП型仪器,以下简称MSANT(Modular Seismic Array Tool),于1997年起Schlumberger公司开始使用,已有两套设备(设备名缩写为MSAT)被斯伦贝谢公司购买使用。
这影响了ВСП仪器的改进以及在国外使用仪器的改进。
该设备受到CONOCO和EXXON公司的高度评价。
АМЦ-ВСП仪器的基本思路是应用了定中心差多路传输模量图,它是由测试时间与数据向地面记录器传输时间分离的多模数矿井探测器获取的。
在数据传输之前,在每一个接收模数内部都进行数据缓冲。
地面设备与矿井模数之间的信息转换是通过成组和单独的选项以“问—答”的形式进行的。
该设备可对每个测量点的地震接收器指标进行标准化,这使得可以进行精确地三分量测量,并可使用高精确极化多波方法处理数据。
可进行0.125毫秒数字化步长的精确测量,用于井间地震X线成像,用于解决工程地质问题,以及用于研究小振幅煤矿构造地质学。
工艺软件包还包括一个专门的程序,用于进行微地震,用于选择一个合理的地震激发深度,以获得高质量的垂直地震数据。
1、仪器简介仪器的地面部分包括小而易搬动的模块,模块包括矿井仪器电源的程控模块、笔记本电脑NOTEBOOK和接口组,可以对套管井或裸眼井进行高灵敏三分量地震测量。
测量设备包括:数字式多短节地震井下探测器,该探测器由三个相同的接收短节、转发器及伽马短节组成,接收短节之间使用跨接电缆联接。
地面设备,包括一台笔记本电脑、程控电源及接口模块,接口模块与井下探测器进行数据遥传、与地震激发同步系统联接,并记录信号。
VSP技术的基本方法原理和应用VSP(Vertical Seismic Profiling)技术是一种利用地震波在垂直方向传播的方法,用于获取地下构造和地质信息。
它在石油勘探、地震监测等领域具有广泛的应用价值。
本文将探讨VSP技术的基本方法原理以及其在相关领域的应用。
一、VSP技术的基本方法原理VSP技术主要基于地震波在地下传播的原理,通过在井中布置地震探测器(geophone)和地震源,记录地震波在垂直方向上的传播。
具体实施VSP技术有以下几个步骤:1. 井中布置地震探测器:在油井或水井等井中布置一系列的地震探测器,通常称为geophone。
这些地震探测器可以记录地震波在地下传播时的振动信号。
2. 地震源的布置:在地下布置一个或多个地震源,用于产生地震波。
地震源可以是爆炸源或震源车,通过这些地震源产生的地震波被地下的岩石或地层反射、折射、散射等,然后传播至地震探测器。
3. 记录地震波信号:当地震波经过地震探测器时,地震探测器会记录地震波的振动信号。
这些振动信号可以被送回地面进行数据处理和分析。
4. 数据处理和解释:通过对记录下来的地震波信号进行处理和解释,可以获得地下构造、地层特征等相关信息。
根据地震波在不同介质中传播的速度和方向变化,可以推断出地层的性质和分布情况。
二、VSP技术的应用VSP技术在石油勘探和地震监测等领域具有广泛的应用。
以下是VSP技术在各个领域的应用示例:1. 石油勘探:VSP技术可用于地下油气储层的定位和描述。
通过测量地震波在垂直方向的传播情况,可以精确确定石油储层的深度、厚度和空间分布,提供有关储层性质和石油资源量的重要信息。
2. 水资源勘测:VSP技术可用于水资源的勘测和开发。
通过VSP技术获取的地下地质信息,可以确定水源的位置、水层的性质和厚度等关键参数,为水资源的合理利用和管理提供科学依据。
3. 地震监测:VSP技术在地震监测中的应用也十分重要。
通过记录地震波在垂直方向上传播的振动信号,可以获取地下地质构造、板块边界、断层等信息,对地震活动的规律和趋势进行研究和预测。
第五节垂直地震剖面法多年以来,地震勘探工作一直是在地面布置测线,设置排列,这种方法称为水平地震勘探方法。
所得剖面是常规的地震剖面。
近些年来,出现了在井中与地面结合起来设置观测系统的地震勘探方法。
该方法在地表附近激发,在井中不同深度布置一些检波器进行观测。
即:检波器放在井中,测线沿井孔垂向布置,所以这种方法称为垂直地震剖面法,简称为VSP(Vertical Seismic Profiling)。
当前VSP法大多采用在地面设置震源来激发地震波,而在井中安置测井检波器的观测方法。
垂直地震剖面法有一些明显的特点1. 接收点分布在介质内部。
因VSP法的测井检波器是被安置在井中,故VSP的接收点是分布在被测介质内部的,因此,它可用接收点的垂直方向分布形式来研究地质剖面的垂向变化,而水平地震观测则是以接收点在地表的水平方向分布形式来观测和研究地下地质剖面的垂向变化的,所以,前者能更明显、更直接地反映波的运动学和动力学特征。
可记录被研究对象的“单一”地震波由于VSP的测井检波器置于井中,故可将其放置在被测地层界面之上、附近或其中间,因此检波器可直接记录由震源产生而传播到所研究对象的“单一”地震波。
而常规勘探由于检波器置于地表,故只能间接接收由震源产生而又返回地表的双程地震波。
干扰因素少VSP在井中观测可以避免或减少地面以上的自然干扰;而水平地震测量则所受干扰因素较多。
所以,前者是易于波的记录和识别。
可记录上行波和下行波VSP在井中观测,即可记录到来自观测点下方的上行波(如反射波),又可以记录到来自观测点上方的下行波(直达波),而水平地震测量只能记录到上行波,是无法记录到下行波的,因此在垂直地震剖面上,波的信息是很丰实的。
VSP由于具有这些特点,所以得到日益广泛的应用。
目前,垂直地震剖面除了用于改善地面记录剖面的解释外,还可用于测定平均速度、反褶积因子、反射系数、衰减系数等物理参数,还可以识别多次波、改善信噪比、提高地震分辨率,从而用于提取岩性信息和研究井孔周围细微的地质结构。
VSP技术综述1前言垂直地震剖面技术(简称VSP技术)是一种垂直地震剖面是一种地面激发、井中接收的地震观测技术。
与地面地震相比, VSP技术中,地震波少经过一次地表低速带,其得到的地震资料的信噪比要好, 分辨率高, 波的运动学和动力学特征更加明显。
本文综合了一部分前人的研究成果,简要介绍了vsp技术的原理、采集和处理等方面的内容,并阐述了VSP的一些优缺点。
1.1研究目的及意义常规地震勘探是在地面激发地震波、地面布置检波器接收的一种勘探手段,这种勘探手段所得的剖面是常规地震剖面。
随着油田勘探开发难度的增大,常规勘探手段所得到的地震资料精度已经无法满足勘探的需要。
因此,出现了在地面激发、井中接收,利用直达波和反射波研究井旁构造和岩性的地震勘探方法。
这种方法就是垂直地震剖面法,简称为VSP(Vertical Seismic Profiling)方法。
VSP技术是一种检波器沿井孔放置,在地层内部接收地震波的方法。
与地面地震相比,VSP资料具有信噪比高、分辨率高、波的运动学和动力学特征明显等优点。
由于VSP观测系统中接收到的地震记录只穿过一次低降速带,地震波能量特别是高频成分相对于地面地震损失减少,具有更高的分辨率;VSP记录中既包含上行波,又包含下行波,波场信息丰富;VSP技术提供了地下地层结构同地面测量参数之间最直接的对应关系,可以为地面地震资料处理解释提供精确的时深转换及速度模型,可以可靠地识别地震反射层的地质层位,改善地面地震资料的解释效果,甚至可以利用VSP资料直接研究岩性和储层物性。
所以,VSP技术是一种很有前途的地震观测技术,研究VSP技术的理论及应用也有很重要的实际意义[3]。
页脚内容11.2国内外研究及应用现状40 年代,一些前苏联科学家研制了体系完全的VSP野外采集系统及其相应的处理、解释理论,这使VSP 技术发展成为了一套完整的、独立的、新颖的观测体系。
在1973 年,加尔彼林院士出版了专著《垂直地震剖面》,这本书对前苏联十多年的研究工作做了很好的总结,为VSP 技术的发展奠定了坚实的基础[3]。