第一节简谐运动详解
- 格式:pptx
- 大小:311.89 KB
- 文档页数:5
第1节简谐运动学习目标要求核心素养和关键能力1.知道什么是弹簧振子,理解振动的平衡位置和位移。
2.知道弹簧振子的位移—时间图像,知道简谐运动的过程及其图像。
3.会结合简谐运动的图像分析运动过程特点。
1.核心素养科学思维:理解弹簧振子的理想化模型和简谐运动的“对称性”思维。
2.关键能力物理建模能力和数形结合分析问题的能力。
知识点一弹簧振子钟摆来回摆动,水中浮标上下浮动,担物行走时扁担下物体的颤动,树梢在微风中的摇摆……在生活中我们会观察到很多类似这样的运动。
这些运动的共同点是什么?提示钟摆来回摆动,水中浮标上下浮动,扁担下物体的颤动、树梢的摇摆等都是以某个位置为中心来回往复运动。
❶机械振动物体或物体的一部分在一个位置附近的往复运动称为机械振动,简称振动。
❷平衡位置弹簧未形变时,物体所受的合力为0,处于平衡位置。
❸弹簧振子(1)组成:小球和弹簧组成的系统称为弹簧振子,简称振子(2)理想化模型弹簧振子是一种理想化模型,近似条件①弹簧的质量与小球相比可以忽略。
②小球运动时空气阻力很小,可以忽略。
③小球与杆之间无摩擦。
1.平衡位置振子不振动时,保持静止状态的位置;振子振动时,速度最大的位置。
2.振动特征(1)有一个“中心位置”,即平衡位置。
(2)运动具有往复性。
3.弹簧振子的位移及其变化位移指相对平衡位置的位移,由平衡位置指向振子所在的位置。
当振子从平衡位置向最大位移处运动时,位移增大;反之,位移减小。
4.运动学分析当振子从平衡位置向最大位移处移动时,位移在增大,速度在减小;当振子向平衡位置移动时,位移减小,速度增大,平衡位置处位移为零,速度最大;最大位移处速度为零。
【例1】(多选)弹簧上端固定在O点,下端连接一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,关于小球的平衡位置,下列说法正确的是()A.在小球运动的最低点B.在弹簧处于原长时的位置C.在小球速度最大时的位置D.在小球原来静止时的位置答案CD解析平衡位置是振动系统不振动时,小球(振子)处于平衡状态时所处的位置,可知此时小球所受的重力大小与弹簧的弹力大小相等,即mg=kx,也即小球原来静止的位置,故选项D正确,A、B错误;当小球处于平衡位置时,其加速度为零,速度最大,选项C正确。
第一章机械振动第一节初识简谐振动一、教学设计思想:简谐运动是学生在原有机械运动学习的基础上,要进一步学习的更为复杂的运动形式。
在学生对胡克定律和牛顿定律以及位移的概念有正确的认识的基础上,整合传统实验和信息技术〔DIS实验系统〕,为方便学生探究简谐振动运动原因和运动规律提供条件,并引导学生去观察,比较、判断一次全振动过程中各物理量变化的情况,去发现简谐振动运动特性。
二、教学任务分析:简谐振动是匀速直线运动、匀变速直线运动和匀速圆周运动之后学生接触的又一动类型,从局部来看,简谐振动是变加速直线运动,从整体来看,简谐振动同匀速圆周运动一样是一种周期运动。
因此,简谐振动是以往所学知识的一次大综合,它的运动是比较复杂的。
同时简谐振动又是后面学习“波动〞的基础。
因此,学好简谐振动,掌握它的运动特点,搞清楚它与其它运动的联系与区别是非常重要的。
〔一〕知识技能:1、初步认识机械振动现象,构建简谐运动的基本概念,巩固和扩大学生在运动学和动力学方面的认识结构。
2、通过观察生活中机械运动的现象,进而观察理想模型弹簧振子的振动过程,引导学生认识振动的运动特征——围绕中心位置做周期性运动,以及产生振动的条件,形成机械振动的物理概念。
3、运用多媒体将弹簧振子在一次全振动中四段不同运动的暂态与动态显示在屏幕上,让学生应用已经学过的胡克定律和牛顿定律,分析弹簧振子一次全振动中位移、回复力、加速度、速度随时间的变化情况,归纳出简谐运动的规律,形成简谐运动的概念。
4、引导同学知道做简谐运动的物体其位移随时间变化的图像。
通过DIS实验直接观察到声音的振动图像,比较了解到简谐振动是一种最简单、最基本的振动,其他实际的振动是由多个或无限个简谐运动组合而成。
〔二〕过程和方法1、引导学生通过观察、建立理想模型和比较分析的方法探究物体做简谐运动的条件和规律。
2、让学生通过观察归纳出机械振动的特点,培养学生的观察、归纳能力3、渗透物理学方法的教育。
第一节:初识简谐运动及简谐运动公式教学目标:1、知识与技能:(1).知道什么是机械振动.知道简谐运动是最简单、最基本的振动.(2).知道什么是简谐运动.掌握简谐运动回复力的特征.(3).掌握在一次全振动过程中回复力、加速度、速度随偏离平衡位置的位移变化的规律(定性)2、过程与方法:通过实验与探究弹簧振子的运动特征,用实验的方法得出它的运动曲线,用形象直观的方法突破教学的重点与难点,让学生学会化难为易的解决问题的物理思维方法。
3、情感、态度与价值观:善于观察与思考是学习物理学的方法之一,培养学生学习思维的良好习惯。
教学过程:引入:前面我们已经学过:在平衡力作用下的匀速运动,在大小和方向都不变的恒力作用下的匀变速运动,在大小不变而方向改变的向心力作用下的匀速圆周运动.现在我们要学习在大小和方向都改变的力作用下的机械振动.1.机械振动(1)定义:物体在平衡位置附近所做的往复运动,叫做机械振动。
<演示>挂在弹簧下端的重物的上下振动.提问:为什么物体会做这样的运动呢?(引导学生从力的角度来分析,分析并得出回复力的概念.)(2)产生振动的条件:①每当物体离开平衡位置就会受到回复力的作用;②阻力足够小.(3)回复力:使振动物体回到平衡位置的力.注:①回复力是根据力的效果命名的.②实际来源:沿振动方向的合外力。
提问:振动是自然界中普遍存在的一种运动形式,请举例说明还有什么样的运动属于振动?(微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……)跟研究其它的现象一样,研究振动现象也要从最简单、最基本的振动来着手.我们首先学习一种最简单、最基本的振动——简谐运动.2.简谐运动第一步,实例分析:弹簧振子(1)一种理想化模型:①杆光滑,阻力不计;②轻弹簧,弹簧质量不计.<演示>气垫弹簧振子的振动(2)运动规律:注:在研究机械振动时,我们把偏离平衡位置的位移简称为位移。
分析在一次全振动过程中振子的位移的变化、弹力的变化、加速度的变化、速度的变化。
简谐运动知识点汇总第一节 简谐运动一、弹簧振子1、定义:我们把小球(物块)和弹簧组成的系统统称为弹簧振子。
2、理想化条件:忽略摩擦力等各种阻力、小球看成质点、忽略弹簧质量、弹簧始终在弹性限度内3、平衡位置:振子在振动方向上合理为零的点,速度最大,振动位移、回复力、回复加速度为零4、振动位移:由平衡位置指向振子位置的有向线段。
5、振动图像(x -t 图像)图像信息:① 横坐标 —— 时间(周期)② 纵坐标 —— 位移和路程③ 斜率 —— 速度④ 平衡位置 —— 位移为0,速度最大⑤ 最大位移处 —— 位移最大,速度为0二、简谐运动1、定义:如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x -t 图像)是一条正弦曲线)sin(ϕω+=t A x ,这样的振动是一种简谐运动。
简谐运动是最基本的振动2、对称性: 关于平衡位置对称的两点位移大小相等,方向相反速度大小相等,方向可同可反时间对称第二节 简谐运动的描述一、振幅1、定义:振动物体离开平衡位置的最大距离,叫做振动的振幅,常用字母A 表示、是个标量。
2、说明:振子振动范围的大小是振幅的两倍----2A;振幅的大小直接反映了振子振动能量(E=EK+EP)的高低,振子质量一定时,振幅越大,振动系统能量越大。
二、周期频率三、圆频率:是一个与周期成反比,与频率成正比的量,叫作简谐运动的“圆频率”。
它也表示简谐运动的快慢f T ππω22== 四、相位、初相第三节 简谐运动的回复力和能量一、回复力1、定义:指向平衡位置使振子回到平衡位置的力2、特点:(1)回复力是效果力,由性质力充当,可以是一个力,可以是一个力的分力,可以是几个力的合力(2)回复力一定指向平衡位置且与位移方向相反3、公式F=-KX4、简谐运动定义2: 如果质点所受的力与它偏离平衡位置的位移大小成正比,即 F =-k x ,质点的运动就是简谐运动.第四节 单摆一、单摆:1、定义:细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略;球的直径与线的长度相比也可以忽略,这样的装置就叫做单摆2、特点(1)摆球:体积小,质量大可视为质点;(2)摆线:细长,不可伸长,质量忽略;(3)不计一切阻力(4)单摆是理想化模型(5)摆角一般小于5°3、回复力x L mg F -=回4、周期公式gl T π2=(注意等效摆长和等效重力加速度的换算)4、说明:单摆在平衡位置合力不为零(合力等于向心力),回复力为零第六节 受迫振动 共振一、固有振动和固有频率1、定义:振动系统在没有外力干预下的振动称为固有振动,也称自由振动,其频率称为固有频率。
第1节简谐运动一、弹簧振子及其运动1.对于做简谐运动的弹簧振子,下述说法正确的是()A.振子通过平衡位置时,加速度最大B.振子在最大位移处时,速度最大C.振子在连续两次通过同一位置时,位移相同D.振子连续两次通过同一位置时,动量相同【答案】C【详解】A.振子经过平衡位置时速度最大,加速度是零,A错误;B.振子在最大位移处时速度最小,是零,B错误;C.振子在连续两次经同一位置时,相对于平衡位置的位移相同,C正确;D.动量是矢量,振子连续两次经同一位置时,速度的大小相同,方向相反,则动量大小相同,方向相反,D错误。
故选C。
2.如图所示为一弹簧振子,O为平衡位置,以向右为正方向,则振子在B、C之间振动时()→位移为正、速度为负A.B O→位移为负、速度为正B.O C→位移为正、速度为负C.C O→位移为负、速度为正D.O B【答案】A【详解】A.速度方向即振子运动方向,则B O→位移向左为负,速度向右为正,A正确;→位移向右为正,速度向右为正,B错误;B.O CC.C O→位移向右为正,速度向左为负,C错误;→位移向左为负,速度向左为负,D错误。
故选A。
D.O B二、简谐运动的x-t图像3.如图所示是某振子做简谐运动的图像,以下说法正确的是()A.因为振动图像可由实验直接得到,所以振动图像就是振子实际运动的轨迹B.振动图像反映的是振子位移随时间变化的规律,并不是振子运动的实际轨迹C.振子在B位置的位移就是曲线BC的长度D.振子运动到B点时的速度方向即该点的切线方向【答案】B【详解】ABC.振动图像表示振子位移随时间的变化规律,并不是振子实际运动的轨迹,故B正确,AC错误;D.B点切线的方向不表示振子运动到B点时的速度方向,故D错误。
故选B。
4.如图甲所示,一弹簧振子在A、B间振动,取向右为正方向,振子经过O点时为计时起点,其振动的x -t图像如图乙所示,则下列说法正确的是()A.t4时刻振子在A点B.t2时刻振子在B点C.在t1~t2时间内,振子的位移在增大D.在t3~t4时间内,振子的位移在减小【答案】C【详解】AB.振子在A点和B点时位移最大,由于取向右为正方向,所以振子运动到A点有正向最大位移,运动到B点有负向最大位移,则t2时刻,振子在A点,t4时刻,振子在B点,故AB错误;CD.振子的位移以平衡位置为起点,所以在t1~t2和t3~t4时间内振子的位移都在增大,故C正确,D错误。
第一节 简谐运动一、机械振动:1、定义:物体(或物体的一部分)在某一中心位置(平衡位置)两侧所做的往复运动,叫做机械振动,简称振动。
2、条件:1)每当离开平衡位置,就受到回复力作用; 2)摩擦阻力足够小。
3、路径:直线或曲线 二、简谐运动: 1、弹簧振子:1)弹簧振子:轻质弹簧与有孔小球连在一起穿在光滑水平杆上。
2)振子振动的原因:每当离开平衡位置,就受到回复力F 作用。
kX F -= “负号”:表示回复力与振子的位移方向相反。
2、简谐运动的定义:物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动叫做简谐运动。
3、简谐运动的规律:1)位移:从平衡位置指向振子所在位置的有向线段,为振子的位移矢量.方向为从平衡位置指向振子所在位置.大小为平衡位置到该位置的距离.振子在两“端点”位移最大,在平衡位置时位移为零。
振子通过平衡位置,位移改变方向.2)回复力:回复力的大小和方向均做周期性变化。
物体处于最大位移处时回复力最大,处于平衡位置时回复力最小(等于零)。
物体每经平衡位置时,回复力方向改变一次。
3)加速度:加速度的大小和方向也做周期性变化,且有:x mka -=,即加速度与位移总是同时增、减且反向。
位移最大时加速度最大,平衡位置时加速度为零。
物体每经平衡位置时,加速度方向改变一次。
4)速度:简谐运动的速度大小和方向也是周期性变化的,物体处于最大位移处时速度最小(等于零),处于平衡位置时速度最大。
速度的方向与回复力(加速度)、位移的方向有时相同,有时相反。
5)振动的能量:物体做简谐运动时动能和势能相互转化,具有周期性,动能和势能的总和叫简谐运动的能量。
例题一、如图所示,试证明将物体向下拉一段距离松手后的运动为简谐运动。
证明:设物体的质量为m ,弹簧的劲度系数为k ,物体平衡时弹簧伸长量为ΔL ,现将物体向下拉x ,并取向下为正方向,则有: 平衡:mg=k ΔL下端:F=k (ΔL+x )所以F 合= –F+mg= –k (ΔL+x )+ mg= –k x同理可得,当物体运动到平衡位置上方时F 合= –k x 所以物体的运动为简谐运动。
知识点:一、简谐运动定义1.机械振动物体在平衡位置附近所做的往复运动叫机械振动。
机械振动的条件是:(1)物体受到回复力的作用;(2)阻力足够小。
2.回复力使振动物体返回平衡位置的力叫回复力。
回复力时刻指向平衡位置。
回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等。
3.简谐运动物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动。
表达式为:F=-kx。
4.描述简谐运动的物理量(1)位移x:由平衡位置指向振子所在处的有向线段,最大值等于振幅;(2)振幅A:是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的,而位移是时刻在改变的)(3)周期T:是描述振动快慢的物理量。
频率f=1/T二、理解简谐运动重难点1.平衡位置的理解平衡位置是做机械振动物体最终停止振动后振子所在的位置,也是振动过程中回复力为零的位置。
(1)平衡位置是回复力为零的位置;(2)平衡位置不一定是合力为零的位置;(3)不同振动系统平衡位置不同:竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。
2.回复力的理解(1)回复力是指振动物体所受的总是指向平衡位置的合外力,但不一定是物体受到的合外力。
(2)性质上,回复力可以是重力、弹力、摩擦力、电场力、磁场力等。
(3)回复力的方向总是“指向平衡位置”。
(4)回复力的作用是使振动物体回到平衡位置。
3.简谐运动(1)简谐运动的判定在简谐运动中,回复力的特点是大小和位移成正比,方向与位移的方向相反,即满足公式F=-kx。
所示对简谐运动的判定,首先要正确分析出回复力的来源,再根据简谐运动中回复力的特点进行判定。
(2)简谐运动的特点周期性:简谐运动的物体经过一个周期或n个周期后,能回复到原来的运动状态,因此处理实际问题时,要注意多解的可能性或需定出结果的通式。