5.34边界层型对流传热解析
- 格式:ppt
- 大小:3.78 MB
- 文档页数:25
带热源的边界层对流传热方程
数组存储大数的原理带热源的边界层对流传热方程是描述带热源的边界层内流体流动和传热过程的数学方程。
它由动量方程、能量方程和连续性方程组成。
一、动量方程
1.∂u/∂x+∂v/∂y=0
2.ρ(u∂u/∂x+v∂u/∂y)=-∂p/∂x+μ(∂^2u/∂x^2+∂^2u/∂y^2)
3.ρ(u∂v/∂x+v∂v/∂y)=-∂p/∂y+μ(∂^2v/∂x^2+∂^2v/∂y^2)+ρg
二、能量方程
1.ρ(u∂T/∂x+v∂T/∂y)=k(∂^2T/∂x^2+∂^2T/∂y^2)+q
三、连续性方程
●∂u/∂x+∂v/∂y=0
其中:
●u、v:流体在x、y方向的速度分量
●p:压力
●ρ:流体密度
●μ:流体粘度
●k:流体导热系数
●g:重力加速度
●T:温度
●q:热源
四、边界条件:
1.在壁面,u=v=0,T=Tw
2.在远场,u=U∞,v=0,T=T∞
其中:
3.Tw:壁面温度
4.T∞:远场温度
五、求解带热源的边界层对流传热方程,可以采用以下方法:
1.相似解法
相似解法是假设边界层内的流场和温度场与相似变量有关,从而将方程组简
化为一组常微分方程。
2.数值解法
数值解法是利用有限差分法、有限元法等方法将方程组离散化,然后利用计算机求解。
对流传热分析摘要:通过本章的学习,我们掌握对流传热的机理及其影响因素,边界层概念及其应用。
通过讨论运动方程、连续性方程、能量方程为基础,结合量纲分析理论,解释对流传热的机理,探讨强制对流的机理,探讨强制对流传热、自然对流传热等的基本规律。
关键词:对流;传热;边界层靠气体或液体的流动来传热的方式叫做对流。
液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程。
对流是液体和气体中热传递的主要方式,气体的对流现象比液体明显。
对流可分自然对流和强迫对流两种。
自然对流往往自然发生,是由于温度不均匀而引起的。
强迫对流是由于外界的影响对流体搅拌而形成的。
1 对流传热概述对流换热指流体与固体壁直接接触时所发生的热量传递过程。
在对流换热过程中,流体内部的导热与对流同时起作用。
研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。
影响对流换热的因素主要有,流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。
流动的状态:流体在壁面上流动存在着层流和紊流两种流态。
流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。
流体的相变:冷凝和沸腾是两种最常见的相变换热。
换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。
2 边界层和平板壁面对流传热2.1边界层由于对流换热的热阻大小主要取决于紧靠壁面附近的流体流动状况,而该区域中速度和温度的变化最为剧烈。
因此,将固体壁面附近流体速度急剧变化的薄层称为流动边界层,而将温度急剧变化的薄层称为热边界层。
流动边界层的厚度δ通常规定为在壁面法线方向达到主流速度99%处的距离。
而热边界层的厚度δ为沿该方向达到主流过余温度99%处的距离。