(完整版)正弦定理练习题经典
- 格式:doc
- 大小:45.01 KB
- 文档页数:3
课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________. 【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c=()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =b sin B 可得b =a sin Bsin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π. 5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0, 得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2.(2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12.又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC中,已知sin A=sin B+sin Ccos B+cos C,判断△ABC的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.π∴cos A=0,∴∠A=2,∴△ABC为直角三角形.。
正弦定理练习题典型题(含答案)正弦定理⼀1、在ABC ?中,060A ∠=,6a =,3b =,则ABC ?解的情况()A .⽆解B .有⼀解C .有两解D .不能确定2、在△ABC 中,若b=2,A=120°,三⾓形的⾯积S=,则三⾓形外接圆的半径为( ) A .B .2C .2D .43、在ABC △中,,,a b c 分别是⾓A,B,C 的对边,已知1,2a b ==,3cos 2A =,求⾓C .4、在△ABC 中,内⾓A ,B ,C 所对的边分别为a ,b ,c .已知acosC +ccosA =2bcosA .(1)求⾓A 的值;(2)求sinB +sinC 的取值范围.5、在锐⾓△ABC 中,内⾓A ,B ,C 所对的边分别为a ,b ,c ,已知a=2csinA .(1)求⾓C 的值;(2)若c=,且S △ABC =,求a+b 的值.参考答案1、【答案】A2、【答案】B3、【答案】解:在ABC △中,3cos 2A =,得6A π=,⼜1,2a b ==,由正弦定理得sin sin a b A B=,∴sin 2sin 2b A B a ==,⼜b a >,得4B π=或4B 3π=,当4B π=时,6412C ππ7π=π--=;当4B 3π=时,6412C π3ππ=π--=,∴⾓C 为127π或12π. 4、【答案】(1)A =;(2)(,].试题分析:(1)要求解,已知条件中有⾓有边,⼀般情况下我们可以利⽤正弦定理把边化为⾓的关系,本题acosC +ccosA =2bcosA ,由正弦定理可化为sin cos sin cos 2sin cos A C C A B A +=,于是有sin()2sin cos A C B A +=,即sin 2sin cos B B A =,⽽sin 0B ≠,于是1cos 2A =,3A π=;(2)由(1)23CB π=-,且203B π<<,2sin sin sin sin()3B C B B π+=+-,由两⾓和与差的正弦公式可转化为3sin()6B π+,再由正弦函数的性质可得取值范围. 试题解析:(1)因为acosC +ccosA =2bcosA ,所以sinAcosC +sinCcosA =2sinBcosA ,即sin(A +C)=2sinBcosA .因为A +B +C =π,所以sin(A +C)=sinB .从⽽sinB =2sinBcosA .因为sinB ≠0,所以cosA =.因为0<A <π,所以A =.(2)sinB +sinC =sinB +sin(-B)=sinB +sincosB -cos sinB =sinB +cosB =sin(B +).因为0<B <,所以<B +<.所以sinB +sinC 的取值范围为(,].考点:正弦定理,两⾓和与差的正(余)弦公式,正弦函数的性质.5、【答案】试题分析:(1)由a=2csinA 及正弦定理得sinA=2sinCsinA ,⼜sinA≠0,可sinC=.⼜△ABC 是锐⾓三⾓形,即可求C .(2)由⾯积公式,可解得ab=6,由余弦定理,可解得a 2+b 2﹣ab=7,联⽴⽅程即可解得a+b 的值的值.试题解析:解:(1)由a=2csinA 及正弦定理,得sinA=2sinCsinA ,∵sinA≠0,∴sinC=.⼜∵△ABC 是锐⾓三⾓形,∴C=.(2)∵c=,C=,∴由⾯积公式,得absin =,即ab=6.①由余弦定理,得a 2+b 2﹣2abcos=7,即a 2+b 2﹣ab=7.②由②变形得(a+b )2=3ab+7.③将①代⼊③得(a+b )2=25,故a+b=5.考点:正弦定理.点评:本题主要考查了正弦定理,余弦定理,三⾓形⾯积公式的应⽤,考查了转化思想和计算能⼒,属于中档题.正弦定理⼆1、在ABC ?中,o 60A =,3a =2b =B 等于 ( )A. o 45B.o 135C. o 45或o 135D. 以上答案都不对2、在ABC ?中,若ab c b a 2222+=+,则C =()A .030B .0150C .045D .01353、在△ABC 中,若30A =o ,8a =,b =ABC S ?等于()A ....4、设ABC ?的内⾓A ,B ,C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC ?的形状为()A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .不确定5、已知,,a b c 是ABC ?的三边长,且222a b c ab +-=(1)求⾓C(2)若3a c ==,求⾓A 的⼤⼩。
第一章 解三角形一、选择题.1。
在△ABC 中,b = 8,c =38,S △ABC =316,则∠A 等于( )A. 30 º B 。
60º C 。
30º 或 150º D. 60º 或120º 2。
在△ABC 中,若3a = 2b sin A ,则∠B 为( ) A.3π B.6πC.6π或6π5D 。
3π或3π2 3。
△ABC 中,下述表达式:①sin (A + B )+ sin C ;②cos (B + C )+ cos A ; ③2tan 2tanCB A +,其中表示常数的是( ) A 。
①和② B 。
①和③C 。
②和③D 。
①②③4。
在△ABC 中,“A = B "是“sin A = sin B ”的( ) A. 充分不必要条件 B. 必要不充分条件C 。
充要条件D 。
即不充分又不必要条件5。
已知 a ,b ,c 是△ABC 三边的长,若满足等式(a + b — c )(a + b + c )= ab ,则∠C 的大小为( )A 。
60º B. 90º C 。
120º D. 150º 6. 若△ABC 满足下列条件: ① a = 4,b = 10,∠A = 30︒; ② a = 6,b = 10,∠A = 30︒; ③ a = 6,b = 10,∠A = 150︒; ④ a = 12,b = 10,∠A = 150︒;⑤ a + b + c = 4,∠A = 30︒,∠B = 45︒。
则△ABC 恰有一个的是( )A 。
①④ B. ①②③ C 。
④⑤ D. ①②⑤ 7。
△ABC 中,若 sin (A +B )sin (A — B )= sin 2C ,则△ABC 是( ) A. 锐角三角形 B. 直角三角形 C 。
钝角三角形 D. 等腰三角形 8。
课时作业1 正弦定理时间:45分钟 满分:100分课堂训练1.(2013·湖南理,3)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则角A 等于( )A.π12 B.π6 C.π4 D.π3【答案】 D【解析】 本题考查了正弦定理由a sin A =b sin B ,得sin A =32, ∴∠A =π3.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知∠A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3 【答案】 B【解析】 由正弦定理a sin A =bsin B , 可得3sin π3=1sin B ,sin B =12,故∠B =30°或150°,由a >b ,得∠A >∠B . ∴∠B =30°,故∠C =90°, 由勾股定理得c =2,故选B.3.在△ABC 中,若tan A =13,C =56π,BC =1,则AB =________. 【答案】102【解析】 ∵tan A =13,且A 为△ABC 的内角,∴sin A =1010.由正弦定理得AB =BC sin C sin A =1×sin 56π1010=102.4.在△ABC 中,若∠B =30°,AB =23,AC =2,求△ABC 的周长.【分析】 本题是已知两边及其一边所对的角,要求其周长,自然要考虑去寻求第三边BC ,但BC 的对角∠A 未知,只知道∠B ,可结合条件由正弦定理先求出∠C ,再由三角形内角和定理求出∠A .【解析】 由正弦定理,得sin C =AB sin B AC =32. ∵AB >AC ,∴∠C >∠B ,又∵0°<∠C <180°,∴∠C =60°或120°.(1)如图(1),当∠C =60°时,∠A =90°,BC =4,△ABC 的周长为6+23;(2)如图(2),当∠C=120°时,∠A=30°,∠A=∠B,BC=AC=2,△ABC的周长为4+2 3.综上,△ABC的周长为6+23或4+2 3.【规律方法】已知三角形两边和其中一边的对角时,应先由正弦定理求出正弦值,再判定这个角是否最大,若最大,则有两角,分别为一个锐角、一个钝角,且两角互补,否则只有一解,且为锐角.课后作业一、选择题(每小题5分,共40分)1.在△ABC中,sin A=sin C,则△ABC是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】 B【解析】∵sin A=sin C,∴由正弦定理得a=c,∴△ABC为等腰三角形,故选B.2.已知△ABC的三个内角之比为A:B:C=1:2:3,那么a b c=()A.1:2:3 B.1:2: 3C.1: 2 : 3 D.1: 3 :2【答案】 D【解析】 设∠A =k ,∠B =2k ,∠C =3k ,由∠A +∠B +∠C =180°得,k +2k +3k =180°,∴k =30°,故∠A =30°,∠B =60°,∠C =90°.由正弦定理得a :b :c =sin A :sin B :sin C =sin30°:sin60°:sin90°=1: 3 :2.3.在△ABC 中,已知a =8,∠B =60°,∠C =75°,则( ) A .b =4 2 B .b =4 3 C .b =4 6 D .b =323【答案】 C【解析】 ∠A =180°-60°-75°=45°,由a sin A =b sin B 可得b =a sin Bsin A =8sin60°sin45°=4 6.4.已知△ABC 中,a =1,b =3,A =π6,则B =( ) A.π3 B.23π C.π3或23π D.56π或π6 【答案】 C【解析】 由a sin A =b sin B 得sin B =b sin Aa , ∴sin B =3·sin30°1=32,∴B =π3或23π.5.在△ABC 中,已知∠A =30°,a =8,b =83,则△ABC 的面积S 等于( )A .32 3B .16C .326或16D .323或16 3【答案】 D【解析】 由正弦定理,知 sin B =b sin A a =83sin30°8=32, 又b >a ,∴∠B >∠A ,∴∠B =60°或120°. ∴∠C =90°或30°.∴S =12ab sin C 的值有两个,即323或16 3.6.在△ABC 中,cos A cos B =b a =85,则△ABC 的形状为( ) A .钝角三角形 B .锐角三角形 C .等腰三角形 D .直角三角形【答案】 D【解析】 ∵cos A cos B =b a =sin Bsin A ,即sin2A =sin2B ,∴∠A =∠B 或∠A +∠B =π2,又cos A ≠cos B ,∴∠A ≠∠B ,∴∠A +∠B =π2,∴△ABC 为直角三角形.7.已知△ABC 中,2sin B -3sin A =0,∠C =π6,S △ABC =6,则a =( )A .2B .4C .6D .8【答案】 B【解析】 由正弦定理得a sin A =bsin B ,故由2sin B -3sin A =0,得2b =3a .①又S △ABC =12ab sin C =12ab sin π6=6, ∴ab =24.②解①②组成的方程组得a =4,b =6.故选B.8.在△ABC 中,∠A =60°,a =13,则a +b +csin A +sin B +sin C 等于( )A.833B.2393C.2633 D .2 3 【答案】 B【解析】 由a =2R sin A ,b =2R sin B ,c =2R sin C 得 a +b +csin A +sin B +sin C =2R =a sin A =13sin60°=2393.二、填空题(每小题10分,共20分)9.在△ABC 中,b 2-c 2a 2sin 2A +c 2-a 2b 2sin 2B +a 2-b 2c 2sin 2C 的值为________.【答案】 0【解析】 可利用正弦定理的变形形式a =2R sin A ,b =2R sin B ,c =2R sin C 代入原式即可.10.在锐角三角形ABC 中,若∠A =2∠B ,则ab 的取值范围是________.【答案】 (2,3)【解析】 ∵△ABC 为锐角三角形,且∠A =2∠B , ∴⎩⎪⎨⎪⎧0<2∠B <π2,0<π-3∠B <π2,∴π6<∠B <π4.∵∠A =2∠B ,∴sin A =sin2B =2sin B cos B ,∴a b =sin Asin B =2cos B ∈(2,3).三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)在△ABC 中,已知a =5,∠B =45°,∠C =105°,求b . (2)在△ABC 中,已知∠A =45°,a =2,b =2,求B .【解析】 (1)∵∠A +∠B +∠C =180°,∴∠A =180°-(∠B +∠C )=180°-(45°+105°)=30°.由正弦定理a sin A =b sin B ,得b =a ·sin B sin A =5·sin45°sin30°=5 2. (2)由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin45°2=12. 又∵0°<∠B <180°,且a >b ,∴∠B =30°.【规律方法】 (1)中要注意在△ABC 中,∠A +∠B +∠C =180°的运用,另外sin105°=sin75°=sin(45°+30)=6+24.(2)中要注意运用三角形中大边对大角的性质,判定解的个数.12.在△ABC 中,已知sin A =sin B +sin Ccos B +cos C,判断△ABC 的形状.【分析】当式子中只有角或只有边时,一般将其一端化为零,另一端化为因式之积,再因式分解,进而判断三角形的形状.【解析】∵sin A=sin B+sin Ccos B+cos C,∴sin A cos B+sin A cos C=sin B+sin C.∵∠A+∠B+∠C=π,∴sin A cos B+sin A cos C=sin(A+C)+sin(A+B).∴sin A cos B+sin A cos C=sin A cos C+cos A sin C+sin A cos B+cos A sin B. ∴cos A sin C+sin B cos A=0.∴cos A(sin B+sin C)=0.∵∠B,∠C∈(0,π),∴sin B+sin C≠0.∴cos A=0,∴∠A=π2,∴△ABC为直角三角形.。
正弦定理练习题(含答案)正弦定理 复习1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1. 6.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) A.32 B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C, ∴sin C =12. 又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =c sin C , 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C=2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3.答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12, 又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A=35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010, ∴cos B =1-sin 2B =31010. 又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22. 又0<A +B <π,∴A +B =π4. (2)由(1)知,C =3π4,∴sin C =22. 由正弦定理:a sin A =b sin B =c sin C得 5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1.∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C , ∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =b sin B,∴b =215. 当∠C =150°时,∠B =150°(舍去).故边b 的长为215.。
正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. 6B. 2C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135° B.135° C.45° D.以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sinB ∶sinC 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5D .不确定 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3D.34或32 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.正弦定理1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( )A. 6B. 2C. 3 D.2 6解析:选A.应用正弦定理得:asin A=bsin B,求得b=a sin Bsin A= 6.2.在△ABC中,已知a=8,B=60°,C=75°,则b等于( )A.4 2 B.4 3 C.4 6 D.32 3解析:选C.A=45°,由正弦定理得b=a sin Bsin A=4 6.3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为( )A.45°或135° B.135° C.45° D.以上答案都不对解析:选 C.由正弦定理asin A=bsin B得:sin B=b sin Aa=22,又∵a>b,∴B<60°,∴B=45°.4.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于( ) A.1∶5∶6B.6∶5∶1C.6∶1∶5 D.不确定解析:选A.由正弦定理知sin A∶sin B∶sin C=a∶b∶c=1∶5∶6.5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=( )A.1 B.12C.2 D.14解析:选 A.C=180°-105°-45°=30°,由bsin B=csin C得c=2×sin 30°sin45°=1.6.在△ABC中,若cos Acos B=ba,则△ABC是( )A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A,sin A cos A =sin B cos B ,∴sin2A =sin2B 即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )A.32B.34C.32或 3 D.34或32解析:选D.AB sin C=AC sin B,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°. 再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3D. 2 解析:选D.由正弦定理得6sin120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A=c sin C,所以sin A=a·sin Cc=12.又∵a<c,∴A<C=π3,∴A=π6.答案:π610.在△ABC中,已知a=433,b=4,A=30°,则sin B=________.解析:由正弦定理得asin A=bsin B⇒sin B=b sin Aa=4×12433=32.答案:3 211.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.解析:C=180°-120°-30°=30°,∴a=c,由asin A=bsin B得,a=12×sin30°sin120°=43,∴a+c=8 3.答案:8 312.在△ABC中,a=2b cos C,则△ABC的形状为________.解析:由正弦定理,得a=2R·sin A,b=2R·sin B,代入式子a=2b cos C,得2R sin A=2·2R·sin B·cos C,所以sin A=2sin B·cos C,即sin B·cos C+cos B·sin C=2sin B·cos C,化简,整理,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B=C.答案:等腰三角形13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csin A+sin B+sin C=________,c=________.解析:由正弦定理得a+b+csin A+sin B+sin C=asin A=63sin60°=12,又S△ABC=12bc sin A,∴12×12×sin60°×c=183,∴c=6.答案:12 614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csin A-2sin B+sin C=________.解析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=asin A=1sin30°=2,又∵a=2R sin A,b=2R sin B,c=2R sin C,∴a-2b+csin A-2sin B+sin C=2R sin A-2sin B+sin Csin A-2sin B+sin C=2R=2.答案:215.在△ABC中,已知a=32,cos C=13,S△ABC=43,则b=________.解析:依题意,sin C=223,S△ABC=12ab sin C=43,解得b=2 3.答案:2 316.在△ABC中,b=43,C=30°,c=2,则此三角形有________组解.解析:∵b sin C=43×12=23且c=2,∴c<b sin C,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin∠ABCsin A=20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A2,得 sin B sin C =12[1-cos(B +C )],即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得cos B cos C+sin B sin C=1,即cos(B-C)=1,所以B=C=π6,B=C=5π6(舍去),A=π-(B+C)=2π3.由正弦定理asin A=bsin B=csin C,得b=c=a sin Bsin A=23×1232=2.故A=2π3,B=π6,b=c=2.19.(2009年高考四川卷)在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.解:(1)∵A、B为锐角,sin B=10 10,∴cos B=1-sin2B=310 10.又cos 2A=1-2sin2A=35,∴sin A=55,cos A=255,∴cos(A+B)=cos A cos B-sin A sin B=255×31010-55×1010=22.又0<A+B<π,∴A+B=π4.(2)由(1)知,C=3π4,∴sin C=22.由正弦定理:asin A=bsin B=csin C得5a=10b=2c,即a=2b,c=5b.∵a-b=2-1,∴2b-b=2-1,∴b=1.∴a=2,c= 5.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.解:由S=12ab sin C得,153=12×603×sin C,∴sin C=12,∴∠C=30°或150°.又sin B=sin C,故∠B=∠C.当∠C=30°时,∠B=30°,∠A=120°.又∵ab=603,asin A=bsin B,∴b=215.当∠C=150°时,∠B=150°(舍去).故边b的长为215.。
正弦定理练习题经典正弦定理是解决三角形中的边和角之间关系的重要工具。
它可以帮助我们推导解决各种各样的三角形题目。
为了帮助大家更好地理解和应用正弦定理,下面将给出一些经典的练习题。
练习题一:已知一个三角形ABC,边a=5,边b=9,角C=35°,求边c的长度。
解析:根据正弦定理,我们可以得到以下等式:sinA/a = sinB/b = sinC/c我们已知角C=35°,边a=5,边b=9,将题目中的数值代入等式中,可得:sinA/5 = sinB/9 = sin35°/c由此,我们可以继续推导:sinA = (5/c) * sin35°sinB = (9/c) * sin35°接下来,我们可以利用已知三角函数值表,查找sin35°的近似值为0.574,将其带入以上等式:sinA = (5/c) * 0.574sinB = (9/c) * 0.574由此,我们可以进一步推导:5/c = sinB/0.5749/c = sinA/0.574换算一下:c = 5 / (sinB/0.574)c = 9 / (sinA/0.574)最后,我们可以计算出边c的长度:c = 5 / (sin35°/0.574) ≈ 9.41c = 9 / (sin35°/0.574) ≈ 16.28练习题二:已知一个三角形ABC,边a=7.5,边b=8,角A=48°,求角B的大小。
解析:同样根据正弦定理,我们可以得到以下等式:sinA/a = sinB/b = sinC/c已知边a=7.5,边b=8,角A=48°,将题目中的数值代入等式中,可得:sin48°/7.5 = sinB/8我们可以继续推导:sinB = (8/7.5) * sin48°利用已知三角函数值表,查找sin48°的近似值为0.743,将其带入以上等式:sinB = (8/7.5) * 0.743最后,我们可以计算角B的大小:B = arcsin[(8/7.5) * 0.743] ≈ 71.7°通过以上两个经典的练习题,我们可以看到正弦定理在解决三角形中的边和角之间关系时的应用。
正弦定理一、单选题(共15题;共30分)1.(2020高一下·大庆期末)已知的三个内角的对边分别为,且满足,则等于()A. B. C. D.2.(2020高一下·六安期末)设的内角所对的边分别为,若,则的形状为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为()A. B. π C. 2π D. 4π4.在中,角A,B,C所对的边分别为a,b,c,已知,,为使此三角形有两个,则a满足的条件是()A. B. C. D.5.(2020高一下·抚顺期末)在△ABC中,角A,B,C的对边分别为a,b,c,若c=2,b=2 ,C=30°,则B等于()A. 30°B. 60°C. 30°或60°D. 60°或120°6.(2020高一下·南昌期末)在中,,,,则()A. B. C. D.7.(2020高一下·牡丹江期末)已知的内角的对边分别为,若,则等于()A. B. C. D.8.(2020高一下·哈尔滨期末)在中,,那么()A. B. C. 或 D.9.(2020高一下·台州期末)在中,角A,B,C所对的边分别为a,b,c,若,,,则()A. B. C. 2 D.10.(2020高一下·金华月考)在△ABC中,角A,B,C所对的边分别是a,b,c,若,则b=()A. B. C. D.11.(2020·南昌模拟)已知中角所对的边分别为,若,则角A等于( )A. B. C. D.12.(2020·漯河模拟)设锐角的三内角A,B,C所对边的边长分别为a,b,c,且,,则a的取值范围为( )A. B. C. D.13.(2020高一下·太原期中)在锐角三角形中,已知,则的范围是( )A. B. C. D.14.(2020高一下·怀仁期中)在△ABC中,,则三角形解的情况是()A. 一解B. 两解C. 一解或两解D. 无解15.(2020高一下·沈阳期中)的内角的对边分别为,且, ,,则角C=( )A. B. C. 或 D. 或二、填空题(共4题;共5分)16.(2020高二下·嘉兴期末)已知中,,是的中点,且,则________.17.(2020高一下·哈尔滨期末)已知中,,则角A等于________.18.(2020高一下·温州期末)在中,,,点M在上,且,则________,________.19.(2020高一下·六安期末)在中,角所对的边分别是,若,则角C的大小为________.三、解答题(共5题;共35分)20.(2020高一下·深圳月考)在中,已知,,,求的值.21.(2019高三上·杭州期中)在中,a,b,c分别为角A,B,C所对边的长,且.(Ⅰ)求角B的值;(Ⅱ)若,求的面积.22.(2019高二上·榆林月考)在中,,,分别是角,,的对边,且,,.求:(1)的值.(2)的面积.23.(2019·贵州模拟)在中,内角的对边分别为,已知.(1)求;(2)已知,的面积为,求的周长.24.(2018·天津)在中,内角A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和的值.答案解析部分一、单选题1.【答案】D【解析】【解答】由题,根据正弦定理可得,所以,因为在中, ,所以,因为,所以,故答案为:D【分析】利用正弦定理化边为角可得,则,进而求解.2.【答案】B【解析】【解答】∵,由正弦定理得:,∵,∴,,故三角形为直角三角形,故答案为:B.【分析】根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得的值进而求得A,判断出三角形的形状.3.【答案】B【解析】【解答】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故答案为:B.【分析】根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.4.【答案】C【解析】【解答】为使此三角形有两个,即bsinA<a<b,∴2 × <a<2 ,解得:3<a<2 ,故答案为:C.【分析】为使此三角形有两个,只需满足bsinA<a<b,即可求a范围.5.【答案】D【解析】【解答】由c=2,b=2 ,C=30°,由正弦定理可得:,,由大边对大角可得:,解得60°或120°.故答案为:D.【分析】由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.6.【答案】C【解析】【解答】∵,,,∴由正弦定理,可得,∵,B为锐角,∴.故答案为:C【分析】由已知利用正弦定理可得,结合,可得B为锐角,可求.7.【答案】D【解析】【解答】因为,故.故答案为:D.【分析】利用正弦定理可求的值.8.【答案】D【解析】【解答】由正弦定理得,因为,∴,所以,从而.故答案为:D.【分析】由正弦定理求C,然后再得A角.9.【答案】B【解析】【解答】根据正弦定理可得,即,解得,故答案为:B.【分析】直接利用正弦定理,结合题中所给的条件即可得结果.10.【答案】D【解析】【解答】解:在中,角A,B,C所对的边分别是a,b,c.若,,,利用正弦定理:,整理得:.故答案为:D.【分析】直接利用正弦定理的应用和三角函数值的应用求出结果.11.【答案】B【解析】【解答】由及正弦定理可得,又,所以,解得或(舍),又,所以.故答案为:B【分析】由正弦定理可得,结合解方程组即可得到答案.12.【答案】A【解析】【解答】且为锐角三角形,,,又,,,,,由正弦定理得:,.故答案为:A.【分析】根据锐角三角形的特点和可确定的取值范围,进而求得的取值范围;利用正弦定理可得到,进而求得结果.13.【答案】C【解析】【解答】,又,,锐角三角形,∴,故,故.故答案为:C.【分析】根据正弦定理得到,计算,得到答案.14.【答案】D【解析】【解答】过点A作AD⊥BD.点D在∠B的一条边上,∵h=csinB=6 3 3=b=AC,因此此三角形无解.故答案为:D.【分析】由csinB>b,即可得出解的情况.15.【答案】B【解析】【解答】由正弦定理,,所以,又,则,所以,故答案为:B。
正弦定理训练测试题(含答案)正弦定理⼀、单选题(共15题;共30分)1.(2020⾼⼀下·⼤庆期末)已知的三个内⾓的对边分别为,且满⾜,则等于()A. B. C. D.2.(2020⾼⼀下·六安期末)设的内⾓所对的边分别为,若,则的形状为()A. 锐⾓三⾓形B. 直⾓三⾓形C. 钝⾓三⾓形D. 等腰三⾓形3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆⾯积为()A. B. π C. 2π D. 4π4.在中,⾓A,B,C所对的边分别为a,b,c,已知,,为使此三⾓形有两个,则a满⾜的条件是()A. B. C. D.5.(2020⾼⼀下·抚顺期末)在△ABC中,⾓A,B,C的对边分别为a,b,c,若c=2,b=2 ,C=30°,则B等于()A. 30°B. 60°C. 30°或60°D. 60°或120°6.(2020⾼⼀下·南昌期末)在中,,,,则()A. B. C. D.7.(2020⾼⼀下·牡丹江期末)已知的内⾓的对边分别为,若,则等于()A. B. C. D.8.(2020⾼⼀下·哈尔滨期末)在中,,那么()A. B. C. 或 D.9.(2020⾼⼀下·台州期末)在中,⾓A,B,C所对的边分别为a,b,c,若,,,则()A. B. C. 2 D.10.(2020⾼⼀下·⾦华⽉考)在△ABC中,⾓A,B,C所对的边分别是a,b,c,若,则b=()A. B. C. D.11.(2020·南昌模拟)已知中⾓所对的边分别为,若,则⾓A等于( )A. B. C. D.12.(2020·漯河模拟)设锐⾓的三内⾓A,B,C所对边的边长分别为a,b,c,且,,则a的取值范围为( )A. B. C. D.13.(2020⾼⼀下·太原期中)在锐⾓三⾓形中,已知,则的范围是( )A. B. C. D.14.(2020⾼⼀下·怀仁期中)在△ABC中,,则三⾓形解的情况是()A. ⼀解B. 两解C. ⼀解或两解D. ⽆解15.(2020⾼⼀下·沈阳期中)的内⾓的对边分别为,且, ,,则⾓C=( )A. B. C. 或 D. 或⼆、填空题(共4题;共5分)16.(2020⾼⼆下·嘉兴期末)已知中,,是的中点,且,则________.17.(2020⾼⼀下·哈尔滨期末)已知中,,则⾓A等于________.18.(2020⾼⼀下·温州期末)在中,,,点M在上,且,则________,________.19.(2020⾼⼀下·六安期末)在中,⾓所对的边分别是,若,则⾓C的⼤⼩为________.三、解答题(共5题;共35分)20.(2020⾼⼀下·深圳⽉考)在中,已知,,,求的值.21.(2019⾼三上·杭州期中)在中,a,b,c分别为⾓A,B,C所对边的长,且.(Ⅰ)求⾓B的值;(Ⅱ)若,求的⾯积.22.(2019⾼⼆上·榆林⽉考)在中,,,分别是⾓,,的对边,且,,.求:(1)的值.(2)的⾯积.23.(2019·贵州模拟)在中,内⾓的对边分别为,已知.(1)求;(2)已知,的⾯积为,求的周长.24.(2018·天津)在中,内⾓A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求⾓B的⼤⼩;(Ⅱ)设a=2,c=3,求b和的值.答案解析部分⼀、单选题1.【答案】D【解析】【解答】由题,根据正弦定理可得,所以,因为在中, ,所以,因为,所以,故答案为:D【分析】利⽤正弦定理化边为⾓可得,则,进⽽求解.2.【答案】B【解析】【解答】∵,由正弦定理得:,∵,∴,,故三⾓形为直⾓三⾓形,故答案为:B.【分析】根据正弦定理把已知等式中的边转化为⾓的正弦,利⽤两⾓和公式化简求得的值进⽽求得A,判断出三⾓形的形状.3.【答案】B【解析】【解答】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆⾯积S=πR2=π.故答案为:B.【分析】根据正弦定理可得2R=,解得R=1,故△ABC的外接圆⾯积S=πR2=π.4.【答案】C【解析】【解答】为使此三⾓形有两个,即bsinA<a<b,∴2 × <a<2 ,解得:3<a<2 ,故答案为:C.【分析】为使此三⾓形有两个,只需满⾜bsinA<a<b,即可求a范围.5.【答案】D【解析】【解答】由c=2,b=2 ,C=30°,由正弦定理可得:,,由⼤边对⼤⾓可得:,解得60°或120°.故答案为:D.【分析】由正弦定理可解得,利⽤⼤边对⼤⾓可得范围,从⽽解得A的值.6.【答案】C【解析】【解答】∵,,,∴由正弦定理,可得,∵,B为锐⾓,∴.故答案为:C【分析】由已知利⽤正弦定理可得,结合,可得B为锐⾓,可求.7.【答案】D【解析】【解答】因为,故.故答案为:D.【分析】利⽤正弦定理可求的值.8.【答案】D【解析】【解答】由正弦定理得,因为,∴,所以,从⽽.故答案为:D.【分析】由正弦定理求C,然后再得A⾓.9.【答案】B【解析】【解答】根据正弦定理可得,即,解得,故答案为:B.【分析】直接利⽤正弦定理,结合题中所给的条件即可得结果.10.【答案】D【解析】【解答】解:在中,⾓A,B,C所对的边分别是a,b,c.若,,,利⽤正弦定理:,整理得:.故答案为:D.【分析】直接利⽤正弦定理的应⽤和三⾓函数值的应⽤求出结果.11.【答案】B【解析】【解答】由及正弦定理可得,⼜,所以,解得或(舍),⼜,所以.故答案为:B【分析】由正弦定理可得,结合解⽅程组即可得到答案.12.【答案】A【解析】【解答】且为锐⾓三⾓形,,,⼜,,,,,由正弦定理得:,.故答案为:A.【分析】根据锐⾓三⾓形的特点和可确定的取值范围,进⽽求得的取值范围;利⽤正弦定理可得到,进⽽求得结果.13.【答案】C【解析】【解答】,⼜,,锐⾓三⾓形,∴,故,故.故答案为:C.【分析】根据正弦定理得到,计算,得到答案.14.【答案】D【解析】【解答】过点A作AD⊥BD.点D在∠B的⼀条边上,∵h=csinB=6 3 3=b=AC,因此此三⾓形⽆解.故答案为:D.【分析】由csinB>b,即可得出解的情况.15.【答案】B【解析】【解答】由正弦定理,,所以,⼜,则,所以,故答案为:B。
完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。
解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。
2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。
解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。
3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。
解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。
代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。
由此可知cosB=(2abc)/(4a^2+2ac-b^2)。
代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。
由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。
由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。
○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………正弦定理基础训练题(有详解)一、单选题1.在△ABC 中,4a =,52b =,5cos(B C)30++=,则角B 的大小为( ) A .6π B .4π C .3π D .6π或56π 2.在△ABC 中,若2sin b a B =,则A =( )A .π6或5π6 B .π3或2π3C .π4或π3D .π4或3π4 3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知22a =,4b =,45B =,则A =( ) A .30B .60C .30或150D .60或1204.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定5.ABC ∆中,若sin cos cos a b cA B C==,则ABC ∆中最长的边是( ) A .aB .bC .cD .b 或c6.ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知 26a b ==,,A 4π=,则B =( ) A .6πB .3π C .6π或56πD .3π或23π7.在中,,,,则的面积是( )A .B .C .或D .或8.已知ABC 中,满足3,2,30a b B ==∠=︒,则这样的三角形有 A .0个B .1个C .2个D .无数个9.在△ABC 中,6A π=,4B π=,a=1,则b=( )A .1B .2C .2D .310.在△ABC 中,所对的边为a ,b ,c ,a=8,B=60°,A=45°,则b=()○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .11.在中,所对的边分别为,若,,,则等于( ) A .B .C .D . 12.在中,若,,则A .B .C .D .二、填空题13.ABC ∆的内角A B C 、、的对边分别为a b c 、、,若4cos 5A =,5cos 13C =,13a =,则b =____.14.已知ABC ∆的三个内角、、A B C 成等差数列,且 2AB =, 3AC =,则cos C 的值是__________. 15.在中,角A 、B 、C 的对边分别为a ,b ,c ,且,,,则的面积_____.16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a b >,且22sin a b A =,则B =_____.17.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A :B :C =1:2:3,则a :b :c =______.18.在ABC ∆中,43,22,33C c b π===,那么A =__________. 19.在ABC ∆中, 若13,cos 2a A ==-,则ABC ∆的外接圆的半径为 _____.20.在中,已知,那么的形状______三角形.参考答案1.A 【解析】 【分析】首先根据三角形内角和为π,即可算出角A 的正弦、余弦值,再根据正弦定理即可算出角B 【详解】在△ABC 中有A B C π++=,所以B C A +=π-,所以()35cos(B C)305cos 30cos 5A A π++=⇒-+=⇒=,又因为0A π<<,所以02A π<<,所以4sin 5A ==,因为4a =,52b =,所以由正弦定理得sin 1sin 2b A B a ==,因为a b A B >⇒>,所以6B π=。
正弦定理演习题 【1 】1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.3233.在△ABC 中,a ,b ,c 分离是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.144.在△ABC 中,角A .B .C 的对边分离为a .b .c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不合错误5.△ABC 的内角A .B .C 的对边分离为a .b .c .若c =2,b =6,B =120°,则a 等于( ) A.6B .2C.3D. 26.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不肯定7.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形C .直角三角形 D .等腰三角形或直角三角形8.在△ABC 中,角A .B .C 所对的边分离为a .b .c ,若a =1,c =3,C =π3,则A =________.9.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.12 . 断定知足下列前提的三角形个数(1)b=39,c=54,︒=120C 有________组解(2)a=20,b=11,︒=30B 有________组解(3)b=26,c=15,︒=30C 有________组解(4)a=2,b=6,︒=30A 有________组解 正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A.6B. 2C. 3 D .2 6解析:选A.运用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.在△ABC 中,a ,b ,c 分离是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.4.在△ABC 中,角A .B .C 的对边分离为a .b .c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不合错误a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 5.△ABC 的内角A .B .C 的对边分离为a .b .c .若c =2,b =6,B =120°,则a 等于( )A.6B .2 C.3D. 26sin120°=2sin C, ∴sin C =12. 又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不肯定A ∶sinB ∶sinC =a ∶b ∶c =1∶5∶6.7.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 8.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) A.32B.34 C.32或3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积. 9.在△ABC 中,角A .B .C 所对的边分离为a .b .c ,若a =1,c =3,C =π3,则A =________. 解析:由正弦定理得:a sin A =c sin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3.答案:8 312.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 解析:∵Bb Cc sin sin =,有B sin 3430sin 2=︒,得sinB=13> ∴此三角形无解.答案:0一,二,二,无。
正弦定理、余弦定理练习题一、选择题1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是A.0B.1 C.2 D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.B.2 C.+1 D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A. B. C. D.20.在△ABC中,,则k为A.2RB.RC.4RD.(R为△ABC外接圆半径)二、填空题1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.。
正弦定理练习题1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C. D .262362.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4B .4C .4 D.2363233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角B 为( )32A .45°或135° B .135° C .45° D .以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,则c =( )2A .1 B. C .2 D.12146.在△ABC 中,若=,则△ABC 是( )cos A cos B b aA .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形7.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面积为( )3A. B. C.或 D.或323432334328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =,B =120°,则a 等于( )26A. B .2 C. D.6329.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则A =________.3π310.在△ABC 中,已知a =,b =4,A =30°,则sin B =________.43311.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则=________,c =33a +b +c sin A +sin B +sin C ________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则=________.a -2b +c sin A -2sin B +sin C15.在△ABC 中,已知a =3,cos C =,S △ABC =4,则b =________.213316.在△ABC 中,b =4,C =30°,c =2,则此三角形有________组解.317.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为15,求边b 的长.33正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A. B. C. D .26236解析:选A.应用正弦定理得:=,求得b ==.a sin A b sin B a sin B sin A62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 B .4 C .4 D.236323解析:选C.A =45°,由正弦定理得b ==4.a sin B sin A63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =4,b =4,则角B 为( )32A .45°或135° B .135° C .45° D .以上答案都不对解析:选C.由正弦定理=得:sin B ==,又∵a >b ,∴B <60°,∴B =45°.a sin A b sin B b sin A a 224.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =,则c =( )2A .1 B. C .2 D.1214解析:选A.C =180°-105°-45°=30°,由=得c ==1.b sin B c sin C 2×sin 30°sin45°6.在△ABC 中,若=,则△ABC 是( )cos A cos B b a A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵=,∴=,b a sin B sin A cos A cos B sin B sin Asin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =.π27.已知△ABC 中,AB =,AC =1,∠B =30°,则△ABC 的面积为( )3A. B.3234C.或 D.或3233432解析:选D.=,求出sin C =,∵AB >AC ,AB sin C AC sin B 32∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =AB ·AC sin A 可求面积.128.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =,b =,B =120°,则a 等于( )26A. B .26C. D.32解析:选D.由正弦定理得=,6sin120°2sin C ∴sin C =.12又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c =.29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =,C =,则A =________.3π3解析:由正弦定理得:=,a sin A c sin C 所以sin A ==.a ·sin C c 12又∵a <c ,∴A <C =,∴A =.π3π6答案:π610.在△ABC 中,已知a =,b =4,A =30°,则sin B =________.433解析:由正弦定理得=a sin A b sin B ⇒sin B ===.b sin A a 4×1243332答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由=得,a ==4,a sin A b sin B 12×sin30°sin120°3∴a +c =8.3答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =6,b =12,S △ABC =18,则=________,c =33a +b +c sin A +sin B +sin C ________.解析:由正弦定理得===12,又S △ABC =bc sin A ,∴a +b +c sin A +sin B +sin C a sin A 63sin60°1212×12×sin60°×c =18,3∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则=________.a -2b +c sin A -2sin B +sin C解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R ===2,a sin A 1sin30°又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴==2R =2.a -2b +c sin A -2sin B +sin C 2R sin A -2sin B +sin C sin A -2sin B +sin C答案:215.在△ABC 中,已知a =3,cos C =,S △ABC =4,则b =________.2133解析:依题意,sin C =,S △ABC =ab sin C =4,223123解得b =2.3答案:2316.在△ABC 中,b =4,C =30°,c =2,则此三角形有________组解.3解析:∵b sin C =4×=2且c =2,3123∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×=20,12∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A ==10(km).20sin30°sin45°2即货轮到达C 点时,与灯塔A 的距离是10 km.218.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =2,sin cos =,sin B sin 3C 2C 214C =cos 2,求A 、B 及b 、c .A 2解:由sin cos =,得sin C =,C 2C 21412又C ∈(0,π),所以C =或C =.π65π6由sin B sin C =cos 2,得A 2sin B sin C =[1-cos(B +C )],12即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =,B =C =(舍去),π65π6A =π-(B +C )=.2π3由正弦定理==,得a sin A b sin B c sin C b =c =a =2×=2.sin B sin A 31232故A =,B =,b =c =2.2π3π619.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =,sin B =.(1)求A +B 的值;(2)若a -b =-1,求a ,b ,c 的值.3510102解:(1)∵A 、B 为锐角,sin B =,1010∴cos B ==.1-sin 2B 31010又cos 2A =1-2sin 2A =,∴sin A =,cos A =,3555255∴cos(A +B )=cos A cos B -sin A sin B=×-×=.2553101055101022又0<A +B <π,∴A +B =.π4(2)由(1)知,C =,∴sin C =.3π422由正弦定理:==得a sin A b sin B c sin C a =b =c ,即a =b ,c =b .510225∵a -b =-1,∴b -b =-1,∴b =1.222∴a =,c =.2520.△ABC 中,ab =60,sin B =sin C ,△ABC 的面积为15,求边b 的长.33解:由S =ab sin C 得,15=×60×sin C ,123123∴sin C =,∴∠C =30°或150°.12又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =60,=,∴b =2.3a sin A b sin B15当∠C =150°时,∠B =150°(舍去).。
正弦定理高考试题精选一.选择题(共20 小题)1.在△ ABC中, a= b,A=120°,则 B 的大小为()A.30°B.45°C.60°D.90°2.在△ ABC中,若 a=2,b=2,A=30°,则B为()A.60°B.60°或 120° C.30°D. 30°或 150°3.在△ ABC中, a,b,c 为角 A,B, C 的对边,若 A=,cosB=,b=8,则a=()A.B.10 C.D.54.在△ ABC中,角 A, B, C 所对的边分别为 a,b,c,若 sin( A+B)=,a=3,c=4,则 sinA=()A.B.C.D.5.在△ ABC中,内角 A,B,C 所对的边分别是 a,b,c,若 B=30°,,b=2,则 C=()A.B.或C.D.或6.在△ ABC中,角 A、B、C 所对的边分别为 a,b,c,已知 a=1,b=,A=30°,B 为锐角,那么角 A:B:C 的比值为()A.1:1:3 B.1:2:3 C.1:3:2 D.1:4:17.在△ ABC中,角 A,B,C 所对的边分别为 a,b,c,已知 a=2,b=,A=45°,则 B=()A.90°B.60°C.30°或 150° D. 30°8.在△ ABC中, b=5,∠ B=,tanA=2,则 a 的值是()A.10B.2C.D.9.已知△ ABC中, A=, B=,a=1,则 b 等于()A.2B.1 C.D.10.设△ ABC的内角 A,B,C 所对边的长分别为 a,b,c.若 sinA=2 sinB,,则△ ABC的面积为()A.B.C.D.11.△ ABC的内角 A,B,C 的对边分别为 a,b,c,若,则 B 等于()A.30°B.60°C.30°或 150° D. 60°或 120°12.在△ ABC中, a=,A=120°,b=1,则角 B 的大小为()A.30°B.45°C.60°D.90°13.在△ ABC中,内角 A,B,C 所对的边分别为 a,b,c,若 a=,A=60°,B=45°,则 b 的长为()A.B.1C.D.214.在△ ABC中,若a=2bsinA,则∠ B=()A.B.C.或D.或15.在△ ABC中, a=2,c=1,∠ B=60°,那么 b 等于()A.B.C.1D.16.△ ABC 中,角 A,B,C 所对的边分别为 a,b,c,若 a=,b=3,c=2,则∠ A=()A.30°B.45°C.60°D.90°17.在△ ABC中,若 AB=4,AC=BC=3,则 sinC的值为()A.B.C.D.18.△ ABC 的内角 A,B,C 的对边分别为 a,b, c.已知,A=60°,则 c=()A.B.1C.D.219.若△ ABC的内角 A,B,C 所对的边分别为a,b,c,已知 2bsin2A=3asinB,且 c=2b,则等于()A.B.C.D.20.在△ ABC中,,AC=5,AB=6,则角C的正弦值为()A.B.C.D.二.填空题(共7 小题)21.△ABC的内角 A,B,C 的对边分别为 a,b,c,已知 C=60°,b=,c=3,则A=.22.在△ ABC中,若 AC=5,BC=6,sinA= ,则角 B 的大小为.23.在△ ABC 中, A,B,C 的对边分别为a, b, c, A=75°,B=45°,c=3,则b=.24.已知△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a=2,b=3,tanB=3,则 sinA 的值为.25.在△ ABC中, a=3,b=4,cosB= ,则 sinC=.26.在△ ABC中,,BC=3,,则∠ C=,AC=.27.在△ABC中,a,b,c 是角 A,B,C 所对的边, a=2b,C=60°,则 B=.三.解答题(共 1 小题)28.在△ ABC中,∠ A=60°,c=a.(1)求 sinC 的值;(2)若 a=7,求△ ABC的面积.正弦定理高考试题精选参考答案与试题解析一.选择题(共20 小题)1.(2017?湖南学业考试)在△ ABC中, a= b,A=120°,则 B 的大小为()A.30°B.45°C.60°D.90°【解答】解:∵ a=b,A=120°,∴由正弦定理,可得: sinB= ,又∵ B∈( 0°, 60°),∴B=30°.故选: A.2.( 2017?清城区校级一模)在△ ABC中,若 a=2,b=2,A=30°,则B为()A.60°B.60°或 120° C.30°D. 30°或 150°【解答】解:由正弦定理可知=,∴ sinB==∵B∈(0,180°)∴∠ B=60°或 120°故选 B.3.(2017?河东区一模)在△ ABC中, a, b, c 为角 A, B, C 的对边,若 A=,cosB= , b=8,则 a=()A.B.10 C.D.5【解答】解:∵ cosB= ,0<B<π,∴由正弦定理可得: a===5.故选: D.4.(2017?朝阳区模拟)在△ ABC中,角 A, B, C 所对的边分别为a, b,c,若sin(A+B) =,a=3,c=4,则sinA=()A.B.C.D.【解答】解:∵ A+B+C=π,∴sin(A+B)=sinC= ,又∵ a=3,c=4,∴=,即= ,∴sinA= ,故选 B.5.( 2017?黄石港区校级模拟)在△ ABC中,内角 A,B,C 所对的边分别是a,b,c,若 B=30°,,b=2,则C=()A.B.或C.D.或【解答】解:由正弦定理得=,∴ sinC=,∵ B=30°,,b=2,∴ sinC==,b<c,∴ B=或,故选: B6.(2017?百色模拟)在△ ABC 中,角 A、B、C 所对的边分别为a, b,c,已知a=1, b=,A=30°,B为锐角,那么角A:B:C 的比值为()A.1:1:3 B.1:2:3 C.1:3:2 D.1:4:1【解答】解:∵ a=1, b=,A=30°,B为锐角,∴由正弦定理可得: sinB===,可得:B=60°,C=180°﹣A﹣ B=90°,∴A: B: C=30°:60°:90°=1: 2: 3.故选: B.7.(2017?锦州二模)在△ ABC 中,角 A,B,C 所对的边分别为a, b,c,已知a=2, b=,A=45°,则B=()A.90°B.60°C.30°或 150° D. 30°【解答】解:∵在△ ABC中, a=2,b=,A=45°,∴由正弦定理,得解之得 sinB=sin45 °=∵B∈( 0°,180°)且 b< a,∴ B=30°故选: D8.( 2017?河东区模拟)在△ ABC中,b=5,∠ B= ,tanA=2,则 a 的值是()A.10B.2C.D.【解答】解:∵在△ ABC 中, b=5,∠ B=, tanA==2,sin22,∴A+cos A=1sinA=.再由正弦定理可得=,解得a=2,故选 B.9.(2017?沈阳一模)已知△ ABC中, A=,B=,a=1,则b等于()A.2B.1C.D.【解答】解:∵ A=,B=,a=1,∴由正弦定理,可得: b===.故选: D.10.(2017?自贡模拟)设△ ABC的内角 A, B,C 所对边的长分别为a,b,c.若sinA=2 sinB,,则△ ABC的面积为()A.B.C.D.【解答】解:根据题意,△ ABC中,若 sinA=2sinB,则有 a=2b,c2=a2+b2﹣2abcosC=5b﹣4b2cos=16,解可得 b=,则a=2b=,则S△ABC= absinC=,故选: A.11.( 2017?厦门一模)△ABC 的内角A, B, C 的对边分别为a, b , c,若,则 B 等于()°A.30°B.60°C.30 或 150° D. 60°或 120°【解答】解:∵,∴由正弦定理可得: sinB===,∵B∈( 0°,180°),∴B=60°,或120°.故选: D.12.(2017?江西模拟)在△ ABC中,a=,A=120°,b=1,则角B的大小为()A.30°B.45°C.60°D.90°【解答】解:a>b,则 B 为锐角,由正弦定理可得:=,可得sinB=,∴ B=30°.故选: A.13.( 2017?浙江模拟)在△ ABC中,内角 A,B,C 所对的边分别为a,b, c,若a= , A=60°,B=45°,则 b 的长为()A.B.1C.D.2【解答】解:∵在△ ABC中,内角 A,B,C 所对的边分别为a, b, c,且 a=,A=60°, B=45°,∴由正弦定理=得:b===,故选: C.14.( 2017?涪城区校级模拟)在△ ABC中,若a=2bsinA,则∠ B=()A.B.C.或D.或【解答】解:∵∴∵根据正弦定理∴∴sinB=∴B= 或故选 C15.( 2017?北京模拟)在△ ABC中, a=2,c=1,∠ B=60°,那么 b 等于()A.B.C.1D.【解答】解:因为在△ ABC中, a=2, c=1,∠ B=60°,所以由余弦定理得, b2=a2+c2﹣2accosB=4+1﹣=3,解得 b=,故选 B.16.(2017?吉林二模)△ABC中,角 A,B,C 所对的边分别为a,b,c,若 a=,b=3, c=2,则∠ A=()A.30°B.45°C.60°D.90°【解答】解:∵ a=,b=3,c=2,∴由余弦定理得, cosA===,又由 A∈( 0°,180°),得 A=60°,故选: C.17.(2017?和平区一模)在△ ABC中,若 AB=4,AC=BC=3,则 sinC的值为()A.B.C.D.【解答】解:在△ ABC中,∵ AB=4,AC=BC=3,∴ cosC===,∴ sinC==.故选: D.18.( 2017?马鞍山一模)△ ABC 的内角 A,B,C 的对边分别为a, b,c.已知,A=60°,则 c=()【解答】解:∵,A=60°,∴由余弦定理a2=b2+c2﹣ 2bccosA,可得: 3=4+c2﹣2×,整理可得:c2﹣ 2c+1=0,∴解得: c=1.故选: B.19.(2017?雅安模拟)若△ ABC的内角 A, B,C 所对的边分别为a,b,c,已知2bsin2A=3asinB,且 c=2b,则等于()A.B.C.D.【解答】解:由 2bsin2A=3asinB,利用正弦定理可得: 4sinBsinAcosA=3sinAsinB,由于: sinA≠0, sinB≠0,可得: cosA= ,又c=2b,可得: a2=b2+c2﹣2bccosA=b2+4b2﹣2b?2b?=2b2,则= .故选: C.20.( 2017?南宁二模)在△ ABC中,,AC=5,AB=6,则角C的正弦值为()A.B.C.D.【解答】解:由题意, sinB= .由正弦定理可得,∴ sinC=,故选 A.二.填空题(共7 小题)21.(2017?新课标Ⅲ)△ABC的内角 A,B,C 的对边分别为 a,b,c,已知 C=60°,b= , c=3,则 A=75° .【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴ sinB==,∵b< c,∴ B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为: 75°.22.( 2017?天津学业考试)在△ ABC中,若 AC=5, BC=6, sinA= ,则角 B 的大小为30° .【解答】解:在△ ABC中,若 AC=5, BC=6, sinA= ,由正弦定理可得,=,即为 sinB===,由AC< BC,可得 B< A,则 B=30°(150°舍去),故答案为:30°.23.(2017?南通模拟)在△ ABC中,A,B,C 的对边分别为 a,b,c,A=75°,B=45°,c=3 ,则 b= 2.【解答】解:∵ A=75°,B=45°,c=3,∴ C=180°﹣ A﹣ B=60°,∴由正弦定理可得: b===2.故答案为: 2.24.( 2017?临翔区校级三模)已知△ ABC的内角 A,B,C 所对的边分别为 a,b,c,且 a=2,b=3,tanB=3,则 sinA 的值为.【解答】解:∵ tanB==3,sin22,B+cos B=1∴解得:,又∵ a=2,b=3,∴由正弦定理可得,∴解得:.故答案为:.25.( 2017?龙凤区校级模拟)在△ ABC中, a=3,b=4, cosB= ,则 sinC= 1.【解答】解:∵ a=3, b=4,cosB= ,∴ sinB==,∴由正弦定理可得: sinA===,∴由 a<b,A 为锐角,可得: cosA== ,∴ sinC=sin(A+B) =sinAcosB+cosAsinB=+=1.故答案为: 1.26.(2017?朝阳区一模)在△ ABC中,,BC=3,,则∠ C=,AC=.【解答】解:∵,BC=3,,∴ sinC===,∵ AB<BC,可得:∠ C<∠ A,∴∠ C=,∴ sinB=sin(A+C) =sinAcosC+cosAsinC==,∴ AC===.故答案为:,.27.(2017?庄河市校级四模)在△ ABC中,a,b,c 是角 A,B,C 所对的边,a=2b,C=60°,则 B= 30° .【解答】解:∵ a=2b,C=60°,可得: A=120°﹣B,∴由正弦定理可得: sinA=2sinB=sin(120°﹣B),可得: 2sinB= cosB+sinB,∴sin(B﹣30°)=0,可得: sin( B﹣ 30°) =0,∵ b< a, B 为锐角,∴ B=30°.故答案为: 30°.三.解答题(共 1 小题)28.( 2017?北京)在△ ABC中,∠ A=60°,c=a.(1)求 sinC 的值;(2)若 a=7,求△ ABC的面积.【解答】解:(1)∠ A=60°, c= a,由正弦定理可得sinC= sinA= ×=,(2) a=7,则 c=3,∴ C< A,由( 1)可得 cosC= ,∴ sinB=sin(A+C) =sinAcosC+cosAsinC=×+×=,∴ S△ABC= acsinB= ×7×3×=6.。
正弦定理练习题
1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6
2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )
A .4 2
B .4 3
C .4 6 D.323
3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )
A .1 B.12 C .2 D.14
4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )
A .45°或135°
B .135°
C .45°
D .以上答案都不对
5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )
A. 6 B .2 C. 3 D. 2
6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )
A .1∶5∶6
B .6∶5∶1
C .6∶1∶5
D .不确定
7.在△ABC 中,若cos A cos B =b a
,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形
8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3
,则A =________.
9.在△ABC 中,已知a =433
,b =4,A =30°,则sin B =________.
10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.
11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.
12 . 判断满足下列条件的三角形个数
(1)b=39,c=54,︒
=120C 有________组解
(2)a=20,b=11,︒=30B 有________组解
(3)b=26,c=15,︒=30C 有________组解
(4)a=2,b=6,︒=30A 有________组解 正弦定理
1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )
A.6
B. 2
C. 3 D .2 6
解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )
A .4 2
B .4 3
C .4 6 D.323
解析:选C.A =45°,由正弦定理得b =a sin B sin A
=4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )
A .1 B.12 C .2 D.14
解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°
=1.
4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )
A .45°或135°
B .135°
C .45°
D .以上答案都不对
解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22
,又∵a >b ,∴B <60°,∴B =45°. 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )
A. 6 B .2
C. 3
D. 2
解析:选D.由正弦定理得6sin120°=2sin C
, ∴sin C =12
. 又∵C 为锐角,则C =30°,∴A =30°,
△ABC 为等腰三角形,a =c = 2.
6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )
A .1∶5∶6
B .6∶5∶1
C .6∶1∶5
D .不确定
解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.
7.在△ABC 中,若cos A cos B =b a
,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形
解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A
, sin A cos A =sin B cos B ,∴sin2A =sin2B
即2A =2B 或2A +2B =π,即A =B ,或A +B =π2
. 8.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )
A.32
B.34
C.32或 3
D.34或32
解析:选D.AB sin C =AC sin B ,求出sin C =32
,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.
再由S △ABC =12
AB ·AC sin A 可求面积. 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3
,则A =________. 解析:由正弦定理得:a sin A =c sin C
, 所以sin A =a ·sin C c =12
. 又∵a <c ,∴A <C =π3,∴A =π6
. 答案:π6
10.在△ABC 中,已知a =433
,b =4,A =30°,则sin B =________.
解析:由正弦定理得a sin A =b sin B
⇒sin B =b sin A a =4×12433=32
. 答案:32
11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.
解析:C =180°-120°-30°=30°,∴a =c ,
由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3. 答案:8 3
12.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 解析:∵B
b C
c sin sin =,有B sin 3430sin 2=︒,得sinB=13> ∴此三角形无解.
答案:0
一,二,二,无。