一笔画问题-三年级-奥数
- 格式:ppt
- 大小:322.50 KB
- 文档页数:9
一笔画【知识要点】1概念:一笔画是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。
2•分类:图中的点可分两大类:(1)双数点:从这点出发的线的数目是双数的,叫双数点。
(2)单数点:从这点出发的线的数目是单数的,叫单数点。
3•规律:一个图形能否一笔画成,关键在于图中单数点的多少。
(1凡是图形中没有单数点的一定可以一笔画成。
(2)凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。
(3 )凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。
【题目】1 判断下面图形中哪些点是单数点哪些点是双数点。
甲田木全4下面图形能不能一笔画成?这什么?F 列图形中各有几个单数点?能一笔画成吗?判断下面图形能不能一笔画成?如果能,应该怎样画?6 将下图加上最少的线改成一笔画的图形。
7.将下图去掉最少的线改成一笔画图形。
8•下图中的线段代表小路,请小朋友想一想,能够不重复地爬遍小路的甲蚂蚁还是乙蚂蚁? 该怎么爬?9.为迎接2008年奥运会在北京召开,你能一笔画出奥运会的五环图案吗?F 图是一个公园的平面图,应怎样走才能使游客走通每条路而不重复,设计一条最佳路线。
方?10. 、A如图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进出口应设在什么地 DG11 一个公园的平面图如下, 请你设计好入口、出口,并给出一条浏览路线, 要求走遍每一条路且不重复。
16. 一个邮递员投递信件要走的街道如图,为节约时间,他想自己设计一条线路,可以不重复的走遍每 条街道,你能帮帮他吗?17. 一只蚂蚁要想不重复的爬遍每一条线路,应从哪里出发,到哪里结束?18 .你能用一笔画成 4条线段把下图的9个点都连起来吗?12.如图, 重复。
是一个公园的平面图,请你设计好入口、出口,并给出一种游 B求走遍每一条路且不 B13.如图, 是一个名画展厅的平面图,要使参观者不重复地走遍每一条画廊, 问:出口、入口应设在哪里?14.黑色的鱼与白色的鱼所能游动的河道如下图所示。
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
⼀笔画:
在六⾯体的顶点B和E处各有⼀只蚂蚁(见下图),它们⽐赛看谁能爬过所有的棱线,最终到达终点D。
已知它们的爬速相同,哪只蚂蚁能获胜?
解:利⽤⼀笔画的知识,能⾮常巧妙地解答这道题。
这道题只要求爬过所有的棱,没要求不能重复。
可是两只蚂蚁爬速相同,如果⼀只不重复地爬遍所有的棱,⽽另⼀只必须重复爬某些棱,那么前⼀只蚂蚁爬的路程短,⾃然先到达D点,因⽽获胜。
问题变为从B到D与从E到D哪个是⼀笔画问题。
图中只有E,D两个奇点,所以从E到D可以⼀笔画出,⽽从B到D却不能,因此E点的蚂蚁获胜。
一笔画【知识要点】1.概念:一笔画是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。
2.分类:图中的点可分两大类:(1)双数点:从这点出发的线的数目是双数的,叫双数点。
(2)单数点:从这点出发的线的数目是单数的,叫单数点。
3.规律:一个图形能否一笔画成,关键在于图中单数点的多少。
(1)凡是图形中没有单数点的一定可以一笔画成。
(2)凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。
(3)凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。
【题目】1 判断下面图形中哪些点是单数点哪些点是双数点。
2 下列图形中各有几个单数点?能一笔画成吗?3 判断下面图形能不能一笔画成?如果能,应该怎样画?A4下面图形能不能一笔画成?这什么?5 如图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进出口应设在什么地方?6 将下图加上最少的线改成一笔画的图形。
7.将下图去掉最少的线改成一笔画图形。
8.下图中的线段代表小路,请小朋友想一想,能够不重复地爬遍小路的甲蚂蚁还是乙蚂蚁?该怎么爬?9.为迎接2008年奥运会在北京召开,你能一笔画出奥运会的五环图案吗?10.下图是一个公园的平面图,应怎样走才能使游客走通每条路而不重复,设计一条最佳路线。
11 一个公园的平面图如下,请你设计好入口、出口,并给出一条浏览路线,要求走遍每一条路且不重复。
12.如图,是一个公园的平面图,请你设计好入口、出口,并给出一种游玩路线,要求走遍每一条路且不重复。
13.如图,是一个名画展厅的平面图,要使参观者不重复地走遍每一条画廊,问:出口、入口应设在哪里?14.黑色的鱼与白色的鱼所能游动的河道如下图所示。
黑色的鱼在A点位置,白色的鱼在B点位置。
哪条鱼能不重复地游遍所有的河道?15.能用一根铁丝弯成下面的图形吗?16.一个邮递员投递信件要走的街道如图,为节约时间,他想自己设计一条线路,可以不重复的走遍每一条街道,你能帮帮他吗?17.一只蚂蚁要想不重复的爬遍每一条线路,应从哪里出发,到哪里结束?18.你能用一笔画成4条线段把下图的9个点都连起来吗?19.下图能否一笔画成?如果能,应怎样画?20.如图,在一个六面体的顶点A和B处各有一只蜗牛,它们比赛看谁能不重复地爬遍每一棱线到达C点。
第十七讲 一笔画问题小朋友们,你们能把下面的图形一笔画出来吗?知识点:1.一笔画的概念:如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。
那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。
2.一笔画的规律3.奇点和偶点例【1】 下面这些图形,哪个能一笔画?哪个不能一笔画?(1)(2) (3) (4)分析 图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束。
经过尝试后,可以发现图(2)不能一笔画出。
图(3)不是连通的,显然也不能一笔画出。
图(4)也可以一笔画出,且从任何一点出发都可以。
通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同。
由一点发出有偶数条线,那么这个点叫做偶点。
相应的,由一点出发有奇数条数,则这个点叫做奇点。
再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。
而图(2)有4个奇点,2个偶点,不能一笔画成。
这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。
例【2】 下面各图能否一笔画成?(1) (2) (3)A EC D B CD A ABCD BF分析 图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点。
关于图(2),经过反复试验,也可找到画法:由 A B C AD C 。
图中B 、D 为偶点,A 、C为奇点,即图中有两个奇点,两个偶点。
要想一笔画,需从奇点出发,回到奇点。
经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点。
解 图(1)、(2)可以一笔画。
这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系。
如果图形只有偶点,可以以任意一点为起点,一笔画出。
如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。
如果图形的奇点个数超过两个,则图形不能一笔画出。
例【3】 下面的图形,哪些能一笔画出?哪些不能一笔画出?分析 图(1)有两个奇点,两个偶点,可以一笔画,须由A 开始或由B 开始到B 结束或到A 结束。
小学三年级奥数专题(二十八)一笔画(1)关键词:欧拉笔画复地斯堡画成奥数图形年级这个小学摘要:《小学三年级奥数专题(二十八)一笔画(1)》...现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上...如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。
显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。
哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。
所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功。
后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。
如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。
欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.例题精讲知识点拨4-1-5.奇妙的一笔画【例 3】 判断下列图a 、图b 、图c 能否一笔画.图aNML KF DECBA 图bODCBA图cGFEDCBA【例 4】 下面图形能不能一笔画成?若果能,应该怎样画?(1)(2)(3)【例 5】 下面的图形,哪些能一笔画出?哪些不能一笔画出?【例 6】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A【例 7】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?乙甲【例 8】 能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【例 9】 下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?IHGFEDC BA【例 10】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例 11】 观察下面的图,看各至少用几笔画成?(1)A ED HCF GB (2)(3)【例 12】 在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A 点到B 点,不许走重复路,他最多能走多少米?【例 13】 有16个点排成的44 方阵。