正弦定理典型例题与知识点
- 格式:doc
- 大小:263.50 KB
- 文档页数:6
正弦定理【基础知识点】1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/22.三角形中的边角不等关系: A>B ⇔a>b,a+b>c,a-b<c ;3.【正弦定理】:A a sin =B b sin =Cc sin =2R (外接圆直径); 正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sin C .asinB=bsinA bsinC=csinB asinC=csinA sinA=a/2R sinB=b/2R sinC=c/2R4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角.②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.典型例题:例1、在ABC ∆中,ο45,1,2===A b a 求B 的大小。
例2、在△ABC 中,已知3=a ,2=b ,B=45 求A 、C 及c .例3、在△ABC 中,a=15,b=10,A=ο60,则cosB 的值例4、在△ABC 中,ο30=B ,32=AB ,AC=2,求△ABC 的面积。
例5、在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.例6、在△ABC 中,)sin()()sin()(2222B A b a B A b a +-=-+,试判断△ABC 的形状例7、在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为?例8、在△ABC 中,tan A =12,cos B =31010,若最长边为1,则最短边的长例9、在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3. (1)求△ABC 的面积;例10、设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a cos C +12c =b . (1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.例11、在△ABC 中,sin(C-A)=1,sinB=31.(Ⅰ)求sinA 的值;(Ⅱ)设AC= 6 求△ABC 的面积.。
「正弦定理」用正弦定理解三角形常见的四个题型以及易错点分析
【方法总结】利用正弦定理解决“已知三角形的任意两边与其中一边的对角求其他边与角”的问题时,可能出现一解、两解或无解的情况,应结合“三角形大边对大角”来判断解的情况,做到正确取舍.
【变式2】满足a=4,b=3和A=45°的△ABC的个数为( ).
A.0个B.1个
C.2个D.无数多个
题型三利用正弦定理判断三角形的形状
【方法总结】依据条件中的边角关系判断三角形的形状时,主要有以下两种途径:
(1)利用正弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;
(2)利用正弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论.在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.题型四利用正弦定理求最值或范围
【题后反思】在三角形中解决三角函数的取值范围或最
值问题的方法:
(1)利用正弦定理理清三角形中基本量间的关系或求出某些量.
(2)将要求最值或取值范围的量表示成某一变量的函数(三角函数),从而转化为函数的值域或最值的问题.【易错点分析】忽视等价转化而致误
当两个角的某三角函数值相等时,我们并不能肯定这两个角一定相等,一定要根据两个角的取值范围结合诱导公式写出所有的情况.
灵活运用诱导公式sin(2kπ+α)=sin α(k∈Z),sin(π-α)=sin α是解三角形的关键,当出现sin A=sin B时,一是易忽略A、B的范围;二是易忽略A+B=π时,sin A=sin B同样成立.。
正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
6.4.3.2正弦定理一、概念1.正弦定理:设ABC ∆的三个内角C B A ,,所对的边长分别为c b a ,,,外接圆的半径为R ,则R CcB b A a 2sin sin sin === 证明:2.正弦定理的变形(1)A R a sin 2=;B R b sin 2=;C R c sin 2= (2)=A sin R a 2;=B sin R b 2;=C sin Rc 2 (3)c b a C B A ::sin :sin :sin =(4)CB A cb a Cc B b A a sin sin sin sin sin sin ++++=== (5)C A c B A b a sin sin sin sin ==;C B c A B a b sin sin sin sin ==;ACa B Cbc sin sin sin sin == 3.三角形的面积公式:设ABC ∆的角C B A ,,所对的边长分别为c b a ,,,则ABC ∆的面积c b a ABC ch bh ah S 212121===∆(其中c b a h h h ,,分别为边c b a ,,上的高)B ca A bcC ab sin 21sin 21sin 21=== C BA cBC A b A C B a sin 2sin sin sin 2sin sin sin 2sin sin 222=== C B A R sin sin sin 22=(其中R 是ABC ∆的外接圆半径)R abc 4= )(21c b a r ++=(其中r 是ABC ∆的内切圆半径) 22)()(21AC AB AC AB ⋅-= ))()((c p b p a p p ---=(海伦公式)(其中p 为半周长2cb a p ++=) 特别地,若设点),(),,(2211y x B y x A ,则122121y x y x S OAB -=∆ 4.三角形解的个数ABC ∆中,已知b a ,和A 时,三角形的解得情况如下:A 为锐角 A 为钝角图形关系式 A b a sin <A b a sin =b a A b <<sinb a ≥b a ≥解的个数 无解一解两解一解一解例1.证明角平分线定理:ABC ∆中,AD 是角内A 或其外角的平分线,则CDBDAC AB =题型一 已知两角和一边,解三角形例2.在ABC ∆中,已知015=A ,045=B ,33+=c ,解这个三角形小结:已知三角形的两角及一边,解三角形的步骤: ①先由内角和定理求出第三个角; ②再用正弦定理另外两边.跟踪训练:在ABC ∆中,已知030=A ,0105=C ,10=a ,解这个三角形题型二 已知两边和其中一边的对角,解三角形 例2.在ABC ∆中,已知030=B ,2=b ,2=c ,解这个三角形小结:(1)已知三角形的两边及一边所对的角,解三角形的步骤: 解法1:①先由正弦定理求另外一边所对的角(注意大边对大角); ②再用内角和定理求第三个角; ③由正弦定理求第三边.解法2:①由已知角的余弦定理得到第三边的方程,解出第三边(注意大角对大边) ②再用余弦定理或正弦定理求出第二个角; ③用内角和定理求第三个角. 跟踪训练:在ABC ∆中,已知3=a ,2=b ,045=B ,解这个三角形题型三 判断三角形解得个数例3.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若3=a ,4=b ,030=A ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练1.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若2=b ,4=c ,060=B ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练2.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若18=a ,20=b ,0150=A ,则此三角形( )A.有一解B.有两解C.无解D.不确定跟踪训练 3.在ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,根据下列条件,判断三角形解得情况,其中正确的有①8=a ,16=b ,030=A ,有一个解; ②18=b ,20=c ,060=B ,有两个解 ③5=a ,2=c ,090=A ,无解; ④30=a ,25=b ,0150=A ,有一个解;题型四 判断三角形的形状例4.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若22tan tan ba B A =,试判断三角形的形状小结:根据已知条件判断三角形形状,通常有两种思路:(1)化边为角:根据正弦定理把已知条件中的边角混合关系化为角的关系,再根据三角恒等变换化简,进而确定三角形的形状(2)化角为边:根据正弦定理和余弦定理把已知条件中的边角混合关系化为边的关系,再根据代数运算化简,进而确定三角形的形状跟踪训练1.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若A a B c C b sin cos cos =+,试判断三角形的形状小结:三角形的射影定理:ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,则B cC b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=注:a c b B c C b 22cos cos -=-,b c a A c C a 22cos cos -=-,cb a A b B a 22cos cos -=-跟踪训练2.ABC ∆中,角C B A ,,所对的边长分别为c b a ,,,若A b a B a c cos )2(cos -=-,试判断三角形的形状总结:三角形中常见的结论:设ABC ∆的角C B A ,,所对的边长分别为c b a ,,,则 (1)三角形的内角和定理:π=++C B A (2)三角形的大边对大角,大角对大边(3)锐角三角形的任何一个内角的正弦都大于其余角的余弦(4)平行四边形的性质:平行四边形的两条对角线的平方和等于四条边的平方和 (5)中线长定理:设ABC ∆的边c b a ,,上的中线分别为CF BE AD ,,,则222)(221a c b AD -+=,222)(221b c a BE -+=,222)(221c b a CF -+= (6)角平分线定理:ABC ∆中,AD 是角A 或其外角的平分线,则CD BDAC AB =(7)(1)=+)sin(B A ,=+)cos(B A ,=+)tan(B A ,=+2sinB A ,=+2cos B A ,=+2tan BA (8)B A B A =⇔-)sin(⇔ABC ∆为等腰三角形 (9)B A B A =⇔=2sin 2sin 或2π=+B A ⇔ABC ∆为等腰或直角三角形(10)B A b a B A >⇔>⇔>sin sin B A cos cos <⇔(11)三角形中的射影定理:B cC b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos +=注:a c b B c C b 22cos cos -=-,b c a A c C a 22cos cos -=-,cb a A b B a 22cos cos -=-(12)ABC Rt ∆的内切圆半径22c b a c b a S r ABC -+=++=∆,旁切圆半径2'c b a r ++=(13)1tan tan >B A ⇔ABC ∆为锐角三角形;1tan tan =B A ⇒ABC ∆为直角三角形; 1tan tan <B A ⇔ABC ∆为锐角三角形;(14)若2sin sin sin 222<++C B A ,则ABC ∆为钝角三角形 若2sin sin sin 222=++C B A ,则ABC ∆为直角三角形 若2sin sin sin 222>++C B A ,则ABC ∆为锐角三角形(15)若c b a ,,成等差数列,则①C B A sin ,sin ,sin 也成等差数列;②30π≤<B(16)若c b a ,,成等比数列,则30π≤<B(17)ABC ∆中的恒等式:①1cos cos cos 2sin 2sin 2sin 4-++==C B A CB A R r ②2cos 2cos 2cos 4sin sin sin cB AC B A =++③2cos 2sin 2sin 4sin sin sin cB AC B A =-+④C B A C B A sin sin sin 42sin 2sin 2sin =++ ⑤1cos cos cos 42cos 2cos 2cos --=++C B A C B A ⑥C B A C B A tan tan tan tan tan tan =++⑦12tan 2tan 2tan 2tan 2tan 2tan=++AC C B B A ⑧2cot 2cot 2cot 2cot 2cot 2cot C B A C B A =++⑨1cot cot cot cot cot cot =++A C C B B A。
1.1.1正弦定理课上讲解:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R其中R 为三角形外接圆半径。
2.正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
3.常用变形: ①π=++C B A②C B A C B A sin )cos(,sin )sin(=+=+ ③C ab S abc sin 21=∆题型一:已知两角和一边(唯一确定)例1. 已知在B b a C A c ABC 和求中,,,30,45,1000===∆.变式练习1:1.已知ΔABC ,已知A=600,B=300,a=3;求边b=():A.3B.2C.3D.2 2.已知ΔABC 已知A=450,B=750,b=8;求边a=()A.8B.4C.43-3D.83-8 3.已知a+b=12,B=450,A=600则a=_____,b=_____题型二:已知两边和其中一边所对的角(两种情况,由y=sin x 的性质决定) 例2.在C A a c B b ABC ,,1,60,30和求中,===∆变式练习1:C B b a A c ABC ,,2,45,60和求中,===∆变式练习2:02,135,3,ABC a A b B ∆===中,求变式练习3: 在ABC ∆中,已知角334,2245===b c B ,,则角A 的值是 A.15 B.75 C.105 D.75或15变式练习4:在ABC ∆中,若14,6760===a b B ,,则A= 。
题型三:外接圆问题 例3. 试推导在三角形中A a sin =B b sin =Ccsin =2R 其中R 是外接圆半径变式练习1:在△ABC 中,k CcB b A a ===sin sin sin ,则k 为( ) A 2R B RC 4RD R 2(R 为△ABC 外接圆半径)变式练习2:在ABC ∆中,5,40,20===c B A oo ,则R 2为 ( )A 、3310 B 、10 C 、25 D 、210变式练习3:在ABC ∆中,=+A Rb B R a cos 2cos 2 ( ) A 、B A sin sin + B 、)sin(B A +C 、)sin(B A -D 、)cos(B A -变式练习4:设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.题型四:比例问题 例4.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.变式练习1:已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。
正弦定理1. 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即公式适用于任意三角形。
2. 正弦定理的变形3. 判断三角形解的问题 “已知a,b 和A,解三角形”①当sin B >1,无解 ②sin B =1,一解 ③sinB <1,两个解(其中B 可能为锐角也可能为钝角,具体是锐角还是钝角还是两个都可以,要根据“大边对大角”及“三角形内角和等于180”来判断)题型一:已知两角及任意一边解三角形1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14变形:题型二:已知两边及一边对角解三角形1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.4 .在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 5.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.6. 判断满足下列条件的三角形个数 (1)b=39,c=54,︒=120C 有________组解(2)a=20,b=11,︒=30B 有________组解(3)b=26,c=15,︒=30C 有________组解(4)a=2,b=6,︒=30A 有________组解7.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.8.在△ABC 中,B=4π,b=2,a=1,则A 等于 .题型三:正弦定理的边角转化1.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定2.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 3.在△ABC 中,如果Cc B b A a tan tan tan ==,那么△ABC 是( ) A.直角三角形 B.等边三角形 C.等腰直角三角形 D.钝角三角形 4. 在△ABC 中,已知b B a 3sin 32=,且cosB=cosC ,试判断△ABC 形状。
正弦定理知识点总结(精华)与试题1.特殊情况:直角三角形中的正弦定理:sinA=sinB= sinC=1 即:c= c= c= ==c a c b A a sin B b sin C c sin A a sin B b sin Cc sin 2.能否推广到斜三角形?证明一(传统证法)在任意斜△ABC 当中:S △ABC =Abc B ac C ab sin 21sin 21sin 21==两边同除以即得:==abc 21A a sin B b sin Ccsin 3.用向量证明:证二:过A 作单位向量垂直于j AC+= 两边同乘以单位向量AC CB AB j •(+)=• 则:•+•=•j AC CB j AB j AC j CB j AB ∴||•||cos90︒+||•||cos(90︒-C)=||•||cos(90︒-A)j AC j CB j AB ∴ ∴=A c C a sin sin =A a sin Ccsin 同理:若过C 作垂直于得:= ∴==j CB C c sin B b sin A a sin B b sin Ccsin 当△ABC 为钝角三角形时,设 ∠A>90︒ 过A 作单位向量垂直于向量j AC 正弦定理:在一个三角形中各边和它所对角的正弦比相等,==A a sinB b sin Ccsin 注意:(1)正弦定理适合于任何三角形。
(2)可以证明===2R (R 为△ABC 外接圆半径)A a sin B b sin Ccsin (3)每个等式可视为一个方程:知三求一Cl l ngt h 5.知识点整理6、应用:例1、已知在Bb a C Ac ABC 和求中,,,30,45,100===∆解:21030sin 45sin 10sin sin ,sin sin 0=⨯==∴=C A c a C c A a 00105)(180=+-=C A B 25654262075sin 2030sin 105sin 10sin sin ,sin sin 00+=+⨯==⨯==∴=C B c b C c B b 又练习:1、在△ABC 中,已知A=450,B=600,a=42,解三角形.2、在△ABC 中,AC=,∠A=45°,∠C=75°,则BC 的长为.33、在△ABC 中,B=45,C=60,c=1,则最短边的边长等于例2.1 在CA a cB b ABC ,,1,60,30和求中,===∆解:21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C cB b 00090,30,,60,==∴<∴=>B C C B CB cb 为锐角, 222=+=∴c b a 例2.2 CB b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=aA c C C c A a 0012060,sin 或=∴<<C c a A c ,1360sin 75sin 6sin sin ,75600+=====∴C B c b B C 时,当1360sin 15sin 6sin sin ,1512000-=====∴C B c b B C 时,当或0060,75,13==+=∴C B b 00120,15,13==-=C B b 注意:三角形的情况:时解和中,已知在A b a ABC ,∆(1)当A 为锐角(2)当A 为直角或钝角练习:1. ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,若120c b B === ,则a 等于( )A B .2C D 2、已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==且75A ∠=o ,则b = ( )A.2 B .4+.4—3、在ABC △中,若1tan 3A =,150C =,1BC =,则AB = . 4、已知△ABC 中,045,a b B ===解三角形例3:在△ABC 中,分别根据下列条件指出解的个数(1)、a=4,b=5,A=300; (2)、a=5,b=4,A=600;(3)、; (3)、0120a b B ===060.a b A ===练习:1.符合下列条件的三角形有且只有一个的是( ) A .a=1,b=2 ,c=3 B .a=1,b= ,∠A=30°2 C .a=1,b=2,∠A=100° D .b=c=1, ∠B=45°1、在△ABC 中,a=5,b=3,C=1200,则sinA:sinB=2、在△ABC 中,acosB=bcosA,则⊿ABC 为( )A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、钝角三角形3、在△ABC 中,若b=2asinB,则A=4、在△ABC 中,若sin cos ,A BB a b=则的值为5、在△ABC 中,a:b:c=1:3:5,2sin sin sin A BC-则的值为6、在△ABC 中,已知sinA:sinB:sinC=4:5:6,且a+b+c=30,则a=7、若三角形的三个内角之比为1:2:3,则该三角形的三边之比为 8、在△ABC 中,0a b c60,sin sin sin A a A B C++=++则等于9.的三内角的对边边长分别为,若,则( )ABC ∆,,A B C ,,a bc ,2a A B ==cos B =10、在△ABC 中,若sinA>sinB,则有( )a<b B a b C a>b D a bA ≥、、、、、的大小关系无法确定。
正弦定理一、考点、热点回顾(一)正弦定理及其变形1. 正弦定理:________=________=________=2R ,其中R 是三角形外接圆的半径. 2. 正弦定理的常用变形(1)a ∶b ∶c =________________;(2)a =__________,b =__________,c =__________; (3)sin A =________,sin B =__________,sin C =________;3. 三角形中边角的不等关系在三角形中,A >B >C ⇔ a >b >c ⇔ sinA >sinB >sinC 。
(二)正弦定理的应用:解三角形 1、 解三角形的概念2、 利用正弦定理解三角形利用正弦定理可解决两类解三角形问题: (1)已知两角及一边解三角形基本思路: 1)由三角形的内角和定理求出第三个角.2)由正弦定理公式的变形,求另外的两条边.(2)已知两边及其中一边的对角解三角形基本思路:1)由正弦定理求出另一已知边所对的角.2)由三角形的内角和定理求出第三个角. 3)由正弦定理公式的变形,求第三条边.(3)解三角形的解的情况在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与射线AB 的公共点(除去顶点A )A 为锐角 A 为钝角或直角 图形关系式 a <b sin A a =b sin A b sin A <a <ba ≥b a >b a ≤b 解的个数无解一解两解一解一解无解(三)三角形的面积公式S △ABC =12ah =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·()()()p p a p b p c ---二、典型例题考点一、正弦定理概念及变形例1、已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.变式训练1、(1)在△ ABC 中,若b =1,c =3,C =2π3,则a = .(2)在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.考点二、已知两角及一边解三角形例2、在△ABC中,已知a=8,B=60°,C=75°,求A,b,c.变式训练2、(1)在△ABC中,若A=60°,B=45°,BC=32,则AC=() A.43B.2 3C. 3D.3 2(2)在△ABC中,A=45°,B=75°,c=2,则此三角形的最短边的长度是。
专题01:正弦定理常见题型题型一:正弦定理及辨析例1:1.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若sin cos A Ba b=,则B =( ) A .34πB .3π C .4π D .6π【答案】C 【解析】 【分析】 由正弦定理结合sin cos A Ba b=求得tan 1B =,即可求出B . 【详解】 由正弦定理可得sin sin cos A B B a b b==,则sin cos B B =,tan 1B =,又()0,B π∈,则4B π=.故选:C. 举一反三1.(多选)在ABC 中,角A ,B ,C 所对的边为a ,b ,c , 则下列说法正确的有( ) A .A :B :C = a :b :c B .sin sin sin sin a b c aA B C A++=++C .若A >B , 则a >bD .πA B C ++=【答案】BCD 【解析】 【分析】结合三角形的性质、正弦定理求得正确答案. 【详解】在三角形中,大角对大边,所以C 选项正确. 三角形的内角和为π,所以D 选项正确.由正弦定理得::sin :sin :sin a b c A B C =,所以A 选项错误. 设sin sin sin a b ck A B C===, 则()sin sin sin sin sin sin sin sin sin sin k A B C a b c a k A B C A B C A++++===++++,B 选项正确.故选:BCD2.在ABC 中,15,10,60a b A ===︒,则sin B =( )ABCD【答案】A 【解析】 【详解】由正弦定理可知:sin sin sin a b B A B =⇒=故选:A题型二:正弦定理解三角形例2:1.(2015·山东·高考真题)在△ABC 中,105A ∠=︒,45C ∠=︒,AB =BC 等于______.【解析】 【分析】由和角正弦公式求sin105︒函数值,再应用正弦定理求BC 即可. 【详解】sin105sin(6045)sin 60cos 45cos 60sin 45︒=︒+︒=︒︒+︒︒=由正弦定理可知,sin sin AB BCC A=,∴sin sin AB A BC C ==2.(2016·江苏·高考真题)在ABC 中,AC=6,4cos .54B C π==,(1)求AB 的长;(2)求()6cos A π-的值.【答案】(1)2【解析】 【详解】试题分析:(1)利用同角三角函数的基本关系求sin B , 再利用正弦定理求AB 的长;(2)利用诱导公式及两角和与差正余弦公式分别求sin ,cos A A ,然后求cos().6A π-试题解析:解(1)因为4cos B=5,0B π<<,所以2243sin 1cos 1(),55B B =-=-= 由正弦定理知sin sin AC AB B C =,所以26sin 25 2.3sin 5AC CAB B⨯⋅===(2)在ABC 中,A B C π++=,所以,于是cos cos()cos()cos cos sin sin ,444A B C B B B πππ=-+=-+=-+又43cos ,sin ,55B B ==故42322cos 55A =-= 因为0A π<<,所以272sin 1cos A A =- 因此23721726cos()cos cos sin sin 6662A A A πππ--=+==举一反三1.(2012·湖南·高考真题(文))在△ABC 中,7,BC=2,B =60°,则BC 边上的高等于 A 3B 33C 36+D 339+【答案】B 【解析】 【详解】 7232127sin 60sin 7A A A =⇒==, 所以321sin sin()sin cos cos sin C A B A B A B =+=+= 则BC 边上的高3213377h C ===B . 2.(2018北京高考)在△ABC 中,a =7,b =8,cos B = –17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【答案】(1) ∠A =π3 (2) AC 33【解析】 【详解】分析:(1)先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠;(2)根据三角形面积公式两种表示形式列方程11sin 22ab C hb =,再利用诱导公式以及两角和正弦公式求sin C ,解得AC 边上的高.详解:解:(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos 7B -=.由正弦定理得sin sin a b A B = ⇒ 7sin A =8437,∴sin A =32.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =311432727⎛⎫⨯-+⨯ ⎪⎝⎭=3314.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337142⨯=,∴AC 边上的高为332.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 题型三:正弦定理判定三角形解得个数例3:1.设在ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,若满足3,,6a b m B π===的ABC 不唯一,则m 的取值范围为( ) A .33⎝ B .3)C .132⎛ ⎝⎭D .1,12⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据正弦定理计算可得; 【详解】解:由正弦定理sin sin a b A B =12m=,所以m =, 因为ABC 不唯一,即ABC 有两解,所以566A ππ<<且2A π≠,即1sin 12A <<,所以12sin 2A <<,所以11122sin A <<m <<故选:A2.在ABC 中,若3b =,2c =,45B =,则此三角形解的情况为( ) A .无解 B .两解C .一解D .解的个数不能确定【答案】C 【解析】 【分析】求出sin C 的值,结合大边对大角定理可得出结论. 【详解】由正弦定理可得sin sin b c B C=可得2sin 2sin sin 33c B C B b ===<, 因为c b <,则C B <,故C 为锐角,故满足条件的ABC 只有一个. 故选:C. 举一反三1.在△ABC 中,3A π∠=,b =6,下面使得三角形有两组解的a 的值可以为( )A .4 B.C.D.【答案】C 【解析】 【分析】由正弦定理即可求解. 【详解】解:由题意,根据正弦定理有sin sin a bA B=,所以sin sin b A B a =,要使三角形有两组解,则sin sin 1b AB a=<,且a b <,即sin b A a b <<,所以6a <,所以a 的值可以为 故选:C .2.(多选)ABC 中,角A ,B ,C 所对的三边分别是a ,b ,c ,以下条件中,使得ABC 无解的是( )A .120a b A ===;B .45a b A ===;C .60;b A B ===D .,sin ,60c A B c ===, 【答案】ABD 【解析】 【分析】根据正余弦定理及三角形的性质分析解即可. 【详解】对于A ,大边对大角,而a <b ,无解; 对于B ,由正弦定理得sinB 1>,无解;对于C ,由cos A 可得sin A =a ,再由正弦定理或余弦定理可求出c ,有解;对于D ,由=c 和a ,通过余弦定理可得cos 0C =,与60C =矛盾,无解. 故选:ABD题型四:正弦定理求外接圆的半径例4:1.(2011·全国·高考真题(理))设向量,,a b c 满足2a b ==,2a b ⋅=-,,60a c b c --=︒,则c 的最大值等于A .4B .2CD .1【答案】A 【解析】 【详解】因为2a b ==,2a b ⋅=-,所以1cos ,2a b a b a b⋅==-, ,120a b =︒.如图所以,设,,OA a OB b OC c ===,则CA a c =-, C B b c =-,120AOB ∠=︒. 所以60ACB ∠=︒,所以180AOB ACB ∠+∠=︒,所以,,,A O B C 四点共圆. 不妨设为圆M ,因为AB b a =-,所以222212AB a a b b =-+=. 所以23AB =由正弦定理可得AOB ∆的外接圆即圆M 的直径为2R 4AB sin AOB==∠.所以当OC 为圆M 的直径时,c 取得最大值4. 故选A.点睛:平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决. 2.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________ 211213【解析】 【分析】运用正弦定理及余弦定理可得解. 【详解】 根据余弦定理:22212cos 4922372BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=, 得7BC =由正弦定理△ABC sin3=故答案为 举一反三1.(2022·湖北·鄂南高中模拟预测)ABC 的内角A B C 、、的对边分别为a b c 、、,且1,cos sin a b C c A ==-,则ABC 的外接圆半径为__________.【解析】 【分析】利用正弦定理可得sin sin cos sin sin B A C C A =-,进而可得34A π=,即得.【详解】1a =,则cos sin b a C c A =-,由正弦定理,得sin sin cos sin sin B A C C A =- 故()sin sin cos sin sin A C A C C A +=-,展开化简得:cos sin sin sin A C C A =-,()0,C π∈,sin 0C ≠, 故cos sin A A =-,()0,A π∈, 即34A π=,∴外接圆直径2R sin aA==,.2.(2022·河南·长葛市第一高级中学模拟预测(文))在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边若2a =,3b =,sin 2sin cos A B C =,则ABC 外接圆的半径为_____________.【解析】 【分析】利用正弦定理角化边求出cos C ,再根据余弦定理求出c ,进而求出外接圆半径.由正弦定理得,2cos a b C =,1cos 3C =, 由余弦定理得222222231cos 22233a b c c C ab +-+-===⨯⨯,解得3c =.又sin C =,所以外接圆半径12sin c R C =⋅=故答案为:8. 题型五:正弦定理边角互化例5:1.(2019·全国·高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π. 【解析】 【分析】先根据正弦定理把边化为角,结合角的范围可得. 【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.2.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+ 【答案】(1)5π8; (2)证明见解析. 【解析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =. (2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得:2222a b c =+,故原等式成立. 举一反三1.(2014·江西·高考真题(文))在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则2222sin sin sin B A A -的值为( )A .19B .13C .1D .72【答案】D 【解析】 【分析】根据正弦定理边化角求解即可. 【详解】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=, 故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D【点睛】本题主要考查了正弦定理边化角的问题,属于基础题.2.(2022·安徽·一模(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( )A .1B .32C .43D .54 【答案】C【解析】【分析】 先由正弦定理化简得111tan tan C B +=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B +=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数,故1≥tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立, 此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B C A B C B C B C B C +⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C -取最小值,故111tan tan B C-⋅的最大值为43, 即当tan tan 2B C ==时,tan A 的最大值为43. 故选:C .。
1.1.1正弦定理课上讲解:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R其中R 为三角形外接圆半径。
2.正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
3.常用变形: ①π=++C B A②C B A C B A sin )cos(,sin )sin(=+=+ ③C ab S abc sin 21=∆题型一:已知两角和一边(唯一确定)例1. 已知在B b a C A c ABC 和求中,,,30,45,1000===∆.变式练习1:1.已知ΔABC ,已知A=600,B=300,a=3;求边b=():A.3B.2C.3D.2 2.已知ΔABC 已知A=450,B=750,b=8;求边a=()A.8B.4C.43-3D.83-8 3.已知a+b=12,B=450,A=600则a=_____,b=_____题型二:已知两边和其中一边所对的角(两种情况,由y=sin x 的性质决定) 例2.在C A a c B b ABC ,,1,60,30和求中,===∆变式练习1:C B b a A c ABC ,,2,45,60和求中,===∆变式练习2:0135,ABC a A b B ∆===中,求变式练习3: 在ABC ∆中,已知角334,2245===b c B ,,则角A 的值是 A.15 B.75 C.105 D.75或15变式练习4:在ABC ∆中,若14,6760===a b B ,,则A= 。
题型三:外接圆问题 例3. 试推导在三角形中A a sin =B b sin =Ccsin =2R 其中R 是外接圆半径变式练习1:在△ABC 中,kCcB b A a ===sin sin sin ,则k 为( A 2R B RC 4RD R 2(R 为△ABC 外接圆半径)变式练习2:在ABC ∆中,5,40,20===c B A oo ,则R 2为 ( )A 、3310 B 、10 C 、25 D 、210变式练习3:在ABC ∆中,=+A Rb B R a cos 2cos 2 ( ) A 、B A sin sin + B 、)sin(B A +C 、)sin(B A -D 、)cos(B A -变式练习4:设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.题型四:比例问题 例4.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.变式练习1:已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。
《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =,30C =,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =,∴sin 10sin 45sin sin 30c A a C ⨯=== ∴ 180()105B A C =-+=,又sin sin b c B C=,∴sin 10sin10520sin 7520sin sin 304c B b C ⨯====⨯= 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。
【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=,根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==.例2.在60,1ABC b B c ∆===中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin2c B C b ===, (方法一)∵0180C <<, ∴30C =或150C =,当150C =时,210180B C +=>,(舍去);当30C =时,90A =,∴2a =.(方法二)∵b c >,60B =, ∴C B <,∴60C <即C 为锐角, ∴30C =,90A =∴2a ==.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。
《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。
【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。
正弦定理经典题型总结知识总结一、正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即= 丄=—=2/?,实中尺是三角形外按恻半径. sin A別口占SJD L公式适用于任意三角形。
二、正弦定理的变形(】} {tifi/jfB ■ a =2/?sin A.h =2/?^Lnfi,c =22fsinC;sin A= —,sin S =—,sin C =—; 化殆为边:2尺2R 2R................................................. —=-^—sinJ +sin B tsinC sin A sin B sinC三、三角形面积公式111 在任意斜厶ABC 当中S\ AB(=-absi nC -acs in B 一bcsi nA2 2 2四、正弦定理解三角形1)已知两角和任意一边,求其它两边和一角;2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角例如:已知a, b和A,用正弦定理求B时的各种情况:(多解情况)①若A为锐角时:a bsi nA 无解a bsinA —解(直角)bsinA a b 二解(一锐,一钝) a b 一解(锐角)已知边a,b和A变形:(2016 年全国】1)少別?的Wflj 的对®cosJ = -t cosC = —5 B题型二:已知两边及一边对角解三角形1.在△ABC 中,角A、B、C 的对边分别为a、b、c, A = 60 ° ,a = 4 J3, b = 4" 2,则角B为()A. 45 ° 或135 °B. 135 °C. 45 ° D .以上答案都不对2 . △ABC的内角A、B、C的对边分别为a、b、c.若c= 2, b = 6, B= 120。
,贝临等于()A/ 6 B. 2 C.“ 3 D.“ 2a<CH=bsinA无解仅有一个解CH=bsinA<a<b有两个解a b仅有一个解a b②若A为直角或钝角时:a b无解一解(锐角)题型一:已知两角及任意一边解三角形1 .在△ABC 中,A.『62 .在△ABC 中,A = 45 °,B= 60 °B"已知a = 8, B = 60,a= 2,则b等于(C.捋,C = 75。
解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。
2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:α北东h i l=θ(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==75A ∠=,则b =α 北东南西 B目标lh( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos 2B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 3b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC·sinC 2752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。
正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。
正弦定理1. 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即公式适用于任意三角形。
2. 正弦定理的变形3. 判断三角形解的问题 “已知a,b 和A,解三角形”①当sin B >1,无解 ②sin B =1,一解 ③sinB <1,两个解(其中B 可能为锐角也可能为钝角,具体是锐角还是钝角还是两个都可以,要根据“大边对大角”及“三角形内角和等于180”来判断)题型一:已知两角及任意一边解三角形1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14变形:题型二:已知两边及一边对角解三角形1.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.4 .在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 5.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.6. 判断满足下列条件的三角形个数 (1)b=39,c=54,︒=120C 有________组解(2)a=20,b=11,︒=30B 有________组解(3)b=26,c=15,︒=30C 有________组解(4)a=2,b=6,︒=30A 有________组解7.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.8.在△ABC 中,B=4π,b=2,a=1,则A 等于 .题型三:正弦定理的边角转化1.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定2.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 3.在△ABC 中,如果Cc B b A a tan tan tan ==,那么△ABC 是( ) A.直角三角形 B.等边三角形 C.等腰直角三角形 D.钝角三角形 4. 在△ABC 中,已知b B a 3sin 32=,且cosB=cosC ,试判断△ABC 形状。
正弦定理
教学重点:正弦定理
教学难点:正弦定理的正确理解和熟练运用,边角转化。
多解问题
1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即
A a sin =
B b sin =C
c
sin 2. 三角形面积公式
在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2
1sin 2
1sin 2
1== 3.正弦定理的推论:
A a sin =
B b sin =C
c
sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形
1)已知两角和任意一边,求其它两边和一角;
2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。
3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况)
○
1若A 为锐角时: ⎪⎪⎩
⎪⎪
⎨
⎧≥<<=<)( b a ) ,( b a bsinA )
( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a b
a
b
a
b a b
a
a 已知边a,
b 和∠A
仅有一个解有两个解
仅有一个解无解
a ≥
b CH=bsinA<a<b a=CH=bsinA a<CH=bsinA
A
C B A
C
B1A
B
A
C
B2
C
H H
H
○2若A 为直角或钝角时:⎩⎨⎧>≤)(
b a 锐角一解无解
b a
1、已知中,,,则角等于 ( D)
A .
B .
C .
D .
2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.
1. 在ABC ∆中,若sin 2sin 2A B =,则ABC ∆一定是( )
A 、等腰三角形
B 、直角三角形
C 、等腰直角三角形
D 、等腰或直角三角形
3.在Rt △ABC 中,C=
2
π
,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C=
2
π
,∴sin sin sin sin()2A B A A π=-sin cos A A =
1sin 22A =,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值1
2。
4. 若ABC ∆中,10
10
3B cos ,21A tan =
=
,则角C 的大小是__________ 解析
13101
tan ,cos ,,sin tan 2103
A B O B B B π==<<∴=∴=
tan tan 3tan tan()tan()1,tan tan 14
A B C A B A B O C C A B π
ππ+∴=--=-+=
=-<<∴=
- 7.在△ABC 中,已知2a b c =+,2
sin sin sin A B C =,试判断△ABC 的形状。
解:由正弦定理
2sin sin sin a b c R A B C ===得:sin 2a A R =
,sin 2b
B R
=, sin 2c C R
=。
所以由2sin sin sin A B C =可得:2()222a b c R
R R
=⋅
,即:2
a bc =。
又已知2a
b
c =+,所以2
2
4()a b c =+,所以2
4()bc b c =+,即2
()0b c -=,
因而b c =。
故由2a b c =+得:22a b b b =+=,a b =。
所以a b c ==,△ABC 为等边三角形。
6.在ABC ∆中,
b
A
a B sin sin <
是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件
1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于
( )
A.6
B.2
C.3
D.2
答案 D
3.下列判断中正确的是
( )
A .△ABC 中,a =7,b =14,A =30°,有两解
B .△AB
C 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解
D .△ABC 中,b =9,c =10,B =60°,无解 答案 B
4. 在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是
( )
A.等腰直角三角形
B.等腰三角形
C.直角三角形
D.等边三角形 答案 B
10. 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c . 解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解. 由正弦定理得sin A =
b B a sin =2
45sin 3︒ =23
, 则A 为60°或120°.
①当A =60°时,C =180°-(A +B )=75°, c =
B
C
b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=2
2
6+.
②当A =120°时,C =180°-(A +B )=15°, c =
B
C
b sin sin =︒︒45sin 15sin 2=︒
︒-︒45sin )
3045sin(2=
2
2
6-. 故在△ABC 中,A =60°,C =75°,c =
2
2
6+或A =120°,C =15°,c =226-.
12. 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2
+b 2
)sin (A -B )=(a 2
-b 2
)sin (A +B ),判断三角形的形状.
解 方法一 已知等式可化为a 2
[sin (A -B )-sin (A +B )]=b 2
[-sin (A +B )-sin(A -B )]∴2a 2
cos A sin B =2b 2
cos B sin A
由正弦定理可知上式可化为:sin 2
A cos A sin
B =sin 2
B cos B sin A
∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π 得2A =2B 或2A =π-2B ,即A =B 或A =
2
π
-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2
cos A sin B =2b 2
sin A cos B
由正、余弦定理,可得a 2
b b
c a c b 2222-+= b 2a ac
b c a 22
22-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2
)
即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2
∴△ABC 为等腰或直角三角形.
2.在△ABC 中,已知∠B =45°,c =22,b =43
3
,则∠A 等于( ) A .15°
B .75°
C .105°
D .75°或15°
解析:根据正弦定理c sin C =b sin B ,sin C =c sin B b =22×
2
243
3=3
2.
∴C =60°或C =120°,因此A =75°或A =15°.
答案:D
例1已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且32sin sin =B A ,求
a b
b
+ 的值.
解:∵23
sin sin ,sin sin ,sin sin ==∴=B A b a B A B b A a 又(这是角的关系),
∴23=b a (这是边的关系)于是,由合比定理得.2
5223=+=+b b a 例2已知△ABC 中,三边a 、b 、c 所对的角分别是A 、B 、C ,且a 、b 、c 成等差数列
求证:sin A +sin C =2sin B
证明:∵a 、b 、c 成等差数列,
∴a +c =2b (这是边的关系)①
又
B A
b a C
c B b A a sin sin ,sin sin sin =
∴==② B
C
b c sin sin =
③ 将②、③代入①,得b B
C
b B A b 2sin sin sin sin =+整理得sin A +sin C =2sin B (这是角的关系。